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Abstract
Deep reinforcement learning (RL) excels in various control
tasks, yet the absence of safety guarantees hampers its real-
world applicability. In particular, explorations during learn-
ing usually results in safety violations, while the RL agent
learns from those mistakes. On the other hand, safe control
techniques ensure persistent safety satisfaction but demand
strong priors on system dynamics, which is usually hard to
obtain in practice. To address these problems, we present
Safe Set Guided State-wise Constrained Policy Optimization
(S-3PO), a pioneering algorithm generating state-wise safe
optimal policies with zero training violations, i.e., learning
without mistakes. S-3PO first employs a safety-oriented mon-
itor with black-box dynamics to ensure safe exploration. It
then enforces a unique cost for the RL agent to converge to
optimal behaviors within safety constraints. S-3PO outper-
forms existing methods in high-dimensional robotics tasks,
managing state-wise constraints with zero training violation.
This innovation marks a significant stride towards real-world
safe RL deployment.

1 Introduction
Reinforcement Learning (RL) has showcased remarkable
advancements in domains like control and games. However,
its focus on reward maximization sometimes neglects safety,
potentially leading to catastrophic outcomes (Gu et al. 2022).
To rectify this, the concept of safe RL emerged, aiming to
ensure safety throughout or after training. Initial endeavors
centered on Constrained Markov Decision Processes, often
emphasizing cumulative or chance constraints (Ray, Achiam,
and Amodei 2019; Achiam et al. 2017; Liu, Halev, and Liu
2021). While effective, these approaches lack instantaneous
safety guarantees, which is crucial for managing emergencies
like collision avoidance in autonomous vehicles (Zhao et al.
2023c; He et al. 2023). Recent strides (Zhao et al. 2023b)
leveraged the Maximum Markov Decision Process to ensure
instantaneous safety by bounding violations while integrating
trust region techniques for policy enhancement, resulting in
simultaneous improvement of worst-case performance and
adherence to cost constraints. However, these approaches still
cannot ensure safety during learning due to potentially unsafe
explorative behaviors.

Meanwhile, safe control methods to continuously meet
stringent safety requirements in predictable environments are
widely examined, with energy function-based methods being

Figure 1: Overview of the principles of the S-3PO algorithm.

the most prevalent (Khatib 1986; Ames, Grizzle, and Tabuada
2014; Liu and Tomizuka 2014; Gracia, Garelli, and Sala 2013;
Wei and Liu 2019). These methods establish energy functions
assigning lower energy to safe states and project nominal
control into energy dissipating control, hence persistently
maintaining system safety. However, these approahces heav-
ily rely on accessible white-box analytical models of system
dynamics. The Implicit Safe Set Algorithm (ISSA) (Zhao,
He, and Liu 2021) addresses this problem using black-box
optimization over black-box dynamics models. Nevertheless,
this method involves complex computation to monitor the
RL policy and there is no guarantee that the RL policy itself
learns to behave safely. These hamper the suitability of the
algorithm for real-time safety critical applications.

In summary, a pressing need arises for a method leveraging
both the zero-training-time-violation ability of safe control
and optimal convergence of safe RL. To bridge this gap, we
introduce a novel Safe Set Guided State-wise Constrained
Policy Optimization (S-3PO) algorithm. S-3PO safeguards
the exploration of immature policies with a black-box safe
control method and derives a novel formulation where RL
learns an optimal safe policy by constraining the state-wise
“imaginary" safety violations. An overview of the prescribed
S-3PO principles is presented in Figure 1. Empirical vali-
dation underscores S-3PO’s efficacy in training neural net-
work policies encompassing thousands of parameters for
high-dimensional simulated robot locomotion tasks. Our con-
tribution marks a substantial advancement in the realm of
practical safe RL algorithms, poised to find applications in a
multitude of real-world challenges.



2 Problem Formulation
2.1 Preliminaries
Dynamics We consider a robot system described by its
state st ∈ S ⊂ Rns at time step t, with ns denoting the
dimension of the state space S, and its action input at ∈
A ⊂ Rna at time step t, where na represents the dimension
of the control space A. The system dynamics are defined as
follows:

st+1 = f(st, at), (1)

where f : S ×A → S is a deterministic function that maps
the current robot state and control to the robot’s state in the
next time step.

To maintain simplicity, our approach focuses on determin-
istic dynamics, although it is worth noting that the proposed
method can be readily extended to accommodate stochastic
dynamics (Zhao, He, and Liu 2021; Noren, Zhao, and Liu
2021). Additionally, we assume the access to the dynamics
model f is only in the training phase, and is restricted to
an implicit black-box form, as exemplified by an implicit
digital twin simulator or a deep neural network model (Zhao,
He, and Liu 2021). We also assume there is no model mis-
match, while model mismatch can be addressed by robust
safe control (Wei et al. 2022) and is left for future work. Post
training, the knowledge of the dynamics model is concealed,
aligning with practical scenarios where digital twins of real-
world environments are too costly to access during model
deployment.

Markov Decision Process In this research, our primary
focus lies in ensuring safety for episodic tasks, which
falls within the purview of finite-horizon Markov Deci-
sion Processes (MDP). An MDP is defined by a tuple
(S,A, γ, R, P, µ). The reward function is denoted by R :
S × A 7→ R, the discount factor by 0 ≤ γ < 1, the initial
state distribution by µ : S 7→ R, and the transition probability
function by P : S ×A× S 7→ R.

The transition probability P (s′|s, a) represents the likeli-
hood of transitioning to state s′ when the previous state was s,
and the agent executed action a at state s. This paper assumes
deterministic dynamics, implying that P (st+1|st, at) = 1
when st+1 = f(st, at). We denote the set of all stationary
policies as Π, and we further denote πθ as a policy parame-
terized by the parameter θ.

In the context of an MDP, our ultimate objective is to learn
a policy π that maximizes a performance measure J (π),
computed via the discounted sum of rewards, as follows:

J (π) = Eτ∼π

[
H∑
t=0

γtR(st, at, st+1)

]
, (2)

where H ∈ N denotes the horizon, τ = [s0, a0, s1, · · · ], and
τ ∼ π indicates that the distribution over trajectories depends
on π, i.e., s0 ∼ µ, at ∼ π(·|st), and st+1 ∼ P (·|st, at).
Safety Specification The safety specification requires that
the system state remains within a closed subset in the state
space, denoted as the “safe set” SS . This safe set is defined by
the zero-sublevel set of a continuous and piecewise smooth

function ϕ0 : Rns → R, where SS = {s | ϕ0(s) ≤ 0}. Users
directly specify both SS and ϕ0, which is easy to specify. For
instance, for collision avoidance, ϕ0 can be specified as the
negative closest distance between the robot and environmen-
tal obstacles.

2.2 Problem
We are interested in the safety imperative of averting col-
lisions for mobile robots navigating 2D planes. We aim to
persistently satisfy safety specifications at every time step
while solving MDP, following the intuition of State-wise
Constrained Markov Decision Process (SCMDP) (Zhao et al.
2023c). Formally, the set of feasible stationary policies for
SCMDP is defined as

Π̄C = {π ∈ Π
∣∣ ∀st ∼ τ, st ∈ SS}, (3)

where τ ∼ π. Then, the objective for SCMDP is to find
a feasible stationary policy from Π̄C that maximizes the
performance measure. Formally,

max
θ
J (πθ), s.t. πθ ∈ Π̄C . (4)

State-wise Safe Policy with Zero Violation Training The
primary focus of this paper centers on solving (4), i.e., en-
suring no safety violation during the training process, while
achieving convergence of the policy to the optimal solution
of (4).

3 Prior Works
3.1 Safe Reinforcement Learning
Existing safe RL approaches either consider safety after con-
vergence or safety during training (Zhao et al. 2023c). End-to-
end approaches are usually used to ensure safety after conver-
gence (Liang, Que, and Modiano 2018; Tessler, Mankowitz,
and Mannor 2018; Bohez et al. 2019; Ma et al. 2021; He,
Zhao, and Liu 2023). However, these approaches cannot
avoid unsafe explorations. Safety in training is achieved by
hierarchical approaches which uses a safeguard to filter out
unsafe explorative actions. The safeguard relies on the knowl-
edge on the system dynamics, which can be either learned
dynamics (Dalal et al. 2018; Thananjeyan et al. 2021; Zhao,
He, and Liu 2022), white-box dynamics (Fisac et al. 2018;
Shao et al. 2021), or black-box dynamics (Zhao, He, and
Liu 2021). Nevertheless, these methods cannot guarantee
convergence of the RL policy.

The proposed approach is the first to address safety both
during training and after convergence, which can potentially
serve as a general framework to bridge these two types of
approaches. In the following, we choose the most advanced
method in each category to form the proposed approach, so
that it relies on the least assumptions.

3.2 Implicit Safe Set Algorithm
Energy function-based methods (Wei and Liu 2019) achieve
safe control by designing an energy function offline such that
1) the low energy states are safe and 2) there always exists
a feasible control input to dissipate the energy. A typical
design (Liu and Tomizuka 2014) was proposed as ϕ = ϕ∗

0 +



k1ϕ̇0+ · · ·+knϕ
(n)
0 . It is shown in (Liu and Tomizuka 2014)

that if the control input is unbounded (A = Rna ), then there
always exist a control input that satisfies the constraint ϕ̇ ≤
0 when ϕ = 0; and if the control input always satisfies that
constraint, then the set S̄ := {s | ϕ(s) ≤ 0} ∩ {s | ϕ0(s) ≤
0} is forward invariant. In practice, the actual control signal
is computed through a quadratic projection of the nominal
control ar to the control constraint

a =argmin
a∈A

∥a− ar∥2 s.t. ϕ̇ ≤ −η(ϕ), (5)

where η(ϕ) is designed to be a positive constant when ϕ ≥ 0
and −∞ when ϕ < 0 according to SSA (Liu and Tomizuka
2014). Here, we define the set of safe control as AS(s) :=

{a ∈ A | ϕ̇ ≤ −η(ϕ)}. To match the notion of MDP, we
should consider discrete-time safe control set AD

S (s) :=
{a ∈ A | ϕ(f(s, a)) ≤ max{ϕ(s)− η, 0}}.

Based on these, the implicit safe set algorithm
(ISSA) (Zhao, He, and Liu 2021) was proposed to construct
the black-box dynamics based safeguard ensuring persistent
satisfication of safety specification. The black-box dynamics
can be a digital twin or neural network. Under some mild
assumptions, it first synthesizes a safety index to make sure
AS(s) is nonempty for all s (details of the mild assumptions
and safety index synthesis are summarized in Appendix A).
Then it manages to project the reference action generated
from RL policy πθ into AS(s) during policy training. In de-
tail, the nominal control art needs to be projected to AD

S (st)
by solving the following optimization:

min
at∈A

∥at − art∥2

s.t. ϕ(f(st, at)) ≤ max{ϕ(st)− η, 0}.
(6)

To solve (6), they first introduce a sample-efficient Adap-
tive Momentum Boundary Approximation (AdamBA) algo-
rithm. Then, ISSA directly uses it to find the safe control
with minimum deviation from the reference control along the
boundaries of AD

S (s). If the process fails to return a solution,
grid sampling will be deployed to find a safe control; and
AdamBA is deployed again to improve the solution optimal-
ity with respect to (6). We summarize details of AdamBA
and ISSA in Algorithm 2 and Algorithm 3, respectively.

