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ABSTRACT
Referring video object segmentation (RVOS) is a cross-modal task
that aims to segment the target object described by language ex-
pressions. A video typically consists of multiple frames and ex-
isting works conduct segmentation at either the clip-level or the
frame-level. Clip-level methods process a clip at once and segment
in parallel, lacking explicit inter-frame interactions. In contrast,
frame-level methods facilitate direct interactions between frames
by processing videos frame by frame, but they are prone to error
accumulation. In this paper, we propose a novel tracking-forced
framework, introducing high-quality tracking information and forc-
ing the model to achieve accurate segmentation. Concretely, we uti-
lize the ground-truth segmentation of previous frames as accurate
inter-frame interactions, providing high-quality tracking references
for segmentation in the next frame. This decouples the current input
from the previous output, which enables our model to concentrate
on accurately segmenting just based on given tracking information,
improving training efficiency and preventing error accumulation.
For the inference stage without ground-truthmasks, we carefully se-
lect the beginning frame to construct tracking information, aiming
to ensure accurate tracking-based frame-by-frame object segmenta-
tion. With these designs, our tracking-forced method significantly
outperforms existing methods on 4 widely used benchmarks by at
least 3%. Especially, our method achieves 88.3% P@0.5 accuracy and
87.6 overall IoU score on the JHMDB-Sentences dataset, surpassing
previous best methods by 5.0% and 8.0, respectively.
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1 INTRODUCTION
The purpose of Referring Video Object Segmentation (RVOS) is to
accurately segment the target object that is referred to by a natural
language expression in each frame. This emerging task has garnered
significant attention owing to its catalytic effect on various fields,
such as video editing [2, 12], self-driving vehicle [10, 13]. Since
RVOS requires to identify the same target object from all frames of
a video, it is necessary not only to comprehensively understand the
cross-modal sources, e.g., vision and language, but also to effectively
track the same object across frames, which is particularly crucial.

Existing works for the RVOS task can be divided into two cat-
egories based on their different video processing units: clip-level
methods [1, 8, 29] and frame-level methods [11, 25, 28]. As shown
in Fig.1(a), clip-level methods process the frames of a clip in a par-
allel way. These works typically utilize feature association [8] or
query sharing [1, 29] techniques to track the same object across
frames, lacking explicit inter-frame interactions modeling. Frame-
level methods utilize inter-frame interaction information to assist
with more accurate object tracking. As illustrated in Fig.1(b), these
methods process the video frame by frame, in which each frame
utilizes the segmentation result of its previous frame as guidance to
assist in tracking target objects in the current frame. This approach
seems reasonable for tracking the target object, but it may lead to
error accumulation. This is because the information transmitted
from the previous frame is not entirely accurate, and the inaccurate
information can affect tracking and segmenting the referred objects
in the next frame. Furthermore, the frame-by-frame processing
method also decreases the training efficiency.

To address above limitations of existing methods, we propose a
novel Tracking-Forced Framework (TF2) for the RVOS task. TF2 is
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Figure 1: Illustration of different frame processingmethods: (a) clip-level methods, (b) frame-level methods, and (c) our tracking-
forced method which introduces high-quality tracking information (TI) derived from the previous frame and the previous
ground-truth mask. The segmentation results in (a) and (b) are from Referformer[29] and OnlineRefer[28], respectively.

motivated by the observation that the referred object’s motion tra-
jectory is uninterrupted along with the interaction among frames.
Aforementioned frame-level methods track this information by link-
ing previous outputs to current inputs, often sufferring from error
accumulation due to the use of inaccurate tracking information. To
provide as precise tracking information as possible, TF2 is designed
to introduce high-quality tracking information and force the model
to learn from it, thereby achieving more accurate segmentation.
Specifically, as shown in Fig.1(c), we explicitly utilize ground-truth
masks to compute accurate tracking information, obtaining valid
appearance and location of the object in the previous frame, which
serves as the reference for the current frame segmentation process.
Under the guidance of the constructed precise tracking information,
our model is forced to concentrate on accurately segmenting, which
is the ultimate goal of this task. Besides, by decoupling the previous
output and the current input, we can achieve a parallel training
process, which is more efficient than previous frame-level works.

After the above training process, our model can learn to segment
the target object in a frame with the guidance of accurate tracking
information. When it comes to the inference process where ground-
truth labels are unavailable, we can not directly obtain tracking
information for all frames at once. To reduce this gap between the
training and inference process, we gradually construct tracking
information based on predicted segmentation results. Note that
we start the inference process from a carefully selected key frame,
rather than simply beginning with the first frame as existing frame-
level methods do. The chosen key frame should meet the criterion
of displaying the target object as completely as possible. Benefiting
from the reliability of the well-chosen key frame, accurate tracking
information is provided to help with precise segmentation, and the
issue of error accumulation present in existing frame-level methods
is significantly mitigated.

