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Abstract While other areas of machine learning have seen more and more automation, designing

a high-performing recommender system still requires a high level of human effort. Fur-

thermore, recent work has shown that modern recommender system algorithms do not

always improve over well-tuned baselines. A natural follow-up question is, “how do we

choose the right algorithm for a new dataset and performance metric?” In this work, we

start by giving the first large-scale study of recommender system approaches by comparing

18 algorithms and 100 sets of hyperparameters across 85 datasets and 315 metrics. We find

that the best algorithms and hyperparameters are highly dependent on the dataset and

performance metric, however, there are also strong correlations between the performance

of each algorithm and various meta-features of the datasets. Motivated by these findings,

we create RecZilla, a meta-learning approach to recommender systems that uses a model

to predict the best algorithm and hyperparameters for new, unseen datasets. By using far

more meta-training data than prior work, RecZilla is able to substantially reduce the level

of human involvement when faced with a new recommender system application. We not

only release our code and pretrained RecZilla models, but also all of our raw experimental

results, so that practitioners can train a RecZilla model for their desired performance metric:

https://github.com/naszilla/reczilla.

1 Introduction

While some areas of machine learning have benefitted greatly from repurposing existing compu-

tation through pretrained models [20, 50, 32, 21, 44], recommender system (rec-sys) research has

followed a different trajectory: despite their widespread usage across many e-commerce, social

media, and entertainment companies such as Amazon, YouTube, and Netfix [11, 26, 52], there is far

less work in reusing models. Many rec-sys techniques are designed and optimized with just a single
dataset in mind [26, 31, 11, 40, 55]. Intuitively, this might be because each rec-sys application is

highly unique based on the dataset and the target metric. For example, a typical user session looks

very different among e.g. YouTube, Home Depot, and AirBnB [11, 40, 31]. However, this intuition

has not been formally established. Furthermore, recent work has shown that neural recommender

system algorithms do not always improve over well-tuned baselines such as 𝑘-nearest neighbor

and matrix factorization [18]. A natural question is then, “how do we choose the right algorithm

for a new dataset and performance metric?”

In this work, we show that the best algorithm and hyperparameters are highly dependent on

the dataset and user-defined performance metric. Specifically, we run the first large-scale study of

rec-sys approaches by comparing 18 algorithms across 85 datasets and 315 metrics. For each dataset

and algorithm pair, we test up to 100 hyperparameters (given a 10 hour time limit per pair). The

codebase that we release, which includes a unified API for a large, diverse set of algorithms, datasets,

and metrics, may be of independent interest. We show that the algorithms do not generalize – the
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Figure 1: RecZilla recommends a parameterized rec-sys algorithm for a user-provided dataset and

performance metric. The RecZilla pipeline is built using a meta-dataset M that includes

many different performance metrics evaluated on many different rec-sys algorihtms on many

different datasets; we estimate algorithm performance using dataset meta-features.

performance of algorithms changes substantially across datasets and across performance metrics.

Furthermore, the best hyperparameters on one dataset often perform significantly worse than

the best hyperparameters on a different dataset. On the other hand, we do show that various

meta-features of the dataset can be used to predict the performance of rec-sys algorithms.

Motivated by these findings, we introduce RecZilla, a meta-learning-based algorithm selection

approach (see Figure 1) inspired by SATzilla [57]. At the core of RecZilla is a model that, given a

user-defined performance metric, predicts the best rec-sys algorithm and hyperparameters for a new

dataset based on meta dataset features such as number of users and items, and spectral properties of

the interaction matrix. We show that RecZilla quickly finds high-performing algorithms on datasets

it has never seen before. While there has been prior work on meta-learning for recommender

systems [16, 17], no prior work is metric-independent, searches for hyperparameters as well as

algorithms, or considers more than nine dataset families. By running an ablation study on the

number of meta-training datasets, we show that more dataset families are crucial to the success of

RecZilla. We release ready-to-use, pretrained RecZilla models for common test metrics, and we

release the raw results from our large-scale study, along with code so that practitioners can easily

train a new RecZilla model for their specific performance metric of interest.

Our contributions. We summarize our main contributions below.

• We run a large-scale study of recommender systems, showing that the best algorithm and

hyperparameters are highly dependent on the dataset and user-defined performance metric. We

also show that dataset meta-features are predictive of the performance of algorithms.

• We create RecZilla, an algorithm selection approach which, given a performance metric, effi-

ciently predicts the best algorithm and set of hyperparameters on new datasets.

• We release a public repository containing 85 datasets and 18 rec-sys algorithms, accessed through

a unified API. Furthermore, we release both pretrained RecZilla models, and raw data so that

users can train a new RecZilla model on their desired metric.

Relatedwork. Recommender systems are awidely studied area of research [8]. Common approaches

include 𝑘-nearest neighbors [1], matrix factorization [39, 43], and deep learning approaches [11,

26, 52]. For a survey on recommender systems, see [8, 4]. A recent meta-study showed that of the
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12 neural rec-sys approaches published at top conferences between 2015 and 2018, 11 performed

worse than well-tuned baselines (e.g. nearest neighbor search or linear models) [18].

Algorithm selection for recommender systems was first studied in 2011 [34] by using a graph

representation of item ratings. Follow-up work used dataset meta-features to select the best nearest

neighbor and matrix factorization algorithms [23, 3, 28]. Subsequent work focused on improving

the model and framework [17] including studying 74 meta-features systematically [13]. More

recent approaches from 2018 run meta-learning for recommender systems by casting the meta-

problem itself as a collaborative filtering problem. Performance is then estimated with subsampling

landmarkers [14, 16, 15]. No prior work in algorithm selection for rec-sys includes open-source

Python code. There is also work on automated machine learning (AutoML) for recommender

systems, without meta-learning [56, 6, 29, 30]. To the best of our knowledge, no meta-learning

or AutoML rec-sys papers have run experiments on more than nine dataset families or four test

metrics, and no prior work predicts hyperparameters in addition to algorithms.

2 Analysis of Recommender Systems

In this section, we present a large-scale empirical study of rec-sys algorithms across a diverse set

of datasets and metrics. We assess the following two research questions.

1. Generalizability. If a rec-sys algorithm or set of hyperparameters performs well on one dataset

and metric, will it perform well on other datasets or on other metrics?

2. Predictability. Given a metric, can various dataset meta-features be used to predict the perfor-

mance of rec-sys algorithms?

Experimental design. We run 18 rec-sys algorithms, including clustering-based, matrix factor-

ization, linear, and baseline methods. We run these algorithms on 85 datasets from 19 dataset

“families”: a family refers to an original dataset (such as Movielens), while “dataset” refers to a

single train-test split drawn from the original dataset, which may be a small subset of the original.

We use 21 different base metrics (such as precision, recall, NDCG) computed at 15 different cutoff

values. For full details of the algorithms, datasets, and metrics, see Appendix A.

For each dataset, we compute a train and test split based on leave-last-𝑘-out (and our repository

also includes splits based on global timestamp). For eac algorithm, we expose several hyperpa-

rameters and give ranges based on common values. For each dataset, we run each algorithm on

a random sample of up to 100 hyperparameter sets. Each algorithm is allocated a 10 hour limit

for each dataset split; we train and test the algorithm with at most 100 hyperparameter sets on

an n1-highmem-2 CPU, until the time limit is reached. Each algorithm is trained on the train split,

and the performance metrics are computed on the test split. By running 18 algorithms, up to 100

hyperparameters, and 85 datasets, this resulted in 84 769 successful experiments, and by computing

315 metrics, our final meta-dataset of results includes more than 26 million evaluations.