3.3 State-wise Constrained Policy Optimization
Safe RL algorithms under the framework of Constrained
Markov Decision Process (CMDP) do not consider state-wise
constraints. To address this gap, State-wise Constrained Pol-
icy Optimization (SCPO) was proposed (Zhao et al. 2023b)
to provide guarantees for state-wise constraint satisfaction
in expectation, which is under the framework of State-wise
CMDP (SCMDP). To achieve this, SCPO directly constrain
the expected maximum state-wise cost along the trajectory.
And they introduced Maximum MDP (MMDP). In this setup,
a running maximum cost value is associated with each state,
and a non-discounted finite MDP is utilized to track and
accumulate non-negative increments in cost. The format of
MMDP will be introduced in Section 4.

4 Safety Index Guided State-wise
Constrained Policy Optimization

The core idea of S-3PO is to enforce zero safety violation
during training by projecting unsafe actions to the safe set,
and then constrain the "imaginary" safety violation (i.e., what
if the projection is not done) to ensure convergence of the
policy to an optimal safe policy.

Zero Violation Exploration To ensure zero violation ex-
ploration, we safeguard nominal control via solving (6) at
every time step during policy training. In this paper, we adopt
ISSA to solve (6). For the 2D collision avoidance problem
considered in this paper, we choose the same safety index
synthesis rule as [Section 4.1, (Zhao, He, and Liu 2021)],
which is summarized in Appendix A. We show in Section 6
that with the safety index synthesis rule, ISSA is guaranteed
to find a feasible solution of (6), making the system forward
invariance in the set S̄.

Learning Safety Measures Safely While eliminating
safety violations during training is good, this also brings
inevitable challenges for the policy learning as it directly
eliminates the unsafe experience, making the policy unable
to distinguish between safe and unsafe actions. To overcome
this challenge, the main intuition we have is that instead of
directly experiencing unsafe states, i.e. s /∈ SS , policy can
learn to act safely from “imagination", i.e., how unsafe it
will be if the safeguard had not been triggered? The critical
observation we rely upon is that:

Observation 1. Define ∆ϕt = ∆ϕ(st, at, st+1)
.
=

ϕ(f(st, a
r
t )) − ϕ(f(st, at)), i.e. the degree of required cor-

rection to safeguard art . Therefore, ∆ϕt can be treated as an
imagination on how unsafe the reference action would be,
where ∆ϕt ≤ 0 means art ∈ AD

S (st).

Following Observation 1, Equation (4) can be translated
to:

max
θ
J (πθ), s.t. πθ ∈ {π ∈ Π

∣∣ ∀∆ϕt ∼ τ,∆ϕt ≤ 0}. (7)

Remark 1. Policies satisfying (7) ensure there is no imagi-
nary safety violation for any possible art , making πθ a safe
policy as required by (4).

Transfrom State-wise Constraint into Maximum Con-
straint For (7), each state-action transition pair corre-
sponds to a constraint, which is intractable to solve. Inspired
by (Zhao et al. 2023c), we constrain the expected maximum
state-wise ∆ϕ along the trajectory instead of individual state-
action transition ∆ϕ.

Next, by treating ∆ϕt as an “imaginary” cost, we define a
MMDP (Zhao et al. 2023c) by introducing (i) an up-to-now
maximum state-wise cost M withinM⊂ R, and (ii) a "cost
increment" function D, where D : (S,M) × A × S 7→
[0,R+] maps the augmented state-action transition tuple to
non-negative cost increments. We define the augmented state
ŝ = (s,M) ∈ (S,M)

.
= Ŝ, where Ŝ is the augmented state

space. Formally,

D
(
ŝt, at, ŝt+1

)
= max{∆ϕ(st, at, st+1)−M, 0}. (8)



By setting D
(
ŝ0, a0, ŝ1

)
= ∆ϕ(s0, a0, s1), we have M =∑t−1

k=0 D
(
ŝk, ak, ŝk+1

)
for t ≥ 1. Hence, we define expected

maximum state-wise cost (or D-return) for π:

JD(π) = Eτ∼π

[
H∑
t=0

D
(
ŝt, at, ŝt+1

)]
. (9)

With (9), (7) can be rewritten as:

max
π
J (π), s.t.JD(π) ≤ 0, (10)

where J (π) = Eτ∼π

[∑H
t=0 γ

tR(ŝt, at, ŝt+1)
]

and

R(ŝ, a, ŝ′)
.
= R(s, a, s′). With R(τ) being the discounted

return of a trajectory, we define the on-policy value function
as V π(ŝ)

.
= Eτ∼π[R(τ)|ŝ0 = ŝ], the on-policy action-value

function as Qπ(ŝ, a)
.
= Eτ∼π[R(τ)|ŝ0 = ŝ, a0 = a], and the

advantage function as Aπ(ŝ, a)
.
= Qπ(ŝ, a)− V π(ŝ). Lastly,

we define on-policy value functions, action-value functions,
and advantage functions for the cost increments in analogy
to V π, Qπ, and Aπ, with D replacing R, respectively. We
denote those by V π

D , Qπ
D and Aπ

D.

Remark 2. Equation (7) is difficult to solve since there are
as many constraints as the size of trajectory τ . With (10), we
turn all constraints in (7) into only a single constraint on
the maximal ∆ϕ along the trajectory, yielding a practically
solvable problem.

S-3PO To solve (10), we propose S-3PO inspired by recent
trust region optimization methods (Schulman et al. 2015). S-
3PO uses KL divergence distance to restrict the policy search
in (10) within a trust region around the most recent policy πk.
Moreover, S-3PO uses surrogate functions for the objective
and constraints, which can be easily estimated from sample
trajectories by πk. Mathematically, S-3PO updates policy via
solving the following optimization:

πk+1 = argmax
π∈Πθ

E
ŝ∼dπk

a∼π

[Aπk(ŝ, a)] (11)

s.t. Eŝ∼d̄πk [DKL(π∥πk)[ŝ]] ≤ δ,

JD(πk) + E
ŝ∼d̄πk

a∼π

[
Aπk

D (ŝ, a)

]
+ 2(H + 1)ϵπD

√
1

2
δ ≤ 0.

where DKL(π
′∥π)[ŝ] is KL divergence between

two policy (π′, π) at state ŝ, the set {π ∈
Πθ : Eŝ∼d̄πk [DKL(π∥πk)[ŝ]] ≤ δ} is called trust
region, dπk

.
= (1 − γ)

∑H
t=0 γ

tP (ŝt = ŝ|πk), d̄πk
.
=∑H

t=0 P (ŝt = ŝ|πk) and ϵπD
.
= maxŝ|Ea∼π[A

πk

D (ŝ, a)]|.
Remark 3. Despite the complex forms, the objective and
constraints in (11) can be interpreted in two steps. First,
maximizing the objective (expected reward advantage) within
the trust region (marked by the KL divergence constraint)
theoretically guarantees the worst performance degradation.
Second, constraining the current cost advantage Aπk

D based
on the previous value JD(πk) guarantees that the worst-case

“imagionary” cost is non-positive at all steps as in (7). In turn,
the original safety constraint (4) is satisifed.

We then show in Section 6 that S-3PO achieves (i) state-
wise safety guarantee of satisfying (3), and (ii) bounded worst
case performance degradation for policy update, by estab-
lishing new bounds on the difference in returns between two
stochastic policies π and π′ for MMDPs.

5 Practical Implementation
In this section, we summarize implementation techniques that
helps with S-3PO’s practical performance. The pseudocode
of S-3PO is give as algorithm 1.

Weighted loss for cost value targets A critical step in S-
3PO requires fitting of the cost increment value functions,
denoted as V π

D(ŝt). By definition, V π
D(ŝt) is equal to the

maximum cost increment in any future state over the maximal
state-wise cost so far. In other words, V π

D(ŝt) forms a non-
increasing stair shape along the trajectory. Here we visualize
an example of V π

D(ŝt) in Figure 2. To enhance the accuracy
of fitting this stair shape function, a weighted loss strategy is
adopted, capitalizing on its monotonic property. Specifically,
we define a weighted loss Lweight:

Lweight = L(ŷt − yt) ∗ (1 + w ∗ 1[(ŷt − yt−1) > 0])

where L denotes Mean

Figure 2: V π
D (ŝt) target of five

sampled episodes.

Squared Error (MSE), ŷt
is the prediction, yt is the
fitting target and w is the
penalty weight. To account
for the initial step (t = 0),
we set yt−1 to sufficiently
large, thereby disregarding
the weighted term associ-
ated with the first step. In
essence, the rationale is to
penalize any prediction that
violates the non-increasing characteristics of the target se-
quence, thereby leading to an improved fitting quality.

Line search scheduling Note that in (11), there are two
constraints: (a) the trust region and (b) the bound on expected
advantages. In practice, due to approximation errors, con-
straints in (11) might become infeasible. In that case, we
perform a recovery update that only enforces the cost advan-
tage Aπ

D to decrease starting from early training steps (in first
ksafe updates), and starts to enforce reward improvements of
Aπ towards the end of training. This is different from (Zhao
et al. 2023b), where the reward improvements are enforced
at all times. This is because SCPO only guarantees safety
(constraint satisfaction) after convergence, while S-3PO pri-
oritizes constraining imaginary safety violation. With our
line search scheduling, S-3PO is able to first grasp a safe pol-
icy, and then improve the reward performance. In that way,
S-3PO achieves zero safety violation both during training
and in testing with a worst-case performance degradation
guarantee.

6 Theoretical Results
In this section, We present three theorems, including (i) zero
violation exploration (Theorem 1), (ii) state-wise safety guar-
antee of S-3PO (Theorem 2), and (iii) worst case performance



Algorithm 1: S-3PO

Input: Initial policy π0 ∈ Πθ.
for k = 0, 1, 2, . . . do

for t = 0, 1, 2, . . . do
Sample nominal action art ∼ πk(st)
Compute and execute at = ISSA(st, a

r
t )

Log τ ← τ ∪ {(st, at, rt, st+1,∆ϕt)}
end for
g ← ∇θEŝ,a∼τ [A

π(ŝ, a)]|θ=θk
b← ∇θEŝ,a∼τ [A

π
D(ŝ, a)]|θ=θk

c← JD(πk) + 2(H + 1)ϵπD
√
δ/2

H ← ∇2
θEŝ∼τ [DKL(π∥πk)[ŝ]]

∣∣
θ=θk

θ∗k+1 = argmax
θ

g⊤(θ − θk) s.t.

