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1 VIDEO ALIGNMENT DETAILS
To intuitively reflect the similarity score distribution of each frame
in videos, we conduct an alignment on the validation set of Red-
Youtube-VOS. Firstly, we manipulate the normalized similarity
scores whose range belongs to [0,1] so as to widen the gap be-
tween them. Concretely, Given the normalized similarity scores of
a video with T frames 𝑆𝑛 = {𝑆𝑖 }𝑇𝑖=1, we utilize the power function
for obtaining the processed 𝑆 :

𝑆 = {𝑆𝑖𝜆 |𝑆𝑖 ∈ 𝑆𝑛}𝑇𝑖=1 (1)

where the value of 𝜆 is set as 0.7 to ensure the reasonableness
between the scores, it has no impact on the original distribution of
the scores. Further, since different video has a different number of
frames, we project frames to various stages of videos to prepare for
the subsequent alignment. Specifically, we consider the length of a
video to be 1, and divide it equally into ten stages such as (0,0.1],
(0.1,0.2], and so on. we project the scores to each stage to obtain
𝑆
′
= {𝑆 ′

𝑗
}0.9
𝑗=0, where 𝑆

′
𝑗
is calculated as follows:

𝑆
′
𝑗 =

𝑇∑︁
𝑖=1

𝑆𝑖 , ⌈𝑖/𝑇 ∗ 10⌉/10 − 1 = 𝑗 (2)

where 𝑗 represents the end value of each stage. Via this process,
the similarity scores of a video are represented by 10 points: where
x ranges [0, 0.9] with the step is 0.1, and y is denoted by the stage
scores. Next, we calculate the position of the key frame based on
its index 𝜎 :

𝑝𝑜𝑠𝑘𝑒𝑦 = 𝜎/𝑇 (3)
we pan the video by −𝑝𝑜𝑠𝑘𝑒𝑦 to obtain the relative location of each
stage as the final score distribution of a video:{

𝑋 = [0 − 𝑝𝑜𝑠𝑘𝑒𝑦 : 0.9 − 𝑝𝑜𝑠𝑘𝑒𝑦 : 0.1]
𝑌 = 𝑆 ′

(4)

then we use linear interpolation on X and Y to represent the dis-
tribution of scores of the video. By moving the key frames of each
video to the origin, the alignment of all videos is achieved as shown
as in Fig.3(b) in our paper. Besides, we calculate the average value
of each stage and mark it with a red line.

2 TRAINING EFFICIENCY
In this section, we conduct quantitative analysis on training effi-
ciency of ReferFormer[2], OnlineRefer[1] and our TF2 with ResNet-
50 backbone on the training set containing 3,471 videos of the
Ref-Youtube-VOS dataset. We make comparisons on their training
method, processing steps, time for an epoch, and J&F scores. The
results are shown in Fig.1.

We first introduce the implementation details and parameter
settings. For clip-level ReferFormer, we follow the settings in its
source code to set the clip length to 5, and each clip should contain
at least one frame in which the target object is present.i.e. the target
mask is not empty. During data loading, if the ground-truth masks

of a clip are all empty, the clip will be reselected. The purpose of
this is to ensure the mask loss of each clip is not null. For frame-
level OnlineRefer, we also follow its original setup that inputs three
frames to the model for online training. To improve the training
stability, the number of input frames is set to 2 before the 4𝑡ℎ epoch.
For our TF2, each training unit just contains one frame.

We conduct experiments with 4 NVIDIA RTX A6000. Due to the
resource constraint, the maximum batch size of ReferFormer can be
set to 1, i.e. one clip. The maximum batch size of OnlineRefer is set
to 1, i.e. 2 frames for the first 3𝑡ℎ epochs and 3 frames for the last 3𝑡ℎ
epochs. We take the average value 2.5 for subsequent calculation.
Our TF2’s maximum batch size under our resource condition is set
to 8 i.e. 8 frames. To make a fair comparison on training steps of
each method, we use the least common multiple 40 of 5, 2.5, 8 as
the number of frames to be processed for the calculation. Given
40 frames, the processing steps required by clip-level ReferFormer
are 8 (40/5). For frame-level OnlineRefer, although these frames
can be all input to the model with 16(40/2.5) times, the processing
approach of videos is frame by frame, so the processing steps are
40. While our TF2 just needs 5 (40/8) processing steps.

Besides, we show the time required to train an epoch for each
method. In conjunctionwithJ&F scores, our TF2 not only achieves
high efficiency through the parallel training way and the training
unit just containing one frame, but also achieves the best perfor-
mance.

Table 1: Comparison of training efficiency

Methods Parall Processing Steps Time/Epoch(s) J&F(%)
ReferFormer ✓ 8 12,060 55.6
OnlineRefer × 40 20,160 57.3
TF2 (Ours) ✓ 5 8,800 64.6

3 CASES
To further verify the effectiveness of our method, We show more
cases on the validation set of the Ref-Youtube-VOS dataset with
ResNet-50 backbone. These cases source from the supplementary
file “submission.zip” in our submitted materials, and this J&F
score, which is the results of TF2 in Fig.1, is evaluated by the online
server1.
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a person wearing a white shirt is in the ocean on a surfboard riding a wave

a white surfboard is being rode by a person in the ocean wearing a white shirt

a person wearing white shorts and a red shirt is on the opposite side of the tennis court

a person in a blue shirt and black shorts

a tennis racket in the hand of the man in blue

a penguin standing behind a person wearing grey nike shoes

a person wearing gym shoes standing to the right of a penguin

a tennis racket being used by a man wearing red and white shoes

a person on the far side of a tennis court serving a tennis ball

a man in a blue shirt and white shorts

a person dressed in black and white in the center of stage holding a microphone

a person dressed in all black on the right walking toward a person on stage while holding a microphone
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a brown deer has a hand giving it a red treat and it looks forward chewing

a human hand is giving the brown deer a red treat to eat

a cow on the leftmost side of the view
a black and white cow second from the left

a black hat is being worn by a person riding a horse on the green grass
the tan and white horse is walking in the grass

a white truck driving on a road
a person wearing a white shirt is driving a white truck moving down the road

a tennis racket on the left being held by a person
a peraon dressed in white and gray holding a tennis racket

the brown bear is standing behind a green container and a large rock

a green bucket is behind a brown bear on the grass

a green boat is carring a person in the water

a paddle being used by a man in a green boat

a duck is holdedby a person with her both hands
a person is holding a duck and showing a duck photo
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a boat is moving from the right and advancing to the shore

a white sedan moving leftwards through with its headlights on

a brown and white cow walking away from two other cows

a green train on tracks

a small kangaroo standing in the grass

a white boat moving through the water

the black truck with red/white and blue is moving down the road to the right with a crowd behind it

a person is operating the disco musical equipment

a person skiing on a rail

4


	1 Video alignment details
	2 Training Efficiency
	3 Cases
	References