Generalizability. Our first observation is that all algorithms perform well on some datasets, and

poorly on others. First we identify the best-performing hyperparameter set for each (algorithm,

dataset) pair—to simulate hyperparameter optimization using our meta-dataset. We then rank all

algorithms for each dataset, according to several performance metrics. If we focus on a single

metric, then most algorithms are ranked first according to this metric on at least one dataset.

Average performance is more varied: some algorithms tend to perform better than others.

Table 7 shows the mean, min (best) and max (worst) ranking of all 18 algorithms over all dataset and

all accuracy and hit-rate metrics. Nearly all algorithms are ranked first for at least one metric, on

at least one dataset; the only exception is Random, which has a minimum rank 2. Many algorithms

perform very well on average; interestingly, the three algorithms with the highest average ranking

each come from different algorithm families: Item-KNN is a similarity-based metric, SLIM-BPR is

based on linear models, and SVD is a matrix factorization method. Furthermore, most algorithms

perform very poorly in some cases: the maximum rank is at least 15 (out of 18) for all algorithms.
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Predictability. We calculate 383 different meta-features to characterize each dataset. These meta-

features include statistics on the rating matrix—including basic statistics, the distribution-based

features of Cunha et al. [13], and landmark features [14]—which measure the performance of

simple rec-sys algorithms on a subset of the training dataset. Since these meta-features are used

for algorithm selection in Section 3, they are calculated using only the training split of each dataset.

For more details on the dataset meta-features, see Appendix A.4.

We find that some meta-features are highly correlated with the performance of algorithms. For

example, “mean of item rating count distribution” has a correlation of 0.941 with SlopeOne, and

“median of item rating count distribution” has a correlation of 0.933 with CoClustering. See Table 8

for more details. This experiment motivates the design of RecZilla in the next section, which trains

a model using dataset meta-features to predict the performance of algorithms on new datasets.

In Appendix A, we train three different meta-learner functions (XGBoost, KNN, and linear re-

gression) using our meta-dataset, to predict performance metric PREC@10 for 10 rec-sys algorithms

with high average performance. MAE decreases as more dataset families are added, suggesting that

it is possible to estimate rec-sys algorithm performance using dataset meta-features.

3 RecZilla: Automated Algorithm Selection
In the previous section, we found that (1) the best algorithm and hyperparameters strongly depend

on the dataset and user-chosen performance metric, and (2) the performance of algorithms can be

predicted from dataset meta-features. Points (1) and (2) naturally motivate an algorithm selection

approach to rec-sys powered by meta-learning.

In this section, we present RecZilla, which is motivated by a practical challenge: given a

performance metric and a new rec-sys dataset, quickly identify an algorithm and hyperparameters

that perform well on this dataset. This challenge arises in many settings—e.g., when selecting good

baseline algorithms for academic research, or when developing high-performing rec-sys algorithms

for a commercial application. We begin with an overview and then formally present our approach.

Overview. As alluded to earlier, RecZilla is an algorithm selection approach powered by meta-

learning. We use the results from the previous section as the meta-training dataset. Given a

user-specified performance metric, we train a meta-model that predicts the performance of each

of a set of algorithms and hyperparameters on a dataset, by using meta-features of the dataset.

Given a new, unseen dataset, we compute the meta-features of the dataset, and then use the meta-

model to predict the performance of each algorithm, returning the best algorithm according to the

user-selected performance metric. See Figure 1, and see Appendix B for the full details of RecZilla.

Experimental setup. Focusing on the performance metric PREC@10, we build a meta-datasetM
using all rec-sys datasets, algorithms, and meta-features described in Section 2. All meta-learners

are evaluated using leave-one-dataset-out evaluation: we iteratively select each dataset family
as the meta-test dataset, and run the full RecZilla pipeline using the remaining datasets as the

meta-training data. Splitting on dataset families rather than datasets ensures that there is no test

data leakage. Then for each dataset 𝐷 in the test set, we compare the performance metric of

the predicted best parameterized algorithm to the performance metric of the ground-truth best

algorithm using %Diff: the percentage difference of PREC@10 on the predicted best algorithm vs.

the ground-truth best algorithm.

Comparisons to existing methods. We compare RecZilla to polynomial SVM with 74 meta-features

(the best approach from a 2018 analysis [17]) and CF4CF-META [15], which combines CF4CF [16]

with earlier meta-learning approaches. Due to their basis on all prior work in the area, these two

methods can be seen as representative of all prior work on algorithm selection for recommender

systems. We refer to them by cunha2018 and cf4cf-meta. Note that cunha2018 has no open-source
code, and cf4c4-meta only has code in R. Furthermore, in order to give a more fair empirical

study, we implement both approaches directly within our codebase. Each model uses the same

meta-training datasets, algorithm selection procedure, and base algorithms. Since a main novelty
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Table 1: Comparison between RecZilla and two representative prior algorithm selection approaches.

We report the mean and standard deviation across 50 trials for 19 test sets, for 950 total trials.

The runtime is the average time it takes to output predictions on the meta-test dataset.

Approach Runtime (sec) %Diff (↓) PREC@10 of best pred. (↑)
cunha2018 [17] 0.39 52.9 ± 23.0 0.00813 ± 0.0113
cf4cf-meta [15] 6.68 43.5 ± 21.8 0.00808 ± 0.00773
RecZilla 6.69 35.1± 24.1 0.00884± 0.00848

of RecZilla is predicting hyperparameters as well as algorithms, the other two approaches are only

given the algorithms with the default hyperparameters.

We compare RecZilla (with an XGBoost model) to cunha2018 and cf4c4-meta. The algorithms

are given all 18 dataset families not in the test set, to use as training data. We run 50 trials for all

19 possible test sets in the leave-one-dataset-out evaluation, for a total of 950 trials. See Table 1.

RecZilla outperforms the other two approaches in both %Diff and in terms of the PREC@10 value

of the rec-sys algorithm outputted by each meta-learning algorithm.

In Appendix B, we give an ablation study on the number of training meta-datapoints and

meta-features used by RecZilla, as well as the meta-model of RecZilla.

4 Conclusions, Limitations, and Broader Impact
In this work, we conducted the first large-scale study of rec-sys approaches: we compared 18

algorithms and 100 sets of hyperparameters across 85 datasets and 315 metrics. We showed that for

a given performance metric, the best algorithm and hyperparameters highly depend on the dataset.

We also find that various meta-features of the datasets are predictive of algorithmic performance

and runtimes. Motivated by these findings, we created RecZilla, the first metric-independent,

hyperparameter-aware algorithm selection approach to recommender systems. Through empirical

evaluation, we show that given a user-defined metric, RecZilla effectively predicts high-performing

algorithms and hyperparameters for new, unseen datasets, substantially reducing the need for hu-

man involvement. We release our code and pretrained RecZilla models, as well as raw experimental

results so that users can train new RecZilla models on their own test metrics of interest.

Limitations. While our work progresses prior work along several axes, there are still avenues

for improvement. First, the meta-learning problem in RecZilla is low-data. Although we added

nearly all common rec-sys research datasets into RecZilla, the result is still only 85 meta-datapoints

(datasets). While we guarded against over-fitting to the training data in numerous ways, RecZilla

can still be improved by more training data. Therefore, as new recommender system datasets are

released in the future, our hope is to add them to our API, so that RecZilla continuously improves

over time. Furthermore, the magnitude of our evaluation (78 929 rec-sys models trained) leaves our

meta-data susceptible to biases based on experiment success/failures. Therefore, RecZilla may have

higher uncertainty for the datasets and algorithms that are more likely to fail.