1
2 (θ − θk)

⊤H(θ − θk) ≤ δ, c+ b⊤(θ − θk) ≤ 0
Get search direction ∆θ∗ ← θ∗k+1 − θk
for j = 0, 1, 2, . . . do ▷ Line search

θ′ ← θk + ξj∆θ∗

if Eŝ∼τ [DKL(πθ′∥πk)[ŝ]] ≤ δ and
Eŝ,a∼τ

[
A

πθ′
D (ŝ, a)−Aπk

D (ŝ, a)
]
≤ max(−c, 0) and

(k ≤ ksafe or Eŝ,a∼τ [A
πθ′ (ŝ, a)] ≥ Eŝ,a∼τ [A

πk(ŝ, a)])
then

θk+1 ← θ′ ▷ Update policy
break

end if
end for

end for

guarantee of S-3PO (Theorem 3). The proofs of the three
theorems are summarized in Appendix C, Appendix D and
Appendix E, respectively.

Theorem 1 (Zero Training Time Violation). If the system
satisfies Assumption 1, and the safety index design follows the
rule described in (12), the implicit safe set algorithm ensures
the system is forward invariant in S̄ ⊂ SS .

Theorem 2 (Safety Guarantee of S-3PO). If πk, πk+1 are
related by applying S-3PO and st ∈ S̄, then st+1 =
f(st, πk+1(st)) ∈ S̄ in expectation.

Theorem 3 (Worst-case Performance Degradation in S-3PO.).
After ksafe updates, suppose πk, πk+1 are related by S-3PO
update rules, with ϵπk+1

.
= maxŝ|Ea∼πk+1

[Aπk(ŝ, a)]|, then
performance return for πk+1 satisfies

J (πk+1)− J (πk) ≥ −
√
2δγϵπk+1

1− γ
.

Remark 4. Theorem 1 shows zero safety violation explo-
ration by proving the system state will never leave S̄ under
the safeguard of ISSA. Theorem 2 shows that by satisfying the
constraint of (11), the new policy is guaranteed to generate
safe action, i.e. a ∈ AD

S , in expectation. Intuitively, Theo-
rem 3 shows that with enough training epochs, the reward
performance of S-3PO will not deteriorate too much after
each update.

7 Experiments
In our experiments, we aim to answer the following questions:
Q1: Does S-3PO achieve zero-violation during the training?
Q2: How does S-3PO without safeguard compare with other
state-of-the-art safe RL methods?
Q3: Does S-3PO learn to act without safeguard?
Q4: How does weighted loss trick impact the performance
of S-3PO?
Q5: Is “imaginary” cost necessary to achieve zero violation?
Q6: How does S-3PO scale to high dimensional robots?

7.1 Experiments Setup
To answer these questions, we conducted our experiments on
the safe reinforcement learning benchmark GUARD (Zhao
et al. 2023a) which is based on Mujoco and Gym interface.

(a) Point (b) Swimmer (c) Ant

Figure 3: Robots for benchmark problems in our environment.

(a) Hazard (b) Pillar

Figure 4: Constraints for benchmark problems in our environment.

Environment Setting We design experimental en-
vironments with different task types, constraint types,
constraint numbers and constraint sizes. We name these
environments as {Task}_{Robot}_{Constraint
Number}{Constraint Type}. All of environments
are based on Goal where the robot must navigate to a goal.

Our experiments revolve around four distinct robotic enti-
ties that can be categorized into two primary types:

1. Wheel Robot: this category encompasses robots that use
wheels for locomotion, maintaining a continuous and
seamless interaction with their surrounding environment.
An example is the Point in fig. 3a which is designated as
A ⊆ R2.

2. Link Robot: this group includes robots composed of mul-
tiple connected links, which interact intermittently with
their surroundings through the extremities of these links.
Furthermore, the shape of these robots can undergo dy-
namic changes during these interactions. Specifically, in
our environment, we have 1) Swimmer shown in fig. 3b
as a three-link robot (A ⊆ R2); 2) Ant shown in fig. 3c
as a quadrupedal robot (A ⊆ R8).

Two different types of constraints are considered.

1. Hazard: Dangerous areas shown in fig. 4a. Hazards are
trespassable circles on the ground. The agent is penalized
for entering them.



(a) Goal_Point_1Hazard (b) Goal_Point_8Hazard (c) Goal_Point_1Pillar (d) Goal_Swimmer_1Hazard

Figure 5: Results from four representative test suites in low dimensional systems (evaluated without the safeguard).

2. Pillar: Fixed obstacles shown in fig. 4b. The agent is
penalized for hitting them. More details about the experi-
ments are discussed in Appendix F.1.

Comparison Group The methods in the comparison group
include: (i) unconstrained RL algorithm TRPO (Schulman
et al. 2015) and TRPO-ISSA. (ii) end-to-end constrained
safe RL algorithms CPO (Achiam et al. 2017), TRPO-
Lagrangian (Bohez et al. 2019), PCPO (Yang et al. 2020),
SCPO (Zhao et al. 2023b). (iii) We select TRPO as our base-
line method since it is state-of-the-art and already has safety-
constrained derivatives that can be tested off-the-shelf. For all
experiments, the policy π, the value (V π, V π

D) are all encoded
in feedforward neural networks using two hidden layers of
size (64,64) with tanh activations. The full list of parameters
of all methods compared can be found in Appendix F.2.

Evaluation Metrics For comparison, we evaluate algo-
rithm performance based on (i) reward performance, (ii) aver-
age episode cost and (iii) cost rate. More details are provided
in Appendix F.3. We set the limit of cost to 0 for all the safe
RL algorithms since we aim to avoid any violation of the
constraints.

7.2 Evaluating S-3PO and Comparison Analysis
Zero Violation during training The performance results
during training are summarized in Figure 6. It is evident
that S-3PO algorithm outperforms other baseline methods by
achieving zero violations, which is well-aligned with Theo-
rem 1. This advantage is attributed to the adoption of ISSA-
based safeguard, which effectively corrects unsafe actions at

Figure 6: Cost performance of Goal_Point_4Hazard.

each step. Moreover, the reward performance continues to
improve throughout the learning process and is comparable
with state-of-the-art baselines. This unique characteristic of S-
3PO enables safe RL with zero safety violation in real-world
scenarios, which answers Q1.

State-wise Safety without safety monitor To evaluate
the policy performance of S-3PO without the presence of
safeguard, we conduct evaluations at the end of each epoch.
During evaluation, the S-3PO policy is evaluated without the
safeguard for 10,000 steps. Hence, we can determine if S-
3PO effectively learns state-wise safe policy via the guidance
of safe set guided cost. The comparative results are shown in
Figure 5. When contrasted with baseline safe RL approaches,
S-3PO excels without safeguards, achieving (i) near-zero
average episode cost and (ii) notably reduced cost rate while
maintaining reward performance. The results align well with
Theorem 2 and Theorem 3. Importantly, it showcases that
through minimizing imaginary safety violation, the policy
swiftly learn to act safely, which answers Q2.



(a) Goal_Point_1Hazard (b) Goal_Point_8Hazard (c) Goal_Point_1Pillar (d) Goal_Swimmer_1Hazard

Figure 7: Triggering frequency of the ISSA-based safeguard in four representative test suites in low dimensional systems.

Learn to Act without Safeguard As pointed in Observa-
tion 1, the core idea of penalizing imaginary safety violation
is to minimize the triggering of the safeguard. To have a
better understanding, we visualize in Figure 7 to show the
average number of times that the ISSA-based safeguard is
triggered per step. Note that TRPO-ISSA is included as a
baseline. Figure 7 demonstrates S-3PO significantly reduces
the triggering times of the safeguard to stay around 0, which
indicates state-wise safe policy is learned and answers Q3.

Ablation on Weighted Loss for Fitting Cost Increment
Value Targets As pointed in Section 5, fitting VDi

(ŝt)
is a critical step towards solving S-3PO, which is chal-
lenging due to non-increasing stair shape of the target se-
quence. To elucidate the necessity of weighted loss for solv-
ing this challenge, we evaluate the cost rate of S-3PO under
six distinct weight settings (0.0, 0.2, 0.4, 0.6, 0.8, 1.0) on
Goal_Point_4Hazard test suite. The results shown in
Figure 8 validates that a larger weight (hence higher penalty
on predictions that violate the characteristics of value targets)
results in better cost rate performance. This ablation study
answers Q4.

Necessity of “Imaginary” Cost To comprehend the sig-
nificance of the proposed “imaginary” cost, we compare it
with another cost that depends on the magnitude of action
correction (Chen and Liu 2021). This empirical exploration
is conducted in the Goal_Point_4Hazard test suite. As
illustrated in Figure 9, it becomes evident that using “imagi-
nary” cost yields superior cost rate performance. This obser-
vation implies that the “imaginary” cost can unearth a more
profound understanding of the intricate interplay between the
robot and its environment, which answers Q5.

Scale S-3PO to High-Dimensional Link Robots To show-
case S-3PO’s scalability and performance with complex,

Figure 8: Comparison of cost
rate performance with 6 differ-
ent weights.

Figure 9: Comparison between
“imaginary” cost and action
correction cost.

(a) Goal_Ant_1Hazard (b) Goal_Swimmer_1Hazard

Figure 10: Cost performance of link robots.

high-dimensional link robots, we conducted additional tests
on Goal_Ant_1Hazard featuring 8 dimensional control
spaces. The results in Figure 10 underscore S-3PO’s consis-
tent trend of reducing cost to zero. Notably, the relatively
lower-dimensional Swimmer robot outperforms other base-
lines faster than the Ant robot. These insights effectively
address Q6 for high-dimensional link robots.

8 Conclusion and Future Prospectus
In this study, we introduce Safe Set Guided State-wise Con-
strained Policy Optimization (S-3PO), a novel algorithm pio-
neering state-wise safe optimal policies. This distinction is
underlined by the absence of training violations, signifying
an error-free learning paradigm. S-3PO employs a safeguard
anchored in black-box dynamics to ensure secure exploration.
Subsequently, it integrates a novel “imaginary” safety cost
to guide the RL agent towards optimal safe policies. S-3PO
outperforms existing methods in complex high-dimensional
robotics tasks.

Nevertheless, a noteworthy limitation pertains to the poten-
tial costliness of acquiring a physical engine-based simulator
(black-box dynamics model). A forward-looking perspec-
tive entails replacing the black-box dynamics model with a
learned surrogate model, factoring in the nuances of errors in
learned dynamics. This strategic move holds the promise of
obliterating the final barrier impeding the seamless integra-
tion of safe RL training into real-world applications.
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A Implicit Safe Set Algorithm Details

Figure 11: Notations.

Circumstances and Assumptions In our treatment, both the robot and obstacles assume the form of point-mass circles,
confined by finite collision radii. The safety criterion adopts the form ϕ0 = maxi ϕ0i, with ϕ0i = dmin − di. Here, di captures
the separation between the robot’s center and the i-th obstacle, encompassing both static and non-static entities. In this context,
we introduce z and w to signify the relative acceleration and relative angular velocity of the robot, respectively, within the
obstacle’s frame, as depicted in Figure 11. Importantly, the synthesis of the safety index for 2D collision evasion remains
independent of specific dynamic models, but under the following assumption:
Assumption 1 (2D Collision Avoidance). 1) The state space is bounded, and the relative acceleration and angular velocity are
bounded and both can achieve zeros, i.e., w ∈ [wmin, wmax] for wmin ≤ 0 ≤ wmax and z ∈ [zmin, zmax] for zmin ≤ 0 ≤ zmax;
2) For all possible values of z and w, there always exists a control a to realize such z and w; 3) The discrete-time system time
step dt → 0; 4) At any given time, there can at most be one obstacle becoming safety critical, such that ϕ − η ≥ 0 (Sparse
Obstacle Environment).