In summary, our contributions are:
• We propose a tracking-forced framework for RVOS, utilizing
high-quality tracking information to focus the model on
segmentation. Our method is superior to clip-level methods
by integrating inter-frame interactions and boasts higher
training efficiency than frame-level methods.

• Ground-truth masks are fully utilized to provide completely
accurate tracking inference for object segmentation, improv-
ing the training effectiveness by parallel processing. The
inference process is started from a carefully selected key

frame to mitigate the error accumulation that widely existed
in previous frame-level works.

• Extensive experiments are conducted on Ref-Youtube-VOS,
Refer-DAVIS17, A2D-Sentences, and JHMDB-Sentences. Our
method outperforms all previous methods and achieves state-
of-the-art performance.

2 RELATEDWORKS
2.1 Referring Video Object Segmentation
Referring Video Object Segmentation (RVOS) aims to accurately
segment objects in video clips based on textual descriptions. Early
works [17, 21, 23, 25–27] relied on complex network structures to
align multimodal information for object tracking and segmenta-
tion. For example, URVOS [25] presents an end-to-end deep neural
network that accomplishes both language-based object segmen-
tation and mask propagation in a unified model. [8] proposes a
collaborative spatial-temporal framework that integrates temporal
information for action recognition and spatial information for accu-
rate actor segmentation. Moreover, MTTR [1] and ReferFormer [29]
propose transformer-based end-to-end framework during the same
period. To foster the RVOS, [28] propose a solid online framework
based on query propagation. TCE-RVOS [7] achieves state-of-the-
art performance by effectively learning temporal information.

Compared to existing SOTA methods, our approach introduces a
tracking-forced framework. This innovative inclusion enables paral-
lel training, eliminating the dependence on frame-level propagation.
Consequently, our method exhibits a substantial enhancement in
training efficiency.

2.2 Object Tracking Methods in RVOS
The core of the RVOS lies in the localization and tracking of target
objects. For the former, current methods have achieved impressive
performance in accurately localizing objects, leveraging powerful
visual backbones such as ResNet [5] and Video-Swin [20]. How-
ever, for the latter, objects tend to exhibit motion between frames,
and multiple instances of the same object may be present, posing
challenges for accurate tracking of the queried object and thus lim-
iting segmentation performance. Existing approaches [28] achieve
simple tracking by query propagation from one frame to the next.
This simple tracking method is prone to error accumulation (e.g.,
the referred object does not appear in the first frame or appears
incompletely) thus leading to tracking in the wrong direction. To
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Figure 2: The overall architecture of our proposed tracking-forced framework. Given the current frame to be segmented, we
first extract features of the current frame and its tracking information, then conduct indicator optimization to retrieve the
referred object, and finally obtain the predicted mask. “Ref” denotes the reference points and “P” represents position indicators.

tackle this, we propose a tracking-forced segmentation strategy to
ensure the tracking direction for better segmentation.

3 METHOD
We propose a tracking-forced framework, introducing tracking in-
formation during the segmentation process and forcing the model
to learn visual information about target objects from it. In this sec-
tion, we present our model architecture and our training-inference
approach. Compared to previous works for RVOS where model
training and inference are conducted in the same way, we perform
different forms for training and inference. We first train our TF2 in
a parallel way and then conduct sequential inference. During the
parallel training process in Sec.3.1, we utilize ground-truth masks
to construct tracking information, which is used with the referring
language expression together for retrieving the target object. At
the inference stage in Sec.3.2, we no longer start inference from the
first frame of a video like previous frame-level methods but choose
a reliable key frame as the beginning based on semantic similarities
between all frames and the language expression. As illustrated in
Fig.2, our model accepts the current frame, its corresponding track-
ing information, a language expression as input, and outputs the
predicted mask without post-process. The implementation details
are stated as follows.

3.1 Indicator-optimized Parallel Training
Usually, ground-truth masks are just used to calculate the training
loss in previous works. In our TF2, we further utilize ground-truth
masks to construct semantically rich tracking information, which
can provide visual information of referred objects for segmenting.