Broader impact. Our work is “meta-research”: there is not one specific application that we

target, but our work makes it substantially easier for researchers and practitioners to quickly train

recommender system models when given a new dataset. On the research side, this is a net positive

because researchers can much more easily include baselines, comparisons, and run experiments on

large numbers of datasets, all of which lead tomore principled empirical comparisons. On the applied

side, our day-to-day lives are becoming more and more influenced by recommendations generated

from machine learning models, which comes with pros and cons. These recommendations connect

users with needed items that they would have had to spend time searching for [36]. Although

these recommendations may lead to harmful effects such as echo chambers [24, 37], techniques to

identify and mitigate harms are improving [27, 45].
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5 Reproducibility Checklist
1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] [The main claims in the abstract and introduction reflect

the paper’s contributions and scope.]

(b) Did you describe the limitations of your work? [Yes] [See Section 4.]

(c) Did you discuss any potential negative societal impacts of your work? [Yes] [See Section 4.]

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?

[Yes] [We read the ethics review guidelines and ensured our paper conforms to them.]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A] [We did not include

theoretical results.]

(b) Did you include complete proofs of all theoretical results? [N/A] [We did not include

theoretical results.]

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-

tal results, including all requirements (e.g., requirements.txt with explicit version), an

instructive README with installation, and execution commands (either in the supplemental

material or as a url)? [Yes] [We include the code, data, and instructions to reproduce the

results here: https://github.com/naszilla/reczilla.]

(b) Did you include the raw results of running the given instructions on the given code and

data? [Yes] [We include our raw results; see https://github.com/naszilla/reczilla.]

(c) Did you include scripts and commands that can be used to generate the figures and tables

in your paper based on the raw results of the code, data, and instructions given? [Yes] [We

include scripts to generate our exact results. See the scripts folder in https://github.
com/naszilla/reczilla.]

(d) Did you ensure sufficient code quality such that your code can be safely executed and the

code is properly documented? [Yes] [We included multipe documentation files, and put in a

reasonable effort to make our code as easy to use as possible.]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed

hyperparameter settings, and how they were chosen)? [Yes] [See Sections 2 and 3.]

(f) Did you ensure that you compared different methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [Yes] [Yes, see Section 3.]

(g) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] [We gave an ablation study in Section B.]

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] [In our

ablation, the same evaluation protocol was used.]

(i) Did you compare performance over time? [Yes] [See Section 3.]

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] [We

ran 50 trials of our experiments in Section 3.]
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(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [Yes] [All of our experiments have error bars.]

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A] [There do

not exist tabular or surrogate benchmarks for recommender systems.]

(m) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] [We include this information in Section 3].

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and

also hyperparameters of your own method)? [Yes] [We explained hyperparameter tuning

in Section 3.]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] [See Section A.]

(b) Did you mention the license of the assets? [N/A] Our experiments were conducted only on

publicly available datasets.

(c) Did you include any new assets either in the supplemental material or as a url? [N/A] We

did not include new assets.

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] Our experiments were conducted only on publicly available datasets.

(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] Our experiments were conducted only on publicly

available datasets.

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A] [We did not conduct research with human subjects.]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A] [We did not conduct research with human subjects.]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A] [We did not conduct research with human subjects.]
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A Experiment Details

This appendix outlines the algorithms, datasets, metrics, and hyperparameter selection used in

RecZilla, as well as the details of our procedure for generating the meta-dataset. This codebase

is publicly available
1
, and is written in Python. The RecZilla codebase builds on another public

Github repository
2
.

A.1 Generating Meta-Datasets

We generate the meta-dataset for RecZilla using 18 rec-sys algorithms and 85 datasets. We use a

leave-one-out training/validation split for each dataset: for each user, the last interaction is held

out for validation, and all remaining interactions are used for training. Each algorithm-dataset

pair is given a 10 hour time limit for training and validation and trains/validates with up to

100 random hyperparameter sets (see Appendix A.5), on a single a “n1-highmem-2” instance on

Google Cloud (2 vCPUs, 13GB memory). During validation, we calculate 21 different performance

metrics at 15 different cutoffs, for a total of 315 different metrics (see Appendix A.6). Out of

all 1 530 dataset-algorithm combinations tested in our experiments, 1 404 of them completed the

train/validation procedure with at least one hyperparameter set within the 10 hour time limit. Most

failed experiments failed due to invalid hyperparameter values, and some failed due to memory

errors.

Algorithm runtime varied substantially across algorithm family and dataset. Table 2 shows

runtime statistics over all experiments and all algorithms, for experiments that completed within

the 10-hour time limit.

A.2 Rec-sys Algorithms Implemented in RecZilla

Our experiments use 18 rec-sys algorithms. Algorithms with hyperparameters are associated with a

hyperparameter space, as well as a set of “default” hyperparameters. Table 3 lists each implemented

algorithm, along with its hyperparameter space and default parameters.

In the current implementation, we define several versions of User-KNN and Item-KNN, with

one version for each similarity metric. This is done for convenience, since different KNN similarity

metrics are associated with different hyperparameters. However, in our experiment results we treat

all versions of User-KNN and Item-KNN as the same algorithm.

All algorithms here use the interface from [19] (their codebase is publicly available
3
). All but

two of our 18 algorithms use the implementation from this codebase; two algorithms (CoClustering

and SlopeOne) use the implementation of Surprise [35], which is also publicly available.
4

Table 3: Description of all algorithms implemented in RecZilla.

Algorithm Name

Reference/ Descrip-

tion

Hyperparameter Space

CoClustering

Clusters users and

items. Uses their av-

erage ratings to pre-

dict new ratings. [25]

[35]

num-control-users : Int(1, 1000)

num-control-items : Int(1, 1000)

1https://github.com/naszilla/reczilla
2https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation
3https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation/
4http://surpriselib.com/
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EASE-R

Linear model de-

signed for sparse

data. Simplified

version of an autoen-

coder [53].

l2-norm : [1, 1e7]

GlobalEffects

Rating predictions

are based on a global

score for each item

and each user.

-

iALS

Matrix factorization

method. Leverages

alternating least

squares for opti-

mization and uses

regularization [33].

num-factors : Int(1, 200)

confidence-scaling : {lin., log.}

alpha : [1e-3, 50]

epsilon : [1e-3, 10]

reg : [1e-5, 1e-2]

ItemKNN-Asymmetric

k-nearest neighbors,

item-based. [51, 18]

Similarity between

items is calculated

using the asymmetric

cosine similarity [5].

top-K : Int(5, 1000)

shrink : Int(0, 1000)

alpha : [0, 2]

ItemKNN-Cosine

k-nearest neighbors,

item-based. [51, 18]

Similarity between

items is calculated

using the cosine

similarity.

top-K : Int(5, 1000)

shrink : Int(0, 1000)

normalize :Bool

feature-weighting : {none, BM25, TF-IDF}

ItemKNN-Dice

k-nearest neighbors,

item-based. [51, 18]

Similarity between

items is calculated

using the Sørensen-

Dice coefficient. [22]

top-K : Int(5, 1000)

shrink : Int(0, 1000)

normalize :Bool

ItemKNN-Euclidean

k-nearest neighbors,

item-based. [51, 18]

Similarity between

items is calculated

using the euclidean

distance (l2 distance).

top-K : Int(5, 1000)

shrink : Int(0, 1000)

normalize :Bool

normalize-avg-row :Bool

similarity-from-

distance

: {lin., log., exp.}

ItemKNN-Jaccard

k-nearest neighbors,

item-based. [51, 18]

Similarity between

items is calculated

using the Jaccard

index. [46]

Same as ItemKNN-Dice
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ItemKNN-Tversky

k-nearest neighbors,

item-based. [51, 18]

Similarity between

items is calculated

using the Tversky

index. [54]

top-K : Int(5, 1000)

shrink : Int(0, 1000)

alpha : [0, 2]

beta : [0, 2]

MF-AsySVD

Matrix factorization

model that replaces

user factors with the

factors of items rated

by that user. Items

have multiple cor-

responding factors.