The bounds in the first assumption will be directly used to synthesize ϕ. The second assumption enables us to turn the question
on whether these exists a feasible control in AD

S to the question on whether there exists z and w to decrease ϕ. The third
assumption ensures that the discrete time approximation error is small. The last assumption enables safety index design rule
applicable with multiple moving obstacles.

Safety Index Synthesis Following the rules in (Liu and Tomizuka 2014), we parameterize the safety index as ϕ = maxi ϕi,
and ϕi = σ + dnmin − dni − kḋi, where all ϕi share the same set of tunable parameters σ, n, k, η ∈ R+. Our goal is to choose
these parameters such that AD

S (s) is always nonempty. By setting η = 0, the parameterization rule of safety index design rule is
defined as:

n(σ + dnmin + kvmax)
n−1
n

k
≤ −zmin

vmax
(12)

where vmax is the maximum relative velocity that the robot can achieve in the obstacle frame. Note that the kinematic constraints
vmax, zmin can be obtained by sampling the environment (Zhao, He, and Liu 2021).



B Additional Algorithms
The main body of AdamBA algorithm is summarized in Algorithm 2, and the main body of ISSA algorithm is summarized in
Algorithm 3. The inputs for AdamBA are the approximation error bound (ϵ), learning rate (β), reference control (ar), gradient
vector covariance (Σ), gradient vector number (n), reference gradient vector (v⃗r), safety status of reference control (S), and the
desired safety status of control solution (Sgoal). The inputs for ISSA are the approximation error bound (ϵ), the learning rate (β),
gradient vector covariance (Σ), gradient vector number (n) and reference unsafe control (ar).

Algorithm 2: Adaptive Momentum Boundary Approximation

1: procedure ADAMBA(ϵ, β,Σ, n, ar, v⃗r, S, Sgoal)
2: Initialize:
3: if v⃗r is empty then
4: Generate n Gaussian distributed unit gradient vectors v⃗i ∼ N (0,Σ), i = 1, 2, . . . , n
5: else
6: Initialize one unit gradient vector v⃗1 = v⃗r

∥v⃗r∥
7: end if
8: Approximation:
9: for i = 1, 2, · · · , n do

10: Initialize the approximated boundary point Pi = ar, and stage = exponential outreach.
11: while stage = exponential outreach do
12: Set PS ← Pi and PNS ← Pi

13: Pi = Pi + v⃗iβ
14: if Pi is out of the control set then
15: break
16: end if
17: if Pi safety status ̸= S then
18: Set PNS ← Pi , stage← exponential decay
19: break
20: end if
21: β = 2β
22: end while
23: if stage = exponential decay then
24: Apply Bisection method to locate boundary point until ∥PNS − PS∥ < ϵ
25: Set Pi ← PS if Sgoal = S, Pi ← PNS otherwise
26: end if
27: end for
28: Return Approximated Boundary Set P
29: end procedure



Algorithm 3: Implicit Safe Set Algorithm (ISSA)

1: procedure ISSA(ϵ, β,Σ, n, ar)
2: Phase 1: ▷ Phase 1
3: Use AdamBA(ϵ, β,Σ, n, ar, ∅,UNSAFE, SAFE) to sample a collection S of safe control on the boundary of AD

S .
4: if S = ∅ then
5: Enter Phase 2
6: else
7: For each primitive action ai ∈ S, compute the deviation di = ∥ai − ar∥2
8: return argminai

di
9: end if

10:
11: Phase 2: ▷ Phase 2
12: Use grid sampling by iteratively increasing sampling resolution to find an anchor safe control au, s.t. safety status of au

is SAFE.
13: Use AdamBA(ϵ, ∥ar−au∥

4 ,Σ, 1, ar, au−ar

∥au−ar∥ ,UNSAFE, SAFE) to search for boundary point a∗

14: if a∗ is not found then
15: Use AdamBA(ϵ, ∥ar−au∥

4 ,Σ, 1, au, ar−au

∥ar−au∥ , SAFE, SAFE) to search for boundary point au∗

16: Return au∗

17: else
18: Return a∗

19: end if
20: end procedure



C Proof of Theorem 1
To prove the Theorem 1 we introduce two important corollaries to show that 1) the set of safe control is always nonempty if we
choose a safety index that satisfies the design rule in (12); and 2) the proposed algorithm 3 is guaranteed to find a safe control if
there exists one. With these two corollaries, it is then straightforward to prove the Theorem 1.

C.1 Feasibility of the Safety Index for Continuous-Time System
Corollary 1 (Non-emptiness of the set of safe control). If 1) the dynamic system satisfies the conditions in Assumption 1; and 2)
the safety index is designed according to the rule in Appendix A, then the robot system in 2D plane has nonempty set of safe
control at any state, i.e., AD

S (s) ̸= ∅,∀s.

Note that the set of safe control AD
S (s) := {a ∈ A | ϕ(f(s, a)) ≤ max{ϕ(s) − η, 0}} is non-empty if and only if it is

non-empty in the following two cases: ϕ(s)− η < 0 or ϕ(s)− η ≥ 0. In the following discussion, we first show that the safety
index design rule guarantees a non-empty set of safe control if there’s only one obstacle when ϕ(s)− η ≥ 0 (Lemma 1). Then we
show that the set of safe control is non-empty if there’s only one obstacle when ϕ(s)− η < 0 (Lemma 2). Finally, we leverage
Lemma 1 and Lemma 2 to show AD

S (s) is non-empty if there’re multiple obstacles at any state.

Lemma 1. If the dynamic system satisfies the conditions in Assumption 1 and there is only one obstacle in the environment, then
the safety index design rule in Appendix A ensures that AD

S (s) ̸= ∅ for x such that ϕ(s)− η ≥ 0.

Proof. For x such that ϕ(s)− η ≥ 0, the set of safe control becomes

AD
S (s) = {a ∈ A | ϕ(f(s, a)) ≤ ϕ(s)− η} (13)

According to the third condition in Assumption 1, we have dt → 0. Therefore, the discrete-time approximation error
approaches zero, i.e., ϕ(f(s, a)) = ϕ(s) + dt · ϕ̇(s, a) + ∆, where ∆→ 0. Then we can rewrite (13) as:

AD
S (s) = {a ∈ A | ϕ̇ ≤ −η/dt} (14)

According to the definition of ϕ, we have ϕ̇ = −ndn−1ḋ− kd̈. We ignored the subscript i since it is assumed that there is only
one obstacle. Therefore, the non-emptiness of AD

S (s) in (14) is equivalent to the following condition

∀s s.t. ϕ(s) ≥ η,∃a, s.t. d̈ ≥ η/dt− ndn−1ḋ

k
. (15)

Note that in the 2D problem, d̈ = −z cos(α) + v sin (α)w and ḋ = −v cos(α). According to Assumption 1, there is a
surjection from a to (z, w) ∈ W := {(z, w) | zmin ≤ z ≤ zmax, wmin ≤ w ≤ wmax}. Moreover, according to the definition
of safety index, ϕ for the 2D problem only depends on α, v, and d. Hence condition ∀s s.t. ϕ(s) ≥ η can be translated to
∀(α, v, d) s.t. σ + dnmin − dn − kv cos(α) ≥ η. Denote the later set as

Φ := {(α, v, d) | σ + dnmin − dn − kv cos(α) ≥ η, v ∈ [0, vmax], d ≥ 0, α ∈ [0, 2π)}. (16)

Consequently, condition (6) is equivalent to the following condition

∀(α, v, d) ∈ Φ,∃(z, w) ∈W, s.t. − z cos(α) + v sin(α)w ≥ η/dt+ ndn−1v cos(α)

k
. (17)

According to the safety index design rule, we have η = 0. Then we show (17) holds in different cases.
Case 1: v = 0. In this case, we can simply choose z = 0, then the inequality in (17) holds.
Case 2: v ̸= 0 and cos(α) ≤ 0. Note that velocity v is always non-negative. Hence v > 0. In this case, we just need to

choose z = w = 0, then the inequality in (17) holds, where the LHS becomes zero and the RHS becomes ndn−1v cos(α)
k which is

non-positive.
Case 3: v ̸= 0 and cos(α) > 0. Dividing v cos(α) on both sides of the inequality and rearranging the inequality, (17) is

equivalent to

∀(α, v, d) ∈ Φ,∃(z, w) ∈W, s.t. − z

v
+ tan(α)w − ndn−1

k
≥ 0, (18)

and (18) can be verified by showing:

min
(α,v,d)∈Φ

max
(z,w)∈W

(−z

v
+ tan(α)w − ndn−1

k
) ≥ 0. (19)



Now let us expand the LHS of (19):

min
(α,v,d)∈Φ

max
(z,w)∈W

(−z

v
+ tan(α)w − ndn−1

k
) (20)

= min
(α,v,d)∈Φ

(−zmin

v
+ [tan(α)]+wmax + [tan(α)]−wmin −

ndn−1

k
) (21)

= min
α∈[0,2π),v∈(0,vmax]

(−zmin

v
+ [tan(α)]+wmax + [tan(α)]−wmin −

n(σ + dnmin + kv cos(α))
n−1
n

k
) (22)

=− zmin

vmax
− n(σ + dnmin + kvmax)

n−1
n

k
. (23)

The first equality eliminates the inner maximization where [tan(α)]+ := max{tan(α), 0} and [tan(α)]− := min{tan(α), 0}.
The second equality eliminates d according to the constraint in Φ. The third equality is achieved when α = 0 and v = vmax.
According to the safety index design rule in Appendix A, (23) is greater than or equal to zero. Hence (19) holds, which then
implies that the inequality in (17) holds.

The three cases cover all possible situations. Hence (17) always hold and the claim in the lemma is verified.

Lemma 2. If the dynamic system satisfies the contidions in Assumption 1 and there is only one obstacle in the environment, then
the safety index design rule in Appendix A ensures that AD

S (s) = A for any s that ϕ(s)− η < 0.

Proof. For s such that ϕ(s)− η < 0, the set of safe control becomes

AD
S (s) = {a ∈ A | ϕ(f(s, a)) ≤ 0} (24)

According to the third assumption in Assumption 1, we have dt → 0. Therefore, the discrete-time approximation error
approaches zero, i.e., ϕ(f(s, a)) = ϕ(s) + dt · ϕ̇(s, a) + ∆, where ∆→ 0. Then we can rewrite (24) as:

AD
S (s) = {a ∈ A | ϕ̇ ≤ −ϕ/dt} (25)

Note that η = 0 according to the safety index design rule, then ϕ(s)− η < 0 implies that ϕ(s) < 0. Hence −ϕ/dt→∞ since
dt→ 0. Then as long as ϕ̇ is bounded, AD

S (s) = A.
Now we show that ϕ̇ is bounded. According to the definition of safety index design rule, ϕ̇ = −ndn−1ḋ− kd̈. We ignored the

subscript i since it is assumed that there is only one obstacle. According to Assumption 1, we have the state space is bounded,
thus both d and ḋ are bounded, which implies that ndn−1ḋ is bounded. Moreover, we have for all possible values of z and w,
there always exists a control a to realize such z and w according to Assumption 1, which indicates the mapping from a to (z, w)
is surjective. Since z and w are bounded and both can achieve zeros according to Assumption 1, we have ∀a, the corresponding
(z, w) are bounded. Since d̈ = −z cos(α) + v sin(α)w, then d̈ is bounded. Hence AD

S (s) = A any s that ϕ(s)− η < 0 and the
claim is true.