3.1.1 Feature Extraction. Given a frame to be segmented, we first
construct its tracking information. Tracking information is essen-
tially derived from the interactions between the current frame and

its adjacent frames. So we randomly select its previous or following
frame as its adjacent frame used for tracking information construc-
tion. To obtain explicit visual information about the referred object,
we perform an AND operation on RGB values of the adjacent frame
based on its binary ground-truth mask. In this way, we can get the
tracking information in which only the target object is retained.
Then we adopt visual backbones (ResNet-50 and Swin-Transformer)
to extract feature maps for the current frame and its tracking infor-
mation, resulting in visual features 𝐹𝐶 and 𝐹𝑇 , respectively. As for
the language expression with the 𝐿 words, we use RoBERTa [18]
to extract the word-level text features 𝐹𝑤 = {𝑓 𝑤𝑡 }𝐿

𝑡=1 and also pool
the features of each word to obtain the sentence-level feature 𝐹𝑠 .

3.1.2 Indicator Optimization. After obtaining the feature embed-
ding of visual and text input, we follow the architecture of the
Deformable DETR detector [35] for referred object detection. We
mainly modify the decoder mechanism of the Deformable DETR by
introducing a tracking-forced attention module, which is beneficial
for accurate tracking.

We first prepare for the input of the decoder. We map the ob-
tained current frame feature 𝐹𝐶 and tracking feature 𝐹𝑇 into the di-
mension𝐶 = 256. We then conduct an attention-based early-fusion
between the word-level text feature 𝐹𝑊 and 𝐹𝐶 , 𝐹𝑇 separately to en-
rich the visual information before the Transformer encoder layers.
Among them, the text feature 𝐹𝑤 serves as Query, and the visual
features serve as Key, Value, ultimately resulting in new feature
maps 𝐹

′
𝐶
, 𝐹

′
𝑇
. The semantic features are fed into the Transformer

encoder. Finally, the encoded memory of the current frame and
tracking information, i.e.,𝑀𝐶 and𝑀𝑇 are input to the decoder.

In the decoding stage, to distinguish object queries from the
query concept in the attention mechanism, we refer to object
queries as object indicators in the following. Object indicators are
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Figure 3: (a) The distribution of key frames in each stage of
videos, and (b) statistics of CLIP scores of each frame relative
to the key frames.

composed of two parts: the content indicator and the position indi-
cator. The content indicator is actually the sentence-level feature
of the referred language expression, querying for object instances
in videos. At the same time, the position indicator restores loca-
tion information, which is also required to segment the referred
object. We initialized the position indicator randomly and set its
number as 𝑀 . To fuse the above two, we also repeat the content
indicator 𝐹𝑆 for 𝑀 times to fit the number of position queries. In
each decoder layer, we perform a self-attention module and two
deformable attention modules to optimize object indicators. A self-
attention on object indicators is conducted at first to clearly define
the information each object indicator concentrates on, in which
only content indicators serve as Value and the whole object indica-
tors serve as Query and Key. In the following deformable module,
we adopt a tracking-forced approach to guide object indicators’
optimization through tracking information. Reference points are
injected for constructing Key in this attention processing. They are
initially mapped from object indicators and used to extract only
the features of specific areas related to object indicators as Key,
which helps to improve the convergence speed of the model. No-
ticed that the tracking information contains explicit visual content
of the referred object, object indicators are no longer conditioned
solely on a language expression, but also incorporate the bounding
box of the target object of its adjacent frame through this cross-
attention. Input reference points are also updated as mid-reference
points, which refer to areas more relevant to the target objects. Both
the mid reference points and output object indicators through the
learning from tracking information are fed into the next deformable
attention module, in which 𝐹𝐶 serves as Value for target object de-
tection. Object indicators and reference points are transmitted and
optimized during the decoding process layer by layer. We adopt the
output indicators of the last layer for mask segmentation.

3.1.3 Mask Segmentation. Based on the output object indicators
of the last decoder layer, we use three lightweight heads on posi-
tion indicators to get bounding boxes, categories, and correspond-
ing masks of referred objects separately. Assuming the number of
position indicators is set to 𝑁 , let denote these head outputs as
𝑦 = {𝑦𝑖 }𝑁𝑖=1, which consists of three parts:

𝑦𝑖 = {𝑐𝑖 , 𝑏𝑖 , �̂�𝑖 }, (1)

where 𝑐 ∈ R𝑁×1 represents the class categories of the retrieved
objects,𝑏 ∈ R𝑁×4 is normalized vectors defining center coordinates
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Figure 4: Illustration of the inference process. The key frame
is identified by matching video frames to a language expres-
sion with CLIP. This key frame serves as the starting point
for our video segmentation inference. “TI” denotes the track-
ing information.

as well as the width and height of predicted bounding boxes, �̂� ∈
R𝑁× 𝐻

4 ×𝑊
4 is the generated binary masks. We follow the matching

approach to calculate the training loss. Considering that there is
only one target object referred to by the language expression, we
just need to minimize the matching loss between predictions and
the ground-truth lables to find our positive sample:

𝑦pos = arg minLmatch{𝑦,𝑦}, (2)
Lmatch = 𝜆𝑐Lcls + 𝜆𝑏Lbox + 𝜆𝑚Lmask, (3)

where Lcls is the focal loss [16], Lbox represents L1 loss and GIoU
loss [32], and Lmask denotes the combination of DICE loss [22] and
binary mask focal loss.