[38]

sgd-mode : {sgd, adagrad, adam}

use-bias :Bool

num-factors : Int(1, 200)

item-reg : [1e-5, 1e-2]

user-reg : [1e-5, 1e-2]

learning-rate : [1e-4, 1e-1]

negative-

interactions-quota

: [0, 0.5]

MF-BPR

Uses the Bayesian

Personalized Rank-

ing loss to learn a

matrix factorization

model [48].

sgd-mode : {sgd, adagrad, adam}

num-factors : Int(1, 200)

batch-size :

{1, 2, 4, 8, 16, 32, 64, 128, 256,

512, 1024}

positive-reg : [1e-5, 1e-2]

negative-reg : [1e-5, 1e-2]

learning-rate : [1e-4, 1e-1]

MF-FunkSVD

A modified version

of the matrix fac-

torization algorithm

proposed in a blog

post
5
[18].

sgd-mode : {sgd, adagrad, adam}

use-bias :Bool

batch-size :

{1, 2, 4, 8, 16, 32, 64, 128, 256,

512, 1024}

num-factors : Int(1, 200)

item-reg : [1e-5, 1e-2]

user-reg : [1e-5, 1e-2]

learning-rate : [1e-4 1e-1]

negative-

interactions-quota

: [0, 0.5]

NMF

Non-negative matrix

factorization [12].

num-factors : Int(1, 350)

solver :

{coordinate-descent,

multiplicative-update.}

init-type : {random, nndsvda}

beta-loss : {frobenius, kullback-leibler}

P3alpha

Computes the rele-

vance between users

and items based on

random walks in a

graph containing

both users and

items [10].

top-K : Int(5, 1000)

alpha : [0, 2]

normalize-similarity :Bool

PureSVD

Matrix factorization

method based on

SVD.

num-factors : Int(1, 200)

Random

Predicts random rat-

ings.

-

5https://sifter.org/~simon/journal/20061211.html
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RP3beta

Similar to P3alpha,

but uses a reweigh-

ing scheme to com-

pensate for item pop-

ularity [47].

top-K : Int(5, 1000)

alpha : [0, 2]

beta : [0, 2]

normalize-similarity :Bool

SLIM-BPR

Uses a Sparse Linear

Method (SLIM) opti-

mized for Bayesian

Personalized Rank-

ing (BPR) loss.

[7, 18]

top-K : Int(5, 1000)

symmetric :Bool

sgd-mode : {sgd, adagrad, adam}

lambda-i : [1e-5, 1e-2]

lambda-j : [1e-5, 1e-2]

learning-rate : [1e-4, 1e-1]

SLIMElasticNet

Sparse Linear

Method (SLIM)

[42, 18]

top-K : Int(5, 1000)

symmetric :Bool

l1-ratio : [1e-5, 1]

alpha : [1e-3, 1e-2]

SlopeOne

Uses linear functions

to predict ratings

for an item based

on those from other

items. [41] [35]

-

TopPop

Recommends items

based on global pop-

ularity regardless of

user.

-

UserKNN-Asymmetric

k-nearest neighbors,

item-based, using the

asymmetric cosine

similarity. [49, 18]

Same as ItemKNN-Asymmetric

UserKNN-Cosine

k-nearest neighbors,

user-based, using the

cosine similarity. [49,

18]

Same as ItemKNN-Cosine

UserKNN-Dice

k-nearest neighbors,

user-based, using the

Sørensen-Dice coeffi-

cient. [49, 18]

Same as ItemKNN-Dice

UserKNN-Euclidean

k-nearest neigh-

bors, user-based,

using the euclidean

distance. [49, 18]

Same as ItemKNN-Euclidean

UserKNN-Jaccard

k-nearest neigh-

bors, user-based,

using the Jaccard

index. [49, 18]

Same as ItemKNN-Jaccard

UserKNN-Tversky

k-nearest neighbors,

user-based, using the

Tversky index. [49,

18]

Same as ItemKNN-Tversky
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Table 2: Min, mean, and max runtime for each algorithm, over all experiments, for both training

and evaluation. The rightmost column shows the number of experiments collected for each

algorithm. These runtime statistics only include experiments that completed within the 10

hour time limit, so they are skewed to be small, and should be interpreted as general trends.

GlobalEffects, SlopeOne, Random, and TopPop do not have hyperparameters and therefore

completed a maximum of 85 experiments. Furthermore, we tested multiple distance metrics

for Item-KNN and User-KNN, resulting in more experiments.

Training time (seconds) Evaluation time (seconds) Num. experiments

min mean max min mean max size

Alg. family

CoClustering 0.02 167.45 25766.23 0.05 51.09 11393.36 5106

EASE-R <0.01 13.85 454.14 0.05 14.99 341.97 4376

GlobalEffects <0.01 0.43 12.73 0.05 639.58 8191.36 85

iALS 0.69 369.30 24283.54 0.05 10.26 3558.97 3502

Item-KNN <0.01 100.28 13617.51 0.05 159.03 8192.90 12847

MF-AsySVD 0.03 207.76 28463.53 0.05 40.37 13293.74 4254

MF-BPR 0.02 82.19 9635.26 0.06 69.99 12117.41 5659

MF-FunkSVD 0.02 172.61 15650.11 0.05 50.49 12793.54 4938

NMF 0.01 221.50 20369.45 0.06 87.42 11471.30 2957

P3alpha <0.01 78.17 6264.47 0.05 62.40 6563.46 5816

SVD <0.01 3.58 353.12 0.05 99.06 10393.31 6132

RP3beta <0.01 80.45 7043.17 0.05 61.24 7067.75 5900

Random <0.01 0.09 2.35 0.06 937.67 16529.64 85

SLIME-lasticNet 0.06 142.95 25731.74 0.05 11.63 1816.69 4706

SLIM-BPR 0.03 82.57 31063.87 0.05 21.89 1962.25 5176

SlopeOne 0.05 17.73 470.27 0.07 45.77 803.25 48

TopPop <0.01 0.13 3.66 0.05 626.50 7501.84 85

User-KNN <0.01 73.28 30975.03 0.05 158.07 6327.46 13097

A.3 RecZilla Datasets

The RecZilla codebase implements 88 datasets (3 additional datasets were added after our experi-

ments on 85 datasets), derived from 20 dataset families. All datasets are listed in Table 4.

Table 4: Summary of datasets used to train and evaluate RecZilla.