Proof of Corollary 1.

Proof. If there is one obstacle, then lemma 1 and lemma 2 have proved that AD
S (s) ̸= ∅ for all s. Now we need to consider the

case where there are more than one obstacle but the environment is sparse in the sense that at any time step, there is at most
one obstacle which is safety critical, i.e. ϕi ≥ 0. To show nonemptiness of AD

S (s), we consider the following two cases. In the
following discussion, we set η = 0 according to the safety index design rule.

Case 1: ϕ(s) = maxi ϕi(s) ≥ 0. Denote j := argmaxi ϕi(s). Since there is at most one obstacle that is safety critical, then
ϕj(s) ≥ 0 and ϕk(s) < 0 for all k ̸= j.

Denote AD
S j(s) := {a ∈ A | ϕj(f(s, a)) ≤ ϕj(s)}. Lemma 1 ensures that AD

S j(s) is nonempty. Denote AD
S k(s) := {a ∈

A | ϕk(f(s, a)) ≤ 0} where k ̸= j. Since ϕk(s) < 0, lemma 2 ensures that AD
S k(s) = A.

Note that the set of safe control can be written as:

AD
S (s) := {a ∈ A | max

i
ϕi(f(s, a)) ≤ max

i
ϕi(s)} (26a)

= {a ∈ A | max
i

ϕi(f(s, a)) ≤ ϕj(s)} (26b)

= ∩i{a ∈ A | ϕi(f(s, a)) ≤ ϕj(s)} (26c)

= AD
S j(s) ̸= ∅ (26d)

Note that the last equality is due to the fact that {a ∈ A | ϕi(f(s, a)) ≤ ϕj(s)} ⊇ {a ∈ A | ϕi(f(s, a)) ≤ 0} = A ⊇ AD
S j(s)

for i ̸= j.



Figure 12: Illustration of the grid sampling to find an anchor control point.

Case 2: ϕ(s) = maxi ϕi(s) < 0. Therefore, we have ϕi(s) < 0 for all i. According to Lemma 2, {a ∈ A | ϕi(f(s, a)) ≤
0} = A. Hence the set of safe control satisfies the following relationship

AD
S (s) := {a ∈ A | max

i
ϕi(f(s, a)) ≤ 0} (27a)

= ∩i{a ∈ A | ϕi(f(s, a)) ≤ 0} (27b)
= A ≠ ∅ (27c)

In summary, AD
S (s) ̸= ∅,∀s and the claim holds.

C.2 Feasibility of ISSA
Corollary 2 (Feasibility of Algorithm 3). If the set of safe control is non-empty, Algorithm 3 can always find a sub-optimal
solution of (6) with a finite number of iterations.

Algorithm 3 executes two phases consecutively where the second phase will be executed if no solution of (6) is returned in
the first phase. Hence, Algorithm 3 can always find a sub-optimal solution of (6) (safe control on the boundary of AD

S ) if the
solution of (6) can always be found in phase 2.

Note that Phase 2 first finds an anchor safe control au, then use it with AdamBA (Algorithm 2) to find the solution of (6).
In the following discussion, we first show that the safety index design rule guarantees au can be found with finite iterations
(Lemma 3). Then we show that AdamBA will return a solution if it enters the exponential decay phase (Lemma 4). Subsequently,
we show that the evoked AdamBA procedures in phase 2 will definitely enter exponential decay phase (Lemma 5). Finally, we
provide a upper bound of the computation iterations for Algorithm 3.

Lemma 3 (Existence). If the synthesized safety index can guarantee a non-empty set of safe control, then we can find an anchor
point in phase 2 of Algorithm 3 with finite iterations (line 11 in algorithm 3).

Proof. If the synthesized safety index guarantees a non-empty set of safe controlAD
S , then there exists a hypercube inside ofAD

S ,
i.e. ∃Q ⊂ AD

S , where Q is a nu-dimensional hypercube with the same side length of l > 0. Denote ζ[i] = maxj,k ∥aj[i] − ak[i]∥,
where a[i] denotes the i-th dimension of control a, and aj ∈ AD

S , ak ∈ AD
S .

By directly applying grid sampling in AD
s with sample interval l∗ at each control dimension, such that 0 < l∗ < l, the

maximum sampling iteration T a for finding an anchor point in phase 2 satisfies the following condition:

T a <

nu∏
i=1

⌈
ζ[i]

l∗
⌉ , (28)

where T a is a finite number since l∗ > 0. Then we have proved that we can find an anchor point in phase 2 of Algorithm 3 with
finite iteration (i.e., finite sampling time). The grid sampling to find an anchor control point is illustrated in Figure 12.

Lemma 4 (Convergence). If AdamBA enters the exponential decay phase, then it can always return a boundary point approxi-
mation (with desired safety status) where the approximation error is upper bounded by ϵ.



Proof. According to Algorithm 2, exponential decay phase applies Bisection method to locate the boundary point Pb until
∥PNS − PS∥ < ϵ. Denote the returned approximated boundary point as Preturn, according to line 25, Preturn is either PNS or
PS , thus the approximation error satisfies:

∥Preturn − Pb∥ ≤ max{∥PNS − Pb∥, ∥PS − Pb∥} (29)
≤ ∥PNS − PS∥
< ϵ.

Lemma 5 (Feasibility). If we enter the phase 2 of Algorithm 3 with an anchor safe control being sampled, we can always find a
local optimal solution of (6).

Proof. According to line 13-15, after an anchor safe control is being sampled, phase 2 of Algorithm 3 will evoke at most two
AdamBA processes. Hence, Lemma 5 can be proved by showing one of the two AdamBA will return a local optimal solution for
(6). Next we show Lemma 5 holds in two cases.

Case 1: line 13 of Algorithm 3 finds a solution.
In this case, the first AdamBA process finds a safe control au solution (the return of AdamBA is a set, whereas the set here has

at most one element). According to Algorithm 2, a solution will be returned only if AdamBA enters exponential decay stage.
Hence, according to Lemma 4, au is close to the boundary of the set of safe control with approximation error upper bounded by
ϵ.

Figure 13: Illustration of the case when it is unable to find u∗.

Case 2: line 13 of Algorithm 3 fails to find a solution.
In this case, the second AdamBA process is evoked (line 15 of Algorithm 3). Since no solution is returned from the first

AdamBA process (13 of Algorithm 3), where we start from ar and exponentially outreach along the direction v⃗a = au−ar

||au−ar|| ,
then all the searched control point along v⃗a is UNSAFE.

Specifically, we summarize the aforementioned scenario in Figure 13, the searched control points are represented as red dots
along v⃗a (red arrow direction). Note that the exponential outreach starts with step size β = ∥au−ar∥

4 , indicating two points {a1s,
a2s} are sampled between ar and au such that{

a1s = ar + ∥au−ar∥
4 v⃗a = 3ar

4 + au

4

a2s = ar + 3∥au−ar∥
4 v⃗a = ar

4 + 3au

4

(30)

where the safety statuses of both a1s and a2s are UNSAFE.
During the second AdamBA process (line 15 of Algorithm 3), we start from au and exponentially outreach along the direction

v⃗r = ar−au

||ar−au|| with initial step size β = ∥ar−au∥
4 . Hence, denote ā1s as the first sample point along v⃗r, and ā1s satisfies

ā1s = au +
∥ar − au∥

4
v⃗r =

ar

4
+

3au

4
, (31)

which indicates ā1s = a2s, and the safety status of ā1s is UNSAFE. Since the safe status of au is SAFE and a UNSAFE point can
be sampled during the exponential outreach stage, the second AdamBA process (line 15 of Algorithm 3) will enter exponential



decay stage. Therefore, according to Lemma 4, au∗ will always be returned and au∗ is close to the boundary of the set of safe
control with approximation error upper bounded by ϵ.

The two cases cover all possible situations. Hence, after an anchor safe control au is sampled, phase 2 of Algorithm 3 can
always find a local optima of (6).

Proof of Corollary 2.

Proof. According to Lemma 3 and Lemma 5, Algorithm 3 is able to find local optimal solution of (6). Next, we will prove
Algorithm 3 can be finished within finite iterations.

According to Algorithm 3, ISSA include (i) one procedure to find anchor safe control aa, and (ii) at most three AdamBA
procedures. Firstly, based on Lemma 3, aa can be found within finite iterations. Secondly, each AdamBA procedure can be
finished within finite iterations due to:

• exponential outreach can be finished within finite iterations since the control space is bounded.
• exponential decay can be finished within finite iterations since Bisection method will exit within finite iterations.

Therefore, ISSA can be finished within finite iterations.

C.3 Proof of Theorem 1
Before we prove Theorem 1, we first define set SDS := {s|ϕ(s) ≤ 0}, and we start with a preliminary result regarding SDS that is
useful for proving the main theorem:
Lemma 6 (Forward Invariance of SDS ). If the control system satisfies Assumption 1, and the safety index design follows the rule
described Appendix A, the implicit safe set algorithm guarantees the forward invariance to the set SDS .

Proof. If the control system satisfies the assumptions in Assumption 1, and the safety index design follows the rule described
Appendix A, then we can ensure the system has nonempty set of safe control at any state by Corollary 1. By Corollary 2,
the implicit safe set algorithm can always find local optima solution of (6). The local optima solution always satisfies the
constraint ϕ(f(st, at)) ≤ max{ϕ(st)−η, 0}, which indicates that 1) if ϕ(st0) ≤ 0, then ϕ(st) ≤ 0,∀t ≥ t0. Note that ϕ(s) ≤ 0
demonstrates that s ∈ SDS .

Proof the Theorem 1

Proof. Leveraging Lemma 6, we then proceed to prove that the forward invariance to the set SDS guarantees the forward
invariance to the set S̄ ⊆ SS which S̄ = SS ∩ SDS . Depending on the relationship between SDS and SS , there are two cases in
the proof which we will discuss below.

Case 1: SDS = {s|ϕ(s) ≤ 0} is a subset of SS = {s|ϕ0(s) ≤ 0}.
In this case, S̄ = SDS . According to Lemma 6, If the control system satisfies the assumptions in Assumption 1, and the safety

index design follows the rule described Appendix A, the implicit safe set algorithm guarantees the forward invariance to the set
SDS and hence S̄.