3.2 Key-frame-guided Sequential Inference
As there are no pre-existing ground-truth masks that can serve as
direct tracking information during the inference process, we utilize
a sequential inference approach to progressively construct tracking
information and produce masks on a frame-by-frame basis. The ar-
chitecture is the same as the training process shown in Fig.2. In this
way, the key frame as the inference start is particularly important,
as it affects the accuracy of subsequent tracking information.

3.2.1 Key Frame Selection. The frame chosen as the starting point
for inference should meet the criterion of displaying the referred
object as comprehensively as possible, ensuring ease of detection.
Alternatively stated, it is ideal to rely solely on language expression-
guided queries to accomplish the retrieval of the referred object
in this fey frame. We utilize CLIP to find this reliable frame. For
a video I = {𝐼𝑖 }𝑇𝑖=1 with 𝑇 frames and a corresponding language
expression E, we calculate the semantic similarities between each
frame and the referred expression. The frame with the highest
similarity score is taken as the start point inference:

𝜎 = argmax
𝑖∈[1,𝑇 ]

(𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐼𝑖 , E)), (4)

where 𝜎 ∈ [1,𝑇 ] denotes the index of the key frame. In this way,
we can obtain key frames of each referred language expression
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and conduct statistical analysis on the position distribution of our
selected key frames.

Take the validation set of Ref-Youtube-VOS as an example, we
visualize the number and proportion of key frames located in each
stage of videos in Fig.3(a). The key frame numbers of each stage
in videos are equivalent. This verifies that due to the diversity
of video content and language expressions, the positions of the
most relevant frame to referred text in each video are not the same.
So it is reasonable to choose a key frame as the inference start
instead of always beginning at the first frame to mitigate the wide
existing error accumulation. Furthermore, we align videos based
on the key frames and calculate the average scores of each stage to
intuitively represent the similarity scores distribution in Fig.3(b).
The specific calculation methods for video alignment and relative
scores calculation are detailed in the supplementary material. The
key frames we selected have the highest semantic similarity with
the referred text, which further proves that the reliability of our
selected key frames as tracking starts. Noticed that other small
peaks are appearing in the average curve, indicating that there
are still frames highly relevant to the text, except for key frames.
Based on this point, we also consider taking multiple key frames as
starts to accelerate inference. We divide a video into equal clips at
first and then choose the frame with the highest similarity score
as the key frame of each clip. We adopt this selection approach
instead of directly choosing the frames with top K scores because
the highest frames are usually adjacent, which not can effectively
help acceleration. The performance with different numbers of key
frames is detailed in Sec.4.4.3.
3.2.2 Spreading Inference. After getting the reliable frame as track-
ing beginning, we could conduct a spreading reference to construct-
ing tracking information frame by frame. During the spreading
process, as shown in Fig.4, whenever we obtain the segmentation
of a frame, we can construct the tracking information for the next
frame, until the complete segmentation of the whole video. As for
the key frame, we consider itself as its tracking information. In this
way, for a video I = {𝐼𝑖 }𝑇𝑖=1 consisting𝑇 frames with its key frame
𝐼𝜎 is known, the Segmentation results 𝑆 can be obtained:

𝑆 = {𝑆𝑖 }𝑇𝑖=1 =

𝑇𝐹 2 (𝐼𝑖 , E, 𝑆𝑖+1), 1 ≤ 𝑖 < 𝜎,

𝑇 𝐹 2 (𝐼𝑖 , E, 𝐼𝑖 ), 𝑖 = 𝜎,

𝑇 𝐹 2 (𝐼𝑖 , E, 𝑆𝑖−1), 𝜎 < 𝑖 ≤ 𝑇 .