Dataset Name # Interactions # Items # Users Density
AmazonAllBeauty 232 6,357 139 2.60E-04

AmazonAllElectronics 235 7,437 124 2.50E-04

AmazonAlternativeRock 328 3,842 120 7.10E-04

AmazonAmazonFashion 331 20,800 253 6.30E-05

AmazonAmazonInstantVideo 75,673 23,965 29,756 1.10E-04

AmazonAppliances 2,252 11,402 1,581 1.20E-04

AmazonAppsforAndroid 840,985 61,275 240,933 5.70E-05

AmazonAppstoreforAndroid 19 152 16 7.80E-03

AmazonArtsCraftsSewing 97,022 112,334 30,712 2.80E-05

AmazonAutomotive 300,532 320,112 100,163 9.40E-06

AmazonBaby 236,392 64,426 71,826 5.10E-05

AmazonBabyProducts 10,481 9,475 5,327 2.10E-04
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AmazonBeauty 489,929 249,274 146,995 1.30E-05

AmazonBlues 98 896 25 4.40E-03

AmazonBooks 11,498,997 2,330,066 1,686,577 2.90E-06

AmazonBuyaKindle 6,312 1,858 2,715 1.30E-03

AmazonCDsVinyl 1,705,140 486,360 245,080 1.40E-05

AmazonCellPhonesAccessories 588508 319,678 245,110 7.51E-06

AmazonChristian 1,155 7,512 428 3.60E-04

AmazonClassical 528 2,301 152 1.50E-03

AmazonClothingShoesJewelry 1,615,940 1,136,004 496,837 2.86E-06

AmazonCollectiblesFineArt 1,066 5,705 230 8.12E-04

AmazonComputers 51 4,266 26 4.60E-04

AmazonCountry 151 1,677 47 1.90E-03

AmazonDanceElectronic 686 4,763 211 6.80E-04

AmazonDavis 38 58 28 2.30E-02

AmazonDigitalMusic 238,151 266,414 56,814 1.60E-05

AmazonElectronics 2,302,922 476,002 651,680 7.40E-06

AmazonFolk 236 2,366 38 2.60E-03

AmazonGiftCards 237 345 144 4.80E-03

AmazonGospel 105 1,616 45 1.40E-03

AmazonGroceryGourmetFood 335,994 166,049 86,400 2.30E-05

AmazonHardRockMetal 156 1,063 41 3.60E-03

AmazonHealthPersonalCare 661,968 252,331 205,704 1.30E-05

AmazonHomeImprovement 45 3,855 32 3.60E-04

AmazonHomeKitchen 1,029,164 410,243 327,439 7.70E-06

AmazonIndustrialScientific 16,784 45,383 7,779 4.75E-05

AmazonInternational 608 5,544 193 5.70E-04

AmazonJazz 490 2,917 109 1.50E-03

AmazonKindleStore 1,387,653 430,530 213,192 1.50E-05

AmazonKitchenDining 81 3,658 63 3.50E-04

AmazonLatinMusic 21 613 13 2.60E-03

AmazonLuxuryBeauty 1,564 1,798 717 1.20E-03

AmazonMagazineSubscriptions 1,257 1,422 560 1.58E-03

AmazonMiscellaneous 416 5,262 164 4.80E-04

AmazonMoviesTV 1,894,519 200,941 319,406 3.00E-05

AmazonMP3PlayersAccessories 19 1,657 14 8.19E-04

AmazonMusicalInstruments 92,628 83,046 29,040 3.80E-05

AmazonNewAge 132 1,276 44 2.40E-03

AmazonOfficeProducts 166,878 130,006 59,858 2.10E-05

AmazonOfficeSchoolSupplies 41 3,229 21 6.05E-04

AmazonPatioLawnGarden 134,727 105,984 54,196 2.30E-05

AmazonPetSupplies 291,543 103,288 93,336 3.00E-05

AmazonPop 435 5,622 118 6.60E-04

AmazonPurchaseCircles 17 33 11 4.70E-02

AmazonRapHipHop 32 779 19 2.20E-03

AmazonRB 136 2,253 69 8.70E-04

AmazonRock 519 4,464 97 1.20E-03

AmazonSoftware 29,434 18,187 9,097 1.80E-04

AmazonSportsOutdoors 751,440 478,898 238,090 6.60E-06

AmazonToolsHomeImprovement 751,440 412,401 260,659 132,013 1.20E-05

AmazonToysGames 549,347 327,698 164,590 1.00E-05

AmazonVideoGames 308,086 50,210 84,273 7.30E-05
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AmazonWine 215 1,228 84 2.10E-03

Anime 7,669,090 11,200 69,521 9.80E-03

BookCrossing 323,443 340,556 22,568 4.20E-05

CiaoDVD 47,102 16,121 4,743 6.20E-04

Dating 17,088,628 168,791 135,359 7.50E-04

Epinions 592,236 139,738 28,487 1.50E-04

FilmTrust 32,586 2,071 1,336 1.20E-02

Frappe 17,022 4,082 777 5.40E-03

GoogleLocalReviews 4,867,954 3,116,785 818,824 1.90E-06

Gowalla 3,735,522 1,247,095 91,846 3.30E-05

Jester2 1,640,712 140 56,333 2.10E-01

LastFM 89,058 17,632 1,883 2.70E-03

MarketBiasAmazon 32,511 9,560 20,335 1.70E-04

MarketBiasModCloth 40,633 1,020 6,866 5.80E-03

Movielens100K 98,114 1,682 943 6.20E-02

Movielens10M 9,833,849 10,680 69,878 1.30E-02

Movielens1M 986,002 3,882 6,039 4.20E-02

Movielens20M 19,723,277 27,278 138,493 5.20E-03

MovielensHetrec2011 851,372 10,109 2,113 4.00E-02

MovieTweetings 808,662 38,018 31,917 6.70E-04

NetflixPrize 99,521,398 17,770 476,694 1.20E-02

Recipes 819,642 231,637 35,464 1.00E-04

Wikilens 26,316 5,111 275 1.90E-02

YahooMovies 195,947 11,916 7,642 2.15E-03

YahooMusic 77,764,403 98,213 1,647,758 4.81E-04

A.4 Dataset Meta-Features & Meta-Feature Selection

We calculate a total of 383 meta-features for each rec-sys dataset, consisting of a few general meta-

features, meta-features describing the distribution of ratings, and performance of landmarkers.

For each dataset, we extract the number of users, number of items, number of ratings, and

the ratio of items to users. Furthermore, following the approach outlined in [13], we compute the

sparsity of the matrix of interactions, and we systematically obtain a series of meta-features based

on different distributions that can be obtained by aggregating the ratings in several ways.

Distribution meta-features. The distribution meta-features are obtained in two steps, as described

in [13]. First, we obtain a distribution. We do this in one of seven ways. We either take all of

the ratings at once or we aggreggate ratings for either items or users in one of three different

ways: sum, count, or mean. For each of these seven distributions, we then compute ten different

descriptive statistics: mean, maximum, minimum, standard deviation, median, mode, Gini index,

skewness, kurtosis, and entropy. This results in 70 distribution meta-features.

Landmarkers. For landmarkers, we evaluate the performance of several baseline algorithms on a

subset of the training set. We first select the subsample. Next, we partition this subsample into two

sets: a “sub-training set” and a “sub-validation set”. We train each landmarker on the sub-training

set and compute performance metrics on the sub-validation set. We compute the 19 performance

metrics described in Section A.6, plus three more algorithm-independent metrics:

• Items in Evaluation Set: measures the fraction of items with at least one rating in the evaluation

set. This metric is algorithm-independent and only serves to describe the dataset and its split.

• Users in Evaluation Set: measures the fraction of users with at least one rating in the evaluation

set. This metric is algorithm-independent and only serves to describe the dataset and its split.
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• Item Coverage: fraction of items that are ranked within the top 𝐾 for at least one user.