Case 2: SDS = {s|ϕ(s) ≤ 0} is NOT a subset of SS = {s|ϕ0(s) ≤ 0}.
In this case, if st ∈ S̄, we have ϕ0(st) = maxi ϕ0i(st) ≤ 0, which indicates ∀i, ϕ0i ≤ 0.
Firstly, we consider the case where ϕ0i(st) < 0. Note that ϕ0i(st+1) = ϕ0i(st) + ϕ̇0i(st)dt +

ϕ̈0i(st)dt
2

2! + · · · , since the
state space and control space are both bounded, and dt→ 0 according to Assumption 1, we have ϕ0i(st+1)→ ϕ0i(st) ≤ 0.

Secondly, we consider the case where ϕ0i(st) = 0. Since st ∈ S̄ , we have maxi ϕi(st) ≤ 0, which indicates ∀i, σ + dnmin −
dni − kḋi ≤ 0. Since ϕ0i(st) = 0, we also have di = dmin. Therefore, the following condition holds:

σ − kḋi ≤ 0 (32)

ḋi ≥
σ

k

According to the safety index design rule, we have k, σ ∈ R+, which indicates ḋi > 0. Therefore, we have ϕ0i(st+1) < 0.
Summarizing the above two cases, we have shown that if ϕ0i(st) ≤ 0 then ϕ0i(st+1) ≤ 0, which indicates if ∀i, ϕ0i(st) ≤ 0

then ∀i, ϕ0i(st+1) ≤ 0. Note that ∀i, ϕ0i(st+1) ≤ 0 indicates that ϕ0(st+1) = maxi ϕ0i(st+1) ≤ 0. Therefore, we have that if
st ∈ S̄ then st+1 ∈ SS . Thus, we also have st+1 ∈ S̄ by Lemma 6. By induction, we have if st0 ∈ S̄, st ∈ S̄,∀t > t0.

In summary, by discussing the two cases of whether SDS is the subset of SS , we have proven that if the control system satisfies
the assumptions in Assumption 1, and the safety index design follows the rule described in Appendix A, the implicit safe set
algorithm guarantees the forward invariance to the set S̄ ⊆ SS . Thus, if the initial state is safe, then the following state will
always stay in S̄ which means ISSA can ensure the safety during training.



D Proof of Theorem 2
Mathematically, S-3PO requires the policy update at each iteration is bounded within a trust region, and updates policy via
solving following optimization:

πk+1 = argmax
π∈Πθ

E
ŝ∼dπk

a∼π

[Aπk(ŝ, a)] (33)

s.t. Eŝ∼d̄πk [DKL(π∥πk)[ŝ]] ≤ δ,

JD(πk) + E
ŝ∼d̄πk

a∼π

[
Aπk

D (ŝ, a)

]
+ 2(H + 1)ϵπD

√
1

2
δ ≤ 0

where DKL(π
′∥π)[ŝ] is KL divergence between two policy (π′, π) at state ŝ, the set {π ∈ Πθ : Eŝ∼d̄πk [DKL(π∥πk)[ŝ]] ≤ δ}

is called trust region, dπk
.
= (1 − γ)

∑H
t=0 γ

tP (ŝt = ŝ|πk), d̄πk
.
=

∑H
t=0 P (ŝt = ŝ|πk), and ϵπD

.
= maxŝ|Ea∼π[A

πk

D (ŝ, a)]|.
In practice, if ISSA is triggered, we take D(ŝt, at, ŝt+1) = max{(ϕ(f(ŝt, art )) − ϕ(f(ŝt, at))) −M, 0} = max{∆ϕt, 0}.
Otherwise we take D(ŝt, at, ŝt+1) = 0 directly.

D.1 Preliminaries
ḋπ we used is defined as

ḋπ(ŝ) =
H∑
t=0

γtP (ŝt = ŝ|π). (34)

which has a little difference with dπ and is used to ensure the continuity of function we used for proof later. Then it allows us
to express the expected discounted total reward or cost compactly as:

Jg(π) = E
ŝ∼ḋπ

a∼π
ŝ′∼P

[g(ŝ, a, ŝ′)] , (35)

where by a ∼ π, we mean a ∼ π(·|ŝ), and by ŝ′ ∼ P ,we mean ŝ′ ∼ P (·|ŝ, a). g(ŝ, a, ŝ′) represents the cost or reward
function. We drop the explicit notation for the sake of reducing clutter, but it should be clear from context that a and ŝ′ depend
on ŝ.

Define P (ŝ′|ŝ, a) is the probability of transitioning to state ŝ′ given that the previous state was ŝ and the agent took action
a at state ŝ, and µ̂ : Ŝ 7→ [0, 1] is the initial augmented state distribution. Let ptπ ∈ R|Ŝ| denote the vector with components
ptπ(ŝ) = P (ŝt = ŝ|π), and let Pπ ∈ R|Ŝ|×|Ŝ| denote the transition matrix with components Pπ(ŝ

′|ŝ) =
∫
P (ŝ′|ŝ, a)π(a|ŝ)da;

then ptπ = Pπp
t−1
π = P t

πµ̂ and

ḋπ =

H∑
t=0

(γPπ)
tµ̂ (36)

= (I − (γPπ)
H+1)(I − γPπ)

−1µ̂

= (I − γPπ)
−1µ̂

Noticing that the finite MDP ends up at step H , thus (Pπ)
H+1 should be set to zero matrix.

This formulation helps us easily obtain the following lemma.

Lemma 7. For any function f : Ŝ 7→ R and any policy π,

E
ŝ∼µ̂

[f(ŝ)] + E
ŝ∼ḋπ

a∼π
ŝ′∼P

[γf(ŝ′)]− E
ŝ∼ḋπ

[f(ŝ)] = 0. (37)

Proof. Multiply both sides of (36) by (I − γPπ) and take the inner product with the vector f ∈ R|Ŝ|.

Combining Lemma 7 with (35), we obtain the following, for any function f and any policy π:

Jg(π) = E
ŝ∼µ̂

[f(ŝ)] + E
ŝ∼ḋπ

a∼π
ŝ′∼P

[g(ŝ, a, ŝ′) + γf(ŝ′)− f(ŝ)] (38)



Lemma 8. For any function f 7→ R and any policies π′ and π, define

Lπ,f (π
′)

.
= E

ŝ∼ḋπ

a∼π
ŝ′∼P

[(
π′(a|ŝ)
π(a|ŝ)

− 1

)
(g(ŝ, a, ŝ′) + γf(ŝ′)− f(ŝ))

]
, (39)

and ϵπ′f
.
= maxŝ |Ea∼π′,ŝ′∼P [g(ŝ, a, ŝ

′) + γf(ŝ′)− f(ŝ)]|. Then the following bounds hold:

Jg(π′)− Jg(π) ≥ Lπ,f (π
′)− ϵπ

′

f

∥∥∥ḋπ′
− ḋπ

∥∥∥
1
, (40)

Jg(π′)− Jg(π) ≤ Lπ,f (π
′) + ϵπ

′

f

∥∥∥ḋπ′
− ḋπ

∥∥∥
1
, (41)

where DTV is the total variational divergence. Furthermore, the bounds are tight(when π′ = π, the LHS and RHS are identically
zero).

Proof. First, for notational convenience, let δf (ŝ, a, ŝ′)
.
= g(ŝ, a, ŝ′) + γf(ŝ′)− f(ŝ). By (38), we obtain the identity

Jg(π′)− Jg(π) = E
ŝ∼ḋπ′

a∼π′

ŝ′∼P

[δf (ŝ, a, ŝ
′)]− E

ŝ∼ḋπ

a∼π
ŝ′∼P

[δf (ŝ, a, ŝ
′)] (42)

Now, we restrict our attention to the first term in (42). Let †δπ′

f ∈ R|Ŝ| denote the vector of components, where †δπ′

f (ŝ) =

Ea∼π′,ŝ′∼P [δf (ŝ, a, ŝ
′)|ŝ]. Observe that

E
ŝ∼ḋπ′

a∼π′

ŝ′∼P

[δf (ŝ, a, ŝ
′)] =

〈
ḋπ

′
, †δπ

′

f

〉

=
〈
ḋπ, †δπ

′

f

〉
+

〈
ḋπ

′
− ḋπ, †δπ

′

f

〉
With the Hölder’s inequality; for any p, q ∈ [1,∞] such that

1

p
+

1

q
= 1, we have〈

ḋπ, †δπ
′

f

〉
+
∥∥∥ḋπ′

− ḋπ
∥∥∥
p

∥∥∥†δπ′

f

∥∥∥
q
≥ E

ŝ∼ḋπ′

a∼π′

ŝ′∼P

[δf (ŝ, a, ŝ
′)] ≥

〈
ḋπ, †δπ

′

f

〉
−
∥∥∥dπ′

− ḋπ
∥∥∥
p

∥∥∥†δπ′

f

∥∥∥
q

(43)

We choose p = 1 and q =∞; With
∥∥∥†δπ′

f

∥∥∥
∞

= ϵπ
′

f , and by the importance sampling identity, we have〈
ḋπ, †δπ

′

f

〉
= E

ŝ∼ḋπ

a∼π′

ŝ′∼P

[δf (ŝ, a, ŝ
′)] (44)

= E
ŝ∼ḋπ

a∼π
ŝ′∼P

[

(
π′(a|ŝ)
π(a|ŝ)

)
δf (ŝ, a, ŝ

′)]

After bringing (44),
∥∥∥†δπ′

f

∥∥∥
∞

into (43), then substract E
ŝ∼ḋπ

a∼π
ŝ′∼P

[δf (ŝ, a, ŝ
′)], the bounds are obtained. The lower bound leads to

(40), and the upper bound leads to (41).

Lemma 9. The divergence between discounted future state visitation distributions, ||ḋπ′ − ḋπ||1, is bounded by an average
divergence of the policies π′ and π:

∥ḋπ
′
− ḋπ∥1 ≤ 2

H∑
t=0

γt+1 E
ŝ∼ḋπ

[DTV (π
′||π)[ŝ]] , (45)

where DTV (π
′||π)[ŝ] = 1

2

∑
a |π′(a|ŝ)− π(a|ŝ)|.



Proof. Firstly, we introduce an identity for the vector difference of the discounted future state visitation distributions on two
different policies, π′ and π. Define the matrices G .

= (I − γPπ)
−1, Ḡ

.
= (I − γPπ′)−1, and ∆ = Pπ′ − Pπ . Then:

G−1 − Ḡ−1 = (I − γPπ)− (I − γPπ′) (46)
= γ∆,

left-multiplying by G and right-multiplying by Ḡ, we obtain

Ḡ−G = γḠ∆G. (47)

Thus, the following equality holds:

ḋπ
′
− ḋπ = (1− γ)

(
Ḡ−G

)
µ̂ (48)

= γ(1− γ)Ḡ∆Gµ̂

= γḠ∆ḋπ.