(5)

4 EXPERIMENTS
4.1 Experimental Settings
Datasets.We evaluate our method on four popular RVOS bench-
marks. Ref-Youtube-VOS [25] is extended from the classic video
object segmentation dataset Youtube-VOS [31] by introducing lan-
guage expressions as reference. It contains a total of 3,978 videos
(3,471 for training, 202 for validation, and 305 for testing) and
27,899 expressions. Each video is accompanied by one or more
natural language expressions as references for segmenting objects
in videos. Ref-DAVIS17 [11] is an extension of another video seg-
mentation dataset DAVIS17 [24], in the same form as Ref-Youtube-
VOS, containing 90 videos and more than 1,500 expressions. A2D-
Sentences [4] and JHMDB-Sentences [4] separately sourced from
the original action and actor datasets A2D [30] and JHMDB [9]

with adding language expressions for segmenting. A2D-Sentences
consists of 3,782 videos and 6,655 expressions. JHMDB-Sentences
includes 928 videos and each video only has one referring expres-
sion.

Metrics. We adopt region similarity J , counter accuracy F
and the average value of the two J&F as evaluation metrics for
Ref-Youtube-VOS and Ref-DAVIS17. Since the annotations for the
validation set of Ref-Youtube-VOS are not publicly accessible, we
submit our segmentation results to the official server for evaluation1.
Our predictions on Ref-DAVIS17 are evaluated using the official
evaluation code2. We employ mean IoU, overall IoU, Presion@K (K
∈ [5,6,7,8,9]) and mAP over 0:50:0.05:0.95 as our evaluation metrics
on A2D-Sentences and JHMDB-Sentences.

4.2 Implementation Details
4.2.1 Model Settings. We first introduce the backbones we used.
Our training method takes several frames at once and there are on
necessary for these frames to have temporal connections. So Video
Swin Tranformer [20] with temporal modeling ability is not suitable
for our model. We just use ResNet-50 [5] and Swin Transformer
[19] as our visual backbones to extract visual features. The output
features of the last three layers are used as the visual embedding.
Noticed that with these two lighter backbones, we achieve better
performance, which is detailed shown in Sec.4.3. As for the text
backbone, we choose RoBERTa [18] as our encoder and freeze its
parameters in the training stage. We utilize the Transformer with 4
encoder layers and 4 decoder layers and the hidden dimension is
256. The number of position indicators is set as 5.
4.2.2 Training Details. We perform downsampling on all frames
and their key frames to ensure that the size of the short edge is at
least 320 and the size of the long edge is at most 576, fitting GPU
memory. During training, we use AdamW as our optimizer. For
a fair comparison with previous works, we pre-train our model
on Ref-COCO [34] as other works did and then fine-tune it for 6
epochs, the learning rate is initialed as 1𝑒 − 5 and decays divided by
10 at the 3rd and 5th epoch. The coefficients for losses are 𝜆𝑐𝑙𝑠 = 2,
𝜆𝑏𝑜𝑥 = 5, 𝜆𝑚𝑎𝑠𝑘 = 2.
4.2.3 Inference Details. During inference, we process each video
frame by frame. Every time, our model receives a frame, its tracking
information and the referred language expression as input, outputs
the predicted binary segmentation mask without post-process.

4.3 Main Results
4.3.1 Ref-Youtube-VOS & Ref-DAVIS17. We compare our method
with state-of-the-art models on the Ref-Youtube-VOS dataset as
shown in Tab.1. Among previous methods, PMINet [3] and CITD
[15] are the top 2 solutions using ensemble models in the 2021
Ref-Youtube-VOS Challenge. It can be seen that our TF2 with back-
bone ResNet-50 achieves the overall J&F of 64.6%, which is 5.0%
higher than the previous state-of-the-art TCE-RVOS with the same
backbone. Previous methods like MTTR [1], ReferFormer [29] and
OnlineRefer [28] also use the spatio-temporal backbone Video-
Swin-Transformer, which has strong ability to capture both the
spatial and temporal clues. Noticed that our TF2 with backbone
ResNet-50 even beats the spatio-temporal-based backbone models,
1https://codalab.lisn.upsaclay.fr/competitions/13520
2https://github.com/davisvideochallenge/davis2017-evaluation

https://codalab.lisn.upsaclay.fr/competitions/13520
https://github.com/davisvideochallenge/davis2017-evaluation
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Table 1: Comparison with the state-of-the-art methods on Ref-Youtube-VOS and Ref-DAVIS17.