All 22 metrics are evaluated at cutoffs 1 and 5, to create the meta-features.

The subsampling scheme is designed to satisfy several constraints. We limit the number of

users to 100 and the number of items to 250. We also need to ensure there are at least 2 items rated

per user so that the subsequent data split (holding out one item rating per user) does not result

in cold users. Furthermore, we ensure the number of items selected is at least 6 so that we can

evaluate the performance metrics with the cutoff of 5.

We start the subsampling process by filtering by the users that have at least 2 ratings. We

next filter by the items all those users rated. If this results in less than 6 items, we add a random

sample of the remaining (cold) items back to the set to have 6 items in total. Next, if the number of

users is larger than 100, we take a random subsample of 100 of them and filter by those users. As

before, we filter by the items those users rated, and ensure this results in at least 6 items by adding

random items back if needed. If the number of items is still greater than 250, we must build an item

subsample that results in at least two ratings per user. For each user, we randomly choose two of

the items the user rated, and we take the union of these item choices. If this results in less than 250

items, we take a random sample of the remaining items to make the total number of items equal to

250.

Once this subsample is built, we split the subsample into the sub-training and sub-validation

set by leaving 1 random item out for each user. We are then ready to run our landmarkers on those

sets.

Our landmarkers consist of TopPop, ItemKNN, UserKNN, and PureSVD. For ItemKNN and

UserKNN, we use cosine similarity and set the number of neighbors 𝑘 to 1 and 5. For PureSVD, we

use 1 and 5 for the number of latent factors. This results in a total of 7 landmarkers.

Running all 7 landmarkers and computing all 22 metrics at the 2 different cutoffs results in a

total of 308 landmarker meta-features.

A.5 Hyperparameter Sampling

For each algorithm with hyperparameters, we test up to 100 parameter sets, limited by the 10-

hour time limit used in our experiments. The first evaluated hyperparameter set is the default

hyperparameters
6
The remaining 99 hyperparameters are sampled using the ranges specified in

Table 3, using Sobol sampling.

A.6 Evaluation Metrics

Each of the evaluation metrics that we use during validation measures the quality of ranking based

on the item ratings. For each user, we generate predicted ratings for all items and rank the items

according to the predicted rating (in descending order). We trim these ranked lists at a given cutoff,

which we denote by 𝐾 . We then compute different metrics using these user-wise top 𝐾 items. Some

metrics also consider the set of relevant items within these top 𝐾 , defined as those for which the

user rated the item in the evaluation set.

We use 21 different metrics, and we compute them using cutoffs in

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50}.

This results in 315 different metric/cutoff combinations total. Only a small subset of these metrics

are used in our analysis; however, any user-chosen metric (or combination of metrics) can be used

to define a performance function for RecZilla.

The metrics are calculated using the implementation in the public repository
7
that our codebase

is built on. Below is a list of metrics calculated during model evaluation:

6
See https://github.com/naszilla/reczilla.

7https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation
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• Average Popularity: measures the popularity of the recommended items. The popularity for

each item is the frequency with which it was rated in the training set. These popularities are

normalized by the largest popularity. Next, for each user, we compute the normalized popularity

of each of the items within its top 𝐾 and take their mean. Finally, we average across all users.

• Average Reciprocal Hit-Rank (ARHR): similar to MRR, except the reciprocal ranks for all

relevant items (not just the first) are summed together.

• Diversity (Gini): computes the Gini diversity index
8
of the global distribution of items ranked

within the top 𝐾 across all users. Higher values indicate higher diversity.

• Diversity (Herfindahl): computes the Herfindahl index [2] of the global distribution of items

ranked within the top 𝐾 across all users. Higher values indicate higher diversity.

• Diversity (Shannon): computes the Shannon entropy of the global distribution of items ranked

within the top 𝐾 across all users.

• F1 Score: the harmonic mean between precision and recall.

• Hit Rate: fraction of users for which at least one relevant item is present within the top 𝐾 .

• Item Coverage (Hit): fraction of relevant items that are ranked within the top 𝐾 for at least one

user.

• Mean Average Precision (mAP): the mean of the average precision across all users. The average

precision for a user is computed as follows: for any position 𝑖 ≤ 𝐾 occupied by a relevant item,

we compute the precision at 𝑖 . We sum all of these precision values and divide the total by 𝐾 .

• Mean Average Precision - Min Den: similar to mAP, but using a modified version of the average

precision. If the number of test items for the user is smaller than 𝐾 , we divide the sum (in the

last step of the average precision computation) by this number instead of by 𝐾 .

• Mean Inter-List Diversity: measures how different the top 𝐾 lists are for all users, as originally

proposed in [58]. For each pair of users, we compute the fraction of items in their top 𝐾 items

that are not present in both lists. Taking the average across all users yields the mean inter-list

diversity. The codebase implements a more efficient but equivalent way of computing this

metric.

• Mean Reciprocal Rank (MRR): the mean of the reciprocal rank across all users. The reciprocal

rank for a user is the reciprocal of the rank of the most highly-ranked relevant item or 0 if there

is none.

• Normalized Discounted Cumulative Gain (NDCG): first, the discounted cumulative gain (DCG)

of the top 𝐾 ranking is computed by adding, for all relevant items in the top 𝐾 , a gain discounted

logarithmically in terms of the rank. The NDCG is obtained by dividing the DCG of the ranking

by that of an ideal ranking (a ranking ordered by relevance).

• Novelty: a metric that rewards recommending items that were not popular in the training set

[58]. For each item, we compute the fraction of ratings in the training set that correspond to the

item. The novelty contributed by the item is computed by taking the negative logarithm of that

fraction and dividing by the total number of items, so that items that were seldom seen in the

training set result in high contributions. Now, for any user, we compute the novelty as the sum

of these contributions for the top 𝐾 items. Finally, we average the metric across all users.

• Precision: the fraction of items in the top 𝐾 that are relevant, computed across all users.

• Precision Recall Min: similar to precision, but if there are less test items than 𝐾 , the fraction is

computed with respect to the number of test items.

• Recall: the fraction of relevant items that were placed within the top 𝐾 , computed across all

users.

8https://www.statsdirect.com/help/default.htm#nonparametric_methods/gini.htm
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Table 5: Highest absolute correlations between algorithm running time (default hyperparameters) and

meta-features.

Abs. Correlation Algorithm Family Meta-feature

0.999 MF-FunkSVD Number of interactions

0.997 MF-BPR Number of users

0.993 GlobalEffects Number of interactions

0.990 TopPop Number of interactions

0.986 ItemKNN Kurtosis of item rating sum distribution

Table 6: Highest absolute correlations between dataset hardness (negative of maximum PREC@10

achieved over all algorithms) and meta-features.

Abs. Correlation Pos. or Neg. Corr. Meta-feature

0.752 Negative Entropy of ratings

0.668 Negative Mode of user rating count distribution

0.655 Negative Landmarker, UserKNN (𝑘 = 5), Item Coverage @ 1

0.652 Negative Landmarker, TopPop, Recall @ 5

0.652 Negative Landmarker, TopPop, Hit Rate @ 5

• User Coverage: fraction of users both present in the evaluation set and for which the model is

able to generate recommendations. In practice, all the algorithms used were able to generate

recommendations for all users, since our splitting procedures did not result in cold users, so this

metric was always 1 for our datasets and algorithms.

• User Coverage (Hit): fraction of users both present in the evaluation set and for which the

model is able to generate at least one relevant recommendation within the top 𝐾 items. It is

equal to the product of the hit rate and the user coverage. Because the latter was always equal

to 1, the user coverage (hit) was the same as the hit rate in our experiments.