Using (48), we obtain

∥ḋπ
′
− ḋπ∥1 = γ∥Ḡ∆dπ∥1 (49)

≤ γ∥Ḡ∥1∥∆ḋπ∥1,
where ||Ḡ||1 is bounded by:

∥Ḡ∥1 = ∥(I − γPπ′)−1∥1 ≤
∞∑
t=0

γt∥P t
π′∥1 =

H∑
t=0

γt. (50)

Next, we bound ∥∆ḋπ1∥ as following:

∥∆ḋπ∥1 =
∑
ŝ′

∣∣∣∣∣∑
ŝ

∆(ŝ′|ŝ)ḋπ(ŝ)

∣∣∣∣∣ (51)

≤
∑
ŝ,ŝ′

|∆(ŝ′|ŝ)|ḋπ(ŝ)

=
∑
ŝ,ŝ′

∣∣∣∣∣∑
a

P (ŝ′|ŝ, a) (π′(a|ŝ)− π(a|ŝ))

∣∣∣∣∣ ḋπ(ŝ)
≤

∑
ŝ,a,ŝ′

P (ŝ′|ŝ, a)|π′(a|ŝ)− π(a|ŝ)|ḋπ(ŝ)

=
∑
ŝ,a

|π′(a|ŝ)− π(a|ŝ)|ḋπ(ŝ)

= 2 E
ŝ∼ḋπ

[DTV (π
′||π)[ŝ]].

By taking (51) and (50) into (49), this lemma is proved.

The new policy improvement bound follows immediately.

Lemma 10. For any function f : Ŝ 7→ R and any policies π′ and π, define δf (ŝ, a, ŝ
′)

.
= g(ŝ, a, ŝ′) + γf(ŝ′)− f(ŝ),

ϵπ
′

f
.
= max

ŝ
|Ea∼π′,ŝ′∼P [δf (ŝ, a, ŝ

′)]|,

Lπ,f (π
′)

.
= E

ŝ∼ḋπ

a∼π
ŝ′∼P

[(
π′(a|ŝ)
π(a|ŝ)

− 1

)
δf (ŝ, a, ŝ

′)

]
, and

D±
π,f (π

′)
.
= Lπ,f (π

′)± 2(

H∑
t=0

γt+1)ϵπ
′

f E
ŝ∼ḋπ

[DTV (π
′||π)[ŝ]],



where DTV (π
′||π)[ŝ] = 1

2

∑
a |π′(a|ŝ) − π(a|ŝ)| is the total variational divergence between action distributions at ŝ. The

following bounds hold:

D+
π,f (π

′) ≥ Jg(π′)− Jg(π) ≥ D−
π,f (π

′).

Furthermore, the bounds are tight (when π′ = π, all three expressions are identically zero)

Proof. Begin with the bounds from lemma 8 and bound the divergence DTV (ḋ
π′ ||ḋπ) by lemma 9.

D.2 Safety invariance in expectation between S-3PO policies

Corollary 3 (SCPO Update Constraint Satisfaction). Suppose JD(πk) ≤ 0 and πk, πk+1 are related by (33), then D-return for
πk+1 satisfies

∀i,JD(πk+1) ≤ 0.

Proof. The choice of f = V̂ π
D , g = D in lemma 10 leads to following inequality:

ĴD(π′)− ĴD(π) ≤ E
ŝ∼ḋπ

a∼π′

[
Âπ

D(ŝ, a) + 2(

H∑
t=0

γt+1)ϵπ
′

DDTV (π
′||π)[ŝ]

]
. (52)

where ĴD(π) = Eτ∼π

[∑H
t=0 γ

tD
(
ŝt, at, ŝt+1

)]
, need to distinguish from JD(π). And V̂ π

D , Âπ
D are also the discounted

version of V π
D and Aπ

D. Note that according to Lemma 10 one can only get this the inequality holds when γ ∈ (0, 1).

Then we can define F(γ) = E
ŝ∼ḋπ

a∼π′

[
Âπ

D(ŝ, a) + 2(
∑H

t=0 γ
t+1)ϵπ

′

DDTV (π
′||π)[ŝ]

]
− ĴD(π′) + ĴD(π) with the following

condition holds:

F(γ) ≥ 0,when γ ∈ (0, 1) (53)
F(γ)’s domain of definition isR
F(γ) is a polynomial function

Because F(γ) is a polynomial function and coefficients are all limited, thus lim
γ→1−

F(γ) exists and F(γ) is continuous at point

(1,F(1)). So F(1) = lim
γ→1−

F(γ) ≥ 0, which equals to:

JD(π′)− JD(π) ≤ E
ŝ∼d̄π

a∼π′

[
Aπ

D(ŝ, a) + 2(H + 1)ϵπ
′

DDTV (π
′||π)[ŝ]

]
.

where d̄π =
∑H

t=0 P (ŝt = ŝ|π). Thus, following the inequality (33), the Corollary 3 is proofed.

D.3 Proof of Theorem 2

If st ∈ S̄ ∈ SDS , then JD(πt) ≤ 0 and ϕ(st) ≤ 0. According to Corollary 3, we know that if policy πt is updated by solving
(33), then we have JD(πt+1) ≤ 0 which means:

E
τ∼πt+1

[ϕ(st+1)] = JD(πt+1) + ϕ(st) ≤ 0 (54)

Thus st+1 ∈ SDS in expectation. According to the proof of Appendix C.3, we know that st+1 ∈ S̄ ∈ SDS in expectation.



E Proof of Theorem 3
E.1 KL Divergence Relationship Between dπk and d̄πk

Lemma 11. E
ŝ∼dπ

[DKL(π
′∥π)[ŝ]] < E

ŝ∼d̄π

[DKL(π
′∥π)[ŝ]]

Proof.

E
ŝ∼dπ

[DKL(π
′∥π)[ŝ]] =

∑
ŝ

(1− γ)

H∑
t=0

γtP (ŝt = ŝ|π)DKL(π
′∥π)[ŝ]

<
∑
ŝ

H∑
t=0

γtP (ŝt = ŝ|π)DKL(π
′∥π)[ŝ]

<
∑
ŝ

H∑
t=0

P (ŝt = ŝ|π)DKL(π
′∥π)[ŝ]

= E
ŝ∼d̄π

[DKL(π
′∥π)[ŝ]].

E.2 Trust Region Update Performance

Lemma 12. For any policies π′, π, with ϵπ
′ .
= maxŝ|Ea∼π′ [Aπ(ŝ, a)]|, and define dπ = (1 − γ)

H∑
t=0

γtP (ŝt = ŝ|π) as the

discounted augmented state distribution using π, then the following bound holds:

J (π′)− J (π) > 1

1− γ
E

ŝ∼dπ

a∼π′

[
Aπ(ŝ, a)− 2γϵπ

′

1− γ
DTV (π

′∥π)[ŝ]
]

(55)

Proof. The choice of f = Vπ, g = R in lemma 10 leads to following inequality:
For any policies π′, π, with ϵπ

′ .
= maxŝ|Ea∼π′ [Aπ(ŝ, a)]|, the following bound holds:

J (π′)− J (π) ≥ E
ŝ∼ḋπ

a∼π′

[
Aπ(ŝ, a)− 2(

H∑
t=0

γt+1)ϵπ
′
DTV (π

′||π)[ŝ]

]

>
1

1− γ
E

ŝ∼dπ

a∼π′

[
Aπ(ŝ, a)−

2γϵπ
′

1− γ
DTV (π

′||π)[ŝ]

]

At this point, the lemma 12 is proved.

E.3 Proof of Theorem 3
Proof. If ISSA will constantly be triggered, the safeguard should be treated as a component of the environment, which indicates
the environment is non-stationary for policy π after safeguard is disabled. According to Algorithm 1, we assume that ISSA will
not be triggered after ksafe updates, meaning the environment is stationary for policy π with or without safeguard. Therefore, we
can infer S-3PO worst performance degradation after ksafe updates following the trust region results of finite-horizon MDPs.
Utilizing Lemma 12 and the relationship between the total variation divergence and the KL divergence, we have:

J (π′)− J (π) > 1

1− γ
E

ŝ∼dπ

a∼π′

[
Aπ(ŝ, a)− 2γϵπ

′

1− γ

√
1

2
Eŝ∼dπ [DKL(π′∥π)[ŝ]]

]
. (56)

In (33), the reward performance between two policies is associated with trust region, i.e.

πk+1 = argmax
π∈Πθ

E
ŝ∼dπk

a∼π

[Aπk(ŝ, a)] (57)

s.t. Eŝ∼d̄πk [DKL(π∥πk)[ŝ]] ≤ δ.



Due to Lemma 11, if two policies are related with Equation (57), they are related with the following optimization:

πk+1 = argmax
π∈Πθ

E
ŝ∼dπk

a∼π

[Aπk(ŝ, a)] (58)

s.t. Eŝ∼dπk [DKL(π∥πk)[ŝ]] ≤ δ.

By (56) and (58), if πk, πk+1 are related by (33), then performance return for πk+1 satisfies

J (πk+1)− J (πk) > −
√
2δγϵπk+1

1− γ
.



F Expeiment Details
F.1 Environment Settings
Goal Task In the Goal task environments, the reward function is:

r(xt) = dgt−1 − dgt + 1[dgt < Rg] ,

where dgt is the distance from the robot to its closest goal and Rg is the size (radius) of the goal. When a goal is achieved, the
goal location is randomly reset to someplace new while keeping the rest of the layout the same. The test suites of our experiments
are summarized in Table 1.

Hazard Constraint In the Hazard constraint environments, the cost function is:

c(xt) = max(0, Rh − dht ) ,

where dht is the distance to the closest hazard and Rh is the size (radius) of the hazard.

Pillar Constraint In the Pillar constraint environments, the cost ct = 1 if the robot contacts with the pillar otherwise ct = 0.

Additional high dimensional link robot To scale our method to high dimensional link robots. We additionally adopt Walker
shown in 14 as a bipedal robot (A ⊆ R10) in our experiments.

Figure 14: Walker

State Space The state space is composed of two parts. The internal state spaces describe the state of the robots, which can be
obtained from standard robot sensors (accelerometer, gyroscope, magnetometer, velocimeter, joint position sensor, joint velocity
sensor and touch sensor). The details of the internal state spaces of the robots in our test suites are summarized in Table 2. The
external state spaces are describe the state of the environment observed by the robots, which can be obtained from 2D lidar or 3D
lidar (where each lidar sensor perceives objects of a single kind). The state spaces of all the test suites are summarized in Table 3.
Note that Vase and Gremlin are two other constraints in Safety Gym (Ray, Achiam, and Amodei 2019) and all the returns of vase
lidar and gremlin lidar are zero vectors (i.e., [0, 0, · · · , 0] ∈ R16) in our experiments since none of our test suites environments
has vases.

Table 1: The test suites environments of our experiments

Task Setting Low dimension High dimension
Point Swimmer Walker Ant

Hazard-1 ✓ ✓ ✓ ✓
Hazard-4 ✓
Hazard-8 ✓
Pillar-1 ✓
Pillar-4 ✓
Pillar-8 ✓

Control Space For all the experiments, the control space of all robots are continuous, and linearly scaled to [-1, +1].

F.2 Policy Settings
The hyper-parameters used in our experiments are listed in Table 4 as default.

Our experiments use separate multi-layer perception with tanh activations for the policy network, value network and cost
network. Each network consists of two hidden layers of size (64,64). All of the networks are trained using Adam optimizer with
learning rate of 0.01.