Method Backbone Ref-Youtube-VOS Ref-DAVIS17
J&F J F J&F J F

CMSA [32] ResNet-50 34.9 33.3 36.5 34.7 32.2 37.2
CMSA + RNN [32] ResNet-50 36.4 34.8 38.1 40.2 36.9 43.5
URVOS [25] ResNet-50 47.2 45.3 49.2 51.5 47.3 56.0
ReferFormer [29] ResNet-50 55.6 54.8 56.5 58.5 55.8 61.3
OnlineRefer [28] ResNet-50 57.3 55.6 58.9 59.3 55.7 62.9
TCE-RVOS [7] ResNet-50 59.6 58.3 60.8 59.4 56.5 62.4
TF2 (Ours) ResNet-50 64.6 62.6 66.6 65.3 62.9 67.8
PMINet + CFBI [3] Ensemble 54.2 53.0 55.5 - - -
CITD [15] Ensemble 61.4 60.0 62.7 - - -
MTTR (𝜔 = 12) [1] Video-Swin-Tiny 55.3 54.0 56.6 - - -
ReferFormer (𝜔 = 5) [29] Video-Swin-Tiny 59.4 58.0 60.9 - - -
ReferFormer (𝜔 = 5) [29] Video-Swin-Base 62.9 61.3 64.6 61.1 58.1 64.1
OnlineRefer [28] Swin-Large 63.5 61.6 65.5 64.8 61.6 67.7
TF2 (Ours) Swin-Tiny 65.7 63.6 67.8 66.3 63.4 69.2
TF2 (Ours) Swin-Large 66.2 64.0 68.4 67.0 64.2 69.8

Table 2: Comparison with the state-of-the-art methods on A2D-Sentences.

Method Backbone
Precision IoU

mAPP@0.5 P@0.6 P@0.7 P@0.8 P@0.9 Overall Mean
Hu et al. [6] VGG-16 63.3 35.0 8.5 0.2 0.0 54.6 52.8 17.8
Gavrilyuk [4] I3D 69.9 46.0 17.3 1.4 0.0 54.1 54.2 23.3
CMSA + CFSA [33] ResNet-101 76.4 62.5 38.9 9.0 0.1 62.8 58.1 -
ACAN [27] I3D 75.6 56.4 28.7 3.4 0.0 57.6 58.4 28.9
CMPC-V [17] I3D 81.3 65.7 37.1 7.0 0.0 61.6 61.7 34.2
ClawCraneNet [14] ResNet-50/101 88.0 79.6 56.6 14.7 0.2 64.4 65.6 -
MTTR (𝜔 = 10) [1] Video-Swin-Tiny 93.9 85.2 61.6 16.6 0.1 70.1 69.8 39.2
Referformer (𝜔 = 5) [29] Video-Swin-Base 96.2 90.2 70.2 21.0 0.3 73.0 71.8 43.7
OnlineRefer (𝜔 = 5) [28] Video-Swin-Base 96.1 90.4 71.0 21.9 0.2 73.5 71.9 -
TF2 (Ours) Swin-Tiny 97.6 94.0 73.6 23.2 0.3 75.8 74.0 46.2
TF2 (Ours) Swin-Base 97.4 95.4 73.9 24.1 0.3 76.5 74.6 47.8

Table 3: Comparison with the state-of-the-art methods on JHMDB-Sentences.

Method Backbone
Precision IoU

mAPP@0.5 P@0.6 P@0.7 P@0.8 P@0.9 Overall Mean
Hu et al. [6] VGG-16 34.8 23.6 13.3 3.3 0.1 47.4 35.0 13.2
Gavrilyuk [4] I3D 47.5 34.7 21.1 8.0 0.2 53.6 42.1 19.8
CMSA + CFSA [33] ResNet-101 48.7 43.1 35.8 23.1 5.2 61.8 43.2 -
ACAN [27] I3D 55.7 45.9 31.9 16.0 2.0 60.1 49.0 27.4
CMPC-V [17] I3D 65.5 59.2 50.6 34.2 9.8 65.3 57.3 40.4
ClawCraneNet [14] ResNet-50/101 70.4 67.7 61.7 48.9 17.1 63.1 59.9 -
MTTR (𝜔 = 10) [1] Video-Swin-Tiny 75.4 71.2 63.8 48.5 16.9 72.0 64.0 46.1
Referformer (𝜔 = 5) [29] Video-Swin-Base 83.1 80.4 74.1 57.9 21.2 78.6 70.3 55.0
OnlineRefer (𝜔 = 5) [28] Video-Swin-Base 83.1 80.2 73.4 56.8 21.7 79.6 70.5 -
TCE-RVOS [7] Video-Swin-Base 83.3 80.6 74.6 58.6 22.2 78.4 70.5 56.0
TF2 (Ours) Swin-Tiny 87.2 82.4 78.0 60.2 25.4 85.1 76.6 60.4
TF2 (Ours) Swin-Base 88.3 83.0 81.2 61.2 26.9 87.6 79.7 63.0

outperforming all the previous works. Additionally, we use the
strong Swin-Transformer as the backbone for obtaining more excel-
lent performance. The J&F achieves higher 66.2% with Swin-Base
backbone, sufficiently improving the superiority of our method.