A.7 Additional details and experiments from Section 2 (generalizability)

Recall that in Table 8, we showed the meta-features that are most highly correlated with the

performance (PREC@10) of each algorithm, using their default parameters. In Table 5, we run

the same analysis using “training time” instead of PREC@10 as the metric. We see that for some

algorithms, the runtime is very highly correlated with certain meta-features such as “number of

interactions”.

Next, we compute a simple measure of dataset hardness, which we compute as, given a perfor-

mance metric, the negative of the maximum value achieved for that dataset across all algorithms.

For example, if all 18 algorithms do not perform well on the MovieTweetings dataset, then we

can expect that the MovieTweetings dataset is “hard”. In Table 6, we show the meta-features that

are most highly correlated with the hardness of each algorithm, where hardness is calculated as

-PREC@10. We find that the entropy of the rating matrix is most correlated with dataset hardness.

To illustrate the changes in algorithm performance across datasets, Figure 2 shows the normal-

ized metric values for eight algorithms across 17 dataset splits. Some algorithms tend to perform

well (Item-KNN and SLIM-BPR) and others poorly (Random, TopPop), but no algorithm clearly

dominates for all metrics and datasets. This is a primary motivation for our meta-learning pipeline

descirbed in Section 3: different algorithms perform well for different datasets on different metrics,

so it is important to identify appropriate algorithms for each setting.
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Table 7: The relative performance of each rec-sys algorithm depends on the dataset and metric. This

table shows the mean, min (best) and max (worst) rank achieved by all algorithms over all

85 datasets, over 10 accuracy and hit-rate metrics at all cutoffs tested. This includes metrics

NDCG, precision, recall, Prec.-Rec.-Min-density, hit-rate, F1, MAP, MAP-Min-density, ARHR,

and MRR.
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Figure 2: Relative algorithm performance depends on both the dataset and metric: no algorithm

dominates across all dataests or metrics. Each plot shows a different metric, normalized to

[0, 1] for each dataset; the horizontal axis shows different dataset, ordered alphabetically.

Each series corresponds to a different algorithm: similarity-based methods are red, matrix

factorization methods are green, and baseline methods are black.
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Table 8: Highest absolute correlations computed across 85 datasets and weighed inversely proportional

to dataset family frequency, over all pairs of algorithm families and meta-features, for the

PREC@10 performance metric and the default algorithm hyperparameters.

Abs. Correlation Algorithm Family Meta-feature

0.941 SlopeOne Mean of item rating count distribution

0.933 CoClustering Median of item rating count distribution

0.887 MF-BPR Sparsity of rating matrix

0.855 RP3beta Mean of item rating count distribution

0.846 UserKNN Landmarker, Pure SVD, mAP@5

2 4 6 8 10 12 14 16 18

Num. training dataset families

0.004

0.006

0.008

0.010

M
A

E

XGB

KNN

Linear

Figure 3: Three basic meta-learners (KNN, linear regression, and XGB) are trained randomly-selected

dataset families to predict performance metric PREC@10. As more dataset families are added,

the meta-learners are better able to predict rec-sys algorithm performance, suggesting that

our dataset meta-features are useful for predicting rec-sys algorithm performance. Vertical

axis shows mean absolute error (MAE), over all folds of leave-one-out validation, and 200

random trials; in each trial a different set of training datasets are chosen. Error bars show

the 40th and 60th percentile.

Additional details from Section 2 (predictability). As a toy-model version of RecZilla, we train

three different meta-learner functions (XGBoost, KNN, and linear regression) using our meta-

dataset, to predict performance metric PREC@10 for 10 rec-sys algorithms with high average

performance. We use leave-one-out evaluation for each meta-learner: one dataset family is held

out for testing, while𝑚 are used for training. Figure 3 shows the mean absolute error (MAE) of

each meta-learner; these results are aggregated over 200 random samples of randomly-selected

training dataset families. MAE decreases as more dataset families are added, suggesting that it is

possible to estimate rec-sys algorithm performance using dataset meta-features.

We also find that performance metrics are not the only values that can be predicted with dataset

meta-features. In particular, we find that the runtime of rec-sys algorithms is also highly correlated

with different meta-features: the runtimes of MF-FunkSVD, MF-BPR, GlobalEffects, and TopPop all

have greater than 0.99 correlation simply with “number of interactions” (see Table 2). Furthermore,

we compute a simple measure of dataset hardness, which we compute as, given a performance

metric, the maximum value achieved for that dataset across all algorithms. For example, if all

18 algorithms do not perform well on the MovieTweetings dataset, then we can expect that the

MovieTweetings dataset is “hard”. Once again, we find that certain dataset meta-features are highly

correlated with dataset hardness, with “entropy of ratings” having the highest correaltion at 0.752.

See Table 6.
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The fact that dataset meta-features are correlated with algorithm performance, algorithm

runtimes, and dataset hardness is a strong positive signal that meta-learning is worthwhile and

useful in the context of recommender systems. We explore this direction further in the next section.

Generalizability of hyperparameters.. While the previous section assessed the generalizability of

pairs of (algorithm, hyperparameters), now we assess the generalizability of the hyperparameters

themselves while keeping the algorithms fixed. For a given rec-sys algorithm, we can tune it on

a dataset 𝑖 , and then evaluate the normalized performance of the tuned method on a dataset 𝑗 ,

compared to the normalized performance of the best hyperparameters from dataset 𝑗 . In other

words, we compute the performance of tuning a method on one dataset and deploying it on another.

In Figure 4, we run this experiment for all pairs of datasets (one dataset per dataset family).

We plot the hyperparameter transfer for three different algorithms, as well as the average over

all algorithms which completed sufficiently many experiments across the set of hyperparameters.

For each given 𝑖 , 𝑗 , we create the set of hyperparameters that completed for the given algorithm

on both datasets 𝑖 and 𝑗 , and then we use min-max scaling for the performance metric values of

these hyperparameters on 𝑖 and on 𝑗 separately. Therefore, all matrix values are between 0 and 1;

a value close to 1 indicates that the best hyperparameters from dataset 𝑖 are also nearly the best

on dataset 𝑗 . A value close to 0 indicates that the best hyperparameters from dataset 𝑖 are nearly

the worst for dataset 𝑗 . Across all algorithms, the majority of pairs of datasets do not have strong

hyperparameter transfer, and it is particularly hard for some datasets such as Gowalla and Jester2.

Overall, these experiments give evidence that tuning the hyperparameters of an algorithm on one

dataset and transferring to another dataset does not give high performance, motivating our RecZilla

approach which predicts the best hyperparameters for a given algorithm and dataset.

B RecZilla Meta-Learning Pipeline

In this section, we give more details of the RecZilla pipeline, and we give an additional experiment

in which we compare RecZilla to other existing rec-sys meta-learning approaches.

The RecZilla pipeline consists of the following components: initial algorithm selection, meta-

feature selection, and finally the meta-learner for algorithm selection. The purpose of the first two

components is to reduce the dimensionality of the dataset and reduce the risk of overfitting for the

classifier. We describe each of these components in the following sections. In all that follows, we

assume that the user provides (a) a performance metric function 𝜙 , (b) the number of parameterized

algorithms to be considered by the meta-learner 𝑛, and (c) the number of dataset meta-features to

be considered by the meta-learner𝑚. In addition, we assume access to a meta-dataset M, such as

the one described (and already pre-computed) in this paper.