Considering that Ref-DAVIS17 only contains 90 videos which is
not suitable for training, similar to previous works, we directly use

the model trained on Ref-Youtube-VOS to verify the generality of
our TF2. The results are shown in Tab.1. Our model also achieves the
state-of-the-art just with backbone ResNet-50. The overall J&F
achieves 65.3%, which outperforms previous TCE-RVOS 5.9%. The
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Figure 5: Frame-wise comparison on the validation set of
Red-Youtube-VOS.

performance has further improvement with the stronger Swin-
Transformer with the overall J&F is 67.0%. The results on Ref-
DAVIS17 demonstrate the generality of our model.

TF2 concentrates on segmenting the object based on the high-
quality tracking information and performs sequential inference
starting from key frames. The effectiveness is further proved through
the frame-wise comparison with the recent works ReferFormer [29]
and OnlineRefer. The results are shown in Fig.5.
4.3.2 A2D-Sentences & JHMDB-Sentences. We further compare
our method with previous approaches on A2D-Sentences. Previous
methods with good performance like ReferFormer [29] and On-
lineRefer [28] choose to use the spatio-temporal backbone Video-
Swin-Transformer to extract valid visual features. As the charac-
teristic of our training method utilizing ground-truth masks to
build tracking information for each frame, there is no temporal
information between frames we need to capture. So the Video-
Swin-Transformer is not suitable for our model. We just use the
more simple spatial Swin-Transformer as our backbone and reach
the state-of-the-art. Our method achieves 47.8 mAP which exceeds
43.7% by +1.8% over the previous best result.

The precision results surpass previous methods obviously, which
significantly verifies the effectiveness of our model. Among them,
the performance with Swin-Tiny backbone exceeds a little with
Swin-Base on P@0.5. This is because our method concentrates
on spreading valid tracking information rather than modeling the
visual information in a more detailed and comprehensive manner,
so the performance with Swin-Tiny backbone is close to that with
Swin-Base. Besides, noticed that all methods including ours produce
low results on P@0.9. Based on previous work, we analyze that this
is due to the fact that labels are not accurately labeled by humans,
but rather generated by a coarse puppet model.

Following previous works, we use the model trained on A2D-
Sentences directly to JHMDB-Sentences without fine-tuning to
further demonstrate the generality of our model. The results are
shown in Tab.3. Our method also achieves the state-of-the-art on
JHMDB-Sentences over each metric.

4.4 Discussion
4.4.1 Components Ablation. To verify the effectiveness of each
component in our model, we conduct ablation studies on Ref-
Youtube-VOS using ResNet-50 as the visual backbone. We first
remove the selection of key frames in the inference stage and per-
form simple sequential reasoning from the first frame. As illustrated

Table 4: Ablation results on Ref-Youtube-VOS with ResNet-50
as the visual backbone, where “KF” denotes the key frame
and “TI” denotes tracking information.

Components J&F J F
Full Model 64.6 62.6 66.6
w/o KF 60.0 (↓4.6) 58.8 (↓3.8) 61.2 (↓5.4)
w/o KF & TI 55.5 (↓9.1) 54.4 (↓8.2) 56.7 (↓9.9)

Table 5: Results of different numbers (i.e., No.) of initialized
position indicators (left) and key frames (right) with ResNet-
50 as backbone on Ref-Youtube-VOS. T denotes the time
efficiency of the inference process and “R” represents a ran-
domly selected frame as the key frame.

No.P J&F J F
1 61.5 60.2 62.8
3 62.8 60.9 64.6
5 64.6 62.6 66.6
8 64.0 62.1 65.9

No.K J&F J F T
R 56.6 55.0 58.1 1×
1 64.6 62.6 66.6 1×
3 58.6 57.4 59.8 2.65×
5 55.9 54.8 57.0 4.36×

in Tab.4, the performance has a significant decrease without the se-
lection of key frames. This reflects the important role of key frames
in constructing accurate tracking information. In other words, al-
though the model has obtained a great ability to segment based
on accurate key frames, if the key frames constructed during the
inference process are not accurate, the performance of the model
cannot be fully applied and is still easily prone to error accumu-
lation. We further remove tracking information to offer a deep
insight into our model. In these circumstances, position indicators
are only guided by language expressions and the inference is also
in a parallel way as the same as training. As shown in the last row
of Tab.4, there is a further significant decrease in the segmentation
effect. This strongly validates the effectiveness of our core idea, i.e.,
maximizing the accuracy of the inter-frame interaction information.

4.4.2 Initialized Position Indicators. The number of initialized posi-
tion indicators is an adjustable parameter and we explore its value
setting. On the one hand, considering that there is only one target
object in RVOS, it may seem that setting one position indicator is
the best choice. On the other hand, more indicators could provide
more instance candidates. We conduct ablation experiments to find
the most suitable value for our model. The results are shown in
Tab.5. It can be seen that although using only one position indicator
can achieve considerable results, the performance further increases
with more position indicators for segmenting. The performance
of our model saturates when the number of position indicators
reaches 5. This is because there is only one positive sample in each
frame, more indicators for object detection result in imbalanced
label allocation. So we set the number of initialized queries as 5.
4.4.3 Key Frames Variations. We conduct a series of variant ex-
periments on the number of key frames to explore its impact on
performance. The results are shown in Tab.5. Firstly, we randomly
select one frame as the key frame, which plays as a baseline to verify
the effectiveness of our selection approach that utilizes the similar-
ity scores between frames and language expressions. We conduct
inference based on a random key frame five times and adopt the
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Figure 6: Visualization of the results from our TF2, ReferFormer [29] and OnlineRefer [28]. Due to the large number of frames
in videos, we extract clips to show the segmentation results. We also display the J score of each frame.

average value as the final result. Due to the unreliable random key
frame, the performance reduces significantly compared to our mul-
timodal similarity-based selection. Considering more key frames
as starting points can accelerate the inference process, we further
adopt variations with more key frames. However, some selected key
frames may not have enough information about the target object
referred to by language expressions, resulting in decreases in track-
ing information quality and segmentation performance. Although
the inference could be completed faster, the performance can not
be guaranteed. We finally set the number of key frames as 1.
4.4.4 Training Efficiency. For a video of 𝑡 frames, the processing
steps required by the clip-level method are about 𝑡/𝑙 , where 𝑙 is
the clip selection length. For the frame-level method, the process-
ing length is 𝑡 . Our method can realize parallel training between
frames, with only 1 processing step, thus improving the training
efficiency significantly. Specific quantitative results are shown in
the Supplementary Material.

4.5 Case Study
We analyze cases to show the effectiveness of ourmethod intuitively
compared with two recent works, ReferFormer and OnlineRefer,
which belong to clip-level methods and frame-level methods re-
spectively. To make a fair comparison, the visual backbone in each
model is set as ResNet-50. Segmentation results are shown in Fig.6.
The referred object in case(a) is the red truck on the right. However,
in the first few frames, the purple truck is relatively larger than
the red one, and their colors are similar, attracting more attention
during segmentation. ReferFormer [29] segments a clip in parallel
and lacks direct information interactions between frames. First pre-
dicted masks are incorrect under the influence of the purple truck,
while the latter masks tend to be accurate. As for OnlineRefer [28]
which segments frame by frame, it is negatively affected by the

purple truck. Due to its query propagation mechanism between
frames, errors in the first few frames accumulate, leading to the
subsequent segmentation errors. Our method chooses the 5th frame
as the key frame which is least affected by the left purple truck and
performs the segmentation in a spreading way. Benefiting from the
accurate tracking information, our TF2 achieves better performance.
In case(b), the target person in red moves out of frames sometimes,
increasing the segmentation difficulty. For frames where the person
appears obviously, ReferFormer [29] segments accurately. While
it can not segment the person in other frames correctly. The error
accumulation in OnlineRefer [28] is also reflected. In our TF2, we
select the 4th frame as the key frame first. With the accurate track-
ing information sourced form the key frame, the second frame only
with a partial target person can also be segmented correctly. It can
be seen that the overall segmentation results of all frames achieve
better performance than previous works through the bidirectional
inference. This intuitively verifies the effectiveness of our utilization
of accurate tracking information for promoting segmentation.

5 CONCLUSION
In this paper, we propose a tracking-forced framework for referring
video object segmentation. It introduces ground-truth masks to
construct tracking information, which breaks the dependence of
current input on previous output in existing frame-level methods,
allows our model to focus on accurately segmenting, and achieves
higher training efficiency by parallel frame processing. Besides, to
be compatible with the model we trained, we adopt a key-frame-
guided sequential inference approach to maximize the accuracy
of tracking information to achieve good performance. We conduct
extensive experiments on 4 widely used datasets and achieve state-
of-the-art performance on these four benchmarks.
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