B.1 Initial algorithm selection

Wefirst select𝑛 parameterized algorithmswhich have high coverage over all datasets in meta-dataset

M. Since data is relatively scarce in this meta-learning task, we select a subset of 𝑛 algorithms to

reduce the dimensionality of the meta-learner prediction target.

B.2 Meta-feature selection

Since our meta-datasetM includes hundreds of features, we restrict our meta-learner to𝑚 features

to avoid over-fitting. This is the same approach taken by prior work [17]. It is computationally

infeasible to find the set of𝑚 = 10 best meta-features out of a set of 383, since we would need

to check

(
383

10

)
≈ 10

19
combinations of meta-features. Instead, we iteratively grow a set of 𝑚

meta-features which are highly correlated with the user-specified performance metric, without

selecting redundant features, by using a “greedy” approach (similar in spirit to prior work [17]).

Here we require that the (a) performance metric function 𝜙 is chosen ahead of time, and (b) a set of

𝑛 parameterized algorithms have been selected. We introduce some additional notation for this
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Figure 4: Transferability of hyperparameters across datasets, for three different algorithms, and the

average of all algorithms (bottom right). For each plot, row 𝑖 , column 𝑗 denotes the relative

performance of an algorithm tuned on dataset 𝑖 and then evaluated on dataset 𝑗 . A value

close to 1 indicates that the hyperparameters transfer well from 𝑖 to 𝑗 , while a value close to

0 indicates that the hyperparameters transfer poorly.

section to describe our meta-feature selection process. Let 𝒚𝑖 ∈ R |D | be the vector of performance

metric 𝜙 for parameterized algorithm 𝑖 ∈ 1, . . . , 𝑛, for all datasets in D. Let 𝒅 𝑗 ∈ R |D | be the vector
of meta-feature 𝑗 for all datasets in D, and let 𝐽 be the total number of meta-features. Let 𝐹 denote

a set of feature indices that corresponds to selected features.

For each (algorithm, meta-feature pair), we first compute the absolute value of the Pearson

correlation between the meta-feature and the performance of each parameterized algorithm 𝑖 ,

across all datasets: 𝑐𝑖 𝑗 ← |corr(𝒚𝑖 , 𝒅 𝑗 ) | for all 𝑖 ∈ {1, . . . , 𝑛} = [𝑛] and 𝑗 ∈ {1, . . . , 𝐽 } = [𝐽 ]. When

computing this correlation, each sample is weighed inverse-proportionally to the size of the dataset

family it corresponds to—to prevent large dataset families (such as Amazon) from dominating the

correlation computation.

We select the first feature by finding the largest absolute correlation coefficient between any of

the meta-features and parameterized algorithms, and we choose the meta-feature corresponding to

25



it:

𝑗0 ← argmax

𝑗 ∈[𝐽 ]

(
max

𝑖∈[𝑛]
𝑐𝑖 𝑗

)
.

All remaining (𝑚 − 1) meta-features are selected such that we maximize the improvement in the

absolute correlation between the selected features and the selected algorithms’ performance. This

way, we avoid selecting highly correlated features. Algorithm 1 gives a pseudocode description of

this feature-selection process.

Algorithm 1 RecZilla Meta-feature selection

Require: 𝒅 𝑗 ∈ R |D |, ∀𝑗 ∈ [𝐽 ] ⊲ 𝐽 vectors of meta-features for each dataset

Require: 𝒚𝑖 ∈ R |D |, ∀𝑖 ∈ [𝑛] ⊲ 𝑛 vectors of performance metrics for each algorithm

Require: 𝑚 > 0 ⊲ number of features to select

𝐹 ← {} ⊲ indices of selected features

𝑥𝑖 = 0, ∀𝑖 ∈ [𝑛] ⊲ max abs. correlation between any selected meta-feature and 𝒚𝑖

𝑐𝑖 𝑗 ← |corr(𝒚𝑖 , 𝒅 𝑗 ) |, ∀𝑖 ∈ [𝑛], 𝑗 ∈ [𝐽 ]
while |𝐹 | < 𝑚 do

𝑗 ′← argmax

𝑗 ∈[𝐽 ]

[
max

𝑖∈[𝑛]
(𝑐𝑖 𝑗 − 𝑥𝑖)

]
𝐹 ← 𝐹 ∪ { 𝑗 ′}
𝑥𝑖 ← max{𝑥𝑖 , 𝑐𝑖 𝑗 ′}, ∀𝑖 ∈ [𝑛] ⊲ update the max. abs. correlation for each alg.

end while
return 𝐹

B.3 Metalearner for algorithm selection

The goal of the metalearner is to predict the performance of all 𝑛 selected parameterized algorithms

on a new dataset. The input to this meta-learner is the set of 𝑚 meta-features selected in the

previous selection, and the output is an 𝑛-dimensional vector of performance metrics for all selected

algorithms. We treat this as a multi output regression problem, and our experiments test three

different models: a RegressiorChain with XGBoost as the base model, KNN with 𝑘 = 5 and 𝐿2
distance, and multinomial linear regression. For training these meta-learner models, we used the

squared error cost function.

To train the meta-learner we construct a final meta-dataset consisting of one tuple (𝒅,𝒚) for
each dataset represented inM𝑡𝑟𝑎𝑖𝑛

, where 𝒅 is a vector of𝑚 meta-features for the dataset, and𝒚 is a

vector of the performance of 𝑛 parameterized rec-sys algorithms in the set of selected parameterized

algorithms S ′.

B.4 Ablation study.

We vary both the number of training meta-datapoints and meta-features used by RecZilla; the

datapoints and features are randomly selected over 50 random trials. We also compare four different

meta-learning functions within RecZilla: XGBoost [9], linear regression, 𝑘-nearest neighbors, and

uniform random. For KNN, we set 𝑘 = 5 and use the 𝐿2 distance from the selected meta-features.

Figure 5 (left) shows %Diff vs. the size of the meta-training set, and Figure 5 (right) shows the

results of an ablation study on the number of selected meta-features𝑚; all results are aggregated

over all leave-one-out folds and 50 random trials. Generally, XGBoost and KNN outperform the

linear model and the random baseline, with XGBoost achieving top performance when using

10 meta-features and the maximum number of training datasets. Furthermore, the number of

datasets in the meta-training set matters more than the meta-learning model itself. For example,

the improvement of XGBoost from 4 to 10 and to 18 training datasets is larger than the difference
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Figure 5: Performance of the RecZilla pipeline improves as we add more training meta-datapoints, and

more meta-features𝑚. Subsets of training meta-datapoints and meta-features are selected

randomly, over 50 random trials. Points show the median %Diff, and error bars show the

40th and 60th percentile over all folds and random trials. (Left)𝑚 = 10 meta-features, while

the number of training dataset families varies. (Right) All training data is used, while𝑚

varies.

in performance between XGBoost and KNN at 4 and 10 training datasets, respectively. Finally, we

find that the optimal number of meta-features for XGBoost and KNN peaks between 10 and 40.

Pre-trained RecZilla models. We release pre-trained RecZilla models for PREC@10, NDCG@10,

and Item-hit Coverage@10, trained with XGBoost on all 85 datasets, with algorithms 𝑛 = 10 and

meta-features𝑚 = 10. We also include a RecZilla model that predicts the Pareto-front of PREC@10

and model training time, so that users can select their desired trade-off between performance and

runtime. Finally, we include a pipeline so that users can choose a metric from the list of 315 (or any

desired combination of the 315 metrics) and train the resulting RecZilla model.
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