We apply an on-policy framework in our experiments. During each epoch the agent interact B times with the environment and
then perform a policy update based on the experience collected from the current epoch. The maximum length of the trajectory is



Table 2: The internal state space components of different test suites environments.

Internal State Space Point Swimmer Walker Ant
Accelerometer (R3) ✓ ✓ ✓ ✓

Gyroscope (R3) ✓ ✓ ✓ ✓
Magnetometer (R3) ✓ ✓ ✓ ✓

Velocimeter (R3) ✓ ✓ ✓ ✓
Joint position sensor (Rn) n = 0 n = 2 n = 10 n = 8
Joint velocity sensor (Rn) n = 0 n = 2 n = 10 n = 8

Touch sensor (Rn) n = 0 n = 4 n = 2 n = 8

Table 3: The external state space components of different test suites environments.

External State Space Goal-Hazard Goal-Pillar
Goal Compass (R3) ✓ ✓

Goal Lidar (R16) ✓ ✓
3D Goal Lidar (R60) ✗ ✗
Hazard Lidar (R16) ✓ ✗

3D Hazard Lidar (R60) ✗ ✗
Pillar Lidar (R16) ✗ ✓
Vase Lidar (R16) ✓ ✓

Gremlin Lidar (R16) ✓ ✓

set to 1000 and the total epoch number N is set to 200 as default. In our experiments the Walker was trained for 250 epochs due
to the high dimension.

The policy update step is based on the scheme of TRPO, which performs up to 100 steps of backtracking with a coefficient of
0.8 for line searching.

For all experiments, we use a discount factor of γ = 0.99, an advantage discount factor λ = 0.95, and a KL-divergence step
size of δKL = 0.02.

For experiments which consider cost constraints we adopt a target cost δc = 0.0 to pursue a zero-violation policy.
Other unique hyper-parameters for each algorithms are hand-tuned to attain reasonable performance.
Each model is trained on a server with a 48-core Intel(R) Xeon(R) Silver 4214 CPU @ 2.2.GHz, Nvidia RTX A4000 GPU

with 16GB memory, and Ubuntu 20.04.

F.3 Metrics Comparison
In Tables 5 to 7, we report all the 9 results of our test suites by three metrics:
• The average episode return Jr.
• The average episodic sum of costs Mc.
• The average cost over the entirety of training ρc.

Both the evaluation performance and training performance are reported based on the above metrics. Besides, we also report the
ISSA triger times as ISSA performance of TRPO-ISSA and S-3PO. All of the metrics were obtained from the final epoch after
convergence. Each metric was averaged over two random seed. The evaluation performance curves of all experiments are shown
in Figures 15, 18 and 21, the training performance curves of all experiments are shown in Figures 16, 19 and 22 and the ISSA
performance curves of all experiments are shown in Figures 17, 20 and 23
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Table 5: Metrics of three Goal_Point_Hazard environments obtained from the final epoch.

(a) Goal_Point_1Hazard

Algorithm Evaluation Performance Training Performance ISSA Performance
J̄r M̄c ρ̄c J̄r M̄c ρ̄c

TRPO 2.5738 0.5078 0.0082 2.5738 0.5078 0.0082 -
TRPO-Lagrangian 2.6313 0.5977 0.0058 2.6313 0.5977 0.0058 -

CPO 2.4988 0.1713 0.0045 2.4988 0.1713 0.0045 -
PCPO 2.4928 0.3765 0.0054 2.4928 0.3765 0.0054 -
SCPO 2.5457 0.0326 0.0022 2.5457 0.0326 0.0022 -

TRPO-ISSA 2.5113 0.0000 0.0000 2.5981 0.0000 0.0000 0.2714
S-3PO 2.4157 0.0000 0.0000 2.2878 0.0000 0.0000 0.0285

(b) Goal_Point_4Hazard

Algorithm Evaluation Performance Training Performance ISSA Performance
J̄r M̄c ρ̄c J̄r M̄c ρ̄c

TRPO 2.6098 0.2619 0.0037 2.6098 0.2619 0.0037 -
TRPO-Lagrangian 2.5494 0.2108 0.0034 2.5494 0.2108 0.0034 -

CPO 2.5924 0.1654 0.0024 2.5924 0.1654 0.0024 -
PCPO 2.5575 0.1824 0.0025 2.5575 0.1824 0.0025 -
SCPO 2.5535 0.0523 0.0009 2.5535 0.0523 0.0009 -

TRPO-ISSA 2.5014 0.0712 0.0000 2.5977 0.0135 0.0000 0.1781
S-3PO 2.3868 0.0000 0.0000 2.3550 0.0000 0.0000 0.0117

(c) Goal_Point_8Hazard

Algorithm Evaluation Performance Training Performance ISSA Performance
J̄r M̄c ρ̄c J̄r M̄c ρ̄c

TRPO 2.5535 0.5208 0.0074 2.5535 0.5208 0.0074 -
TRPO-Lagrangian 2.5851 0.5119 0.0064 2.5851 0.5119 0.0064 -

CPO 2.6440 0.2944 0.0041 2.6440 0.2944 0.0041 -
PCPO 2.6249 0.3843 0.0052 2.6249 0.3843 0.0052 -
SCPO 2.5126 0.0703 0.0020 2.5126 0.0703 0.0020 -

TRPO-ISSA 2.5862 0.0865 0.0000 2.5800 0.0152 0.0000 0.3431
S-3PO 2.4207 0.1710 0.0000 2.3323 0.0000 0.0000 0.0337

Table 6: Metrics of three Goal_Pillar_Hazard environments obtained from the final epoch.

(a) Goal_Point_1Pillar

Algorithm Evaluation Performance Training Performance ISSA Performance
J̄r M̄c ρ̄c J̄r M̄c ρ̄c

TRPO 2.6065 0.2414 0.0032 2.6065 0.2414 0.0032 -
TRPO-Lagrangian 2.5772 0.1218 0.0020 2.5772 0.1218 0.0020 -

CPO 2.5464 0.2342 0.0028 2.5464 0.2342 0.0028 -
PCPO 2.5857 0.2088 0.0025 2.5857 0.2088 0.0025 -
SCPO 2.5928 0.0040 0.0003 2.5928 0.0040 0.0003 -

TRPO-ISSA 2.5985 0.0000 0.0000 2.5909 0.0020 0.0000 0.3169
S-3PO 2.5551 0.0000 0.0000 2.5241 0.0000 0.0000 0.0060

(b) Goal_Point_4Pillar

Algorithm Evaluation Performance Training Performance ISSA Performance
J̄r M̄c ρ̄c J̄r M̄c ρ̄c

TRPO 2.5671 0.4112 0.0063 2.5671 0.4112 0.0063 -
TRPO-Lagrangian 2.6040 0.2786 0.0050 2.6040 0.2786 0.0050 -

CPO 2.5720 0.5523 0.0062 2.5720 0.5523 0.0062 -
PCPO 2.5709 0.3240 0.0052 2.5709 0.3240 0.0052 -
SCPO 2.5367 0.0064 0.0005 2.5367 0.0064 0.0005 -

TRPO-ISSA 2.5739 0.1198 0.0001 2.5881 0.0427 0.0001 0.2039
S-3PO 2.2513 0.0114 0.0000 2.3459 0.0000 0.0000 0.0116

(c) Goal_Point_8Pillar

Algorithm Evaluation Performance Training Performance ISSA Performance
J̄r M̄c ρ̄c J̄r M̄c ρ̄c

TRPO 2.6140 3.1552 0.0201 2.6140 3.1552 0.0201 -
TRPO-Lagrangian 2.6164 0.6632 0.0129 2.6164 0.6632 0.0129 -

CPO 2.6440 0.5655 0.0166 2.6440 0.5655 0.0166 -
PCPO 2.5704 6.6251 0.0219 2.5704 6.6251 0.0219 -
SCPO 2.4162 0.2589 0.0024 2.4162 0.2589 0.0024 -

TRPO-ISSA 2.6203 0.6910 0.0009 2.5921 0.0709 0.0009 0.3517
S-3PO 2.0325 0.0147 0.0002 2.3371 0.0000 0.0002 0.0231



Table 7: Metrics of three link robots environments obtained from the final epoch.

(a) Goal_Swimmer_1Hazard

Algorithm Evaluation Performance Training Performance ISSA Performance
J̄r M̄c ρ̄c J̄r M̄c ρ̄c

TRPO 2.7049 0.3840 0.0076 2.7049 0.3840 0.0076 -
TRPO-Lagrangian 2.6154 0.3739 0.0060 2.6154 0.3739 0.0060 -

CPO 2.5817 0.3052 0.0056 2.5817 0.3052 0.0056 -
PCPO 2.5418 0.6243 0.0055 2.5418 0.6243 0.0055 -
SCPO 2.6432 0.3919 0.0051 2.6432 0.3919 0.0051 -

TRPO-ISSA 2.5826 0.2595 0.0000 2.5955 0.0000 0.0000 0.1240
S-3PO 2.6032 0.0313 0.0000 2.6239 0.0001 0.0000 0.0378

(b) Goal_Ant_1Hazard

Algorithm Evaluation Performance Training Performance ISSA Performance
J̄r M̄c ρ̄c J̄r M̄c ρ̄c

TRPO 2.6390 0.3559 0.0074 2.6390 0.3559 0.0074 -
TRPO-Lagrangian 2.5866 0.2169 0.0044 2.5866 0.2169 0.0044 -

CPO 2.6175 0.2737 0.0072 2.6175 0.2737 0.0072 -
PCPO 2.6103 0.2289 0.0076 2.6103 0.2289 0.0076 -
SCPO 2.6341 0.2384 0.0065 2.6341 0.2384 0.0065 -

TRPO-ISSA 2.6509 0.3831 0.0032 2.6318 0.3516 0.0032 0.0279
S-3PO 2.2047 0.0000 0.0002 2.2031 0.0000 0.0002 0.0001

(c) Goal_Walker_1Hazard

Algorithm Evaluation Performance Training Performance ISSA Performance
J̄r M̄c ρ̄c J̄r M̄c ρ̄c

TRPO 2.5812 0.2395 0.0075 2.5812 0.2395 0.0075 -
TRPO-Lagrangian 2.6227 0.1666 0.0041 2.6227 0.1666 0.0041 -

CPO 2.6035 0.3068 0.0062 2.6035 0.3068 0.0062 -
PCPO 2.5775 0.2414 0.0059 2.5775 0.2414 0.0059 -
SCPO 2.6352 0.1423 0.0051 2.6352 0.1423 0.0051 -

TRPO-ISSA 2.6419 0.3544 0.0037 2.5787 0.2060 0.0037 0.0316
S-3PO 2.6117 0.3437 0.0025 2.6055 0.2665 0.0025 0.0319



(a) Goal_Point_1Hazard (b) Goal_Point_4Hazard (c) Goal_Point_8Hazard

Figure 15: Evaluation performance of Goal_Point_Hazard



(a) Goal_Point_1Hazard (b) Goal_Point_4Hazard (c) Goal_Point_4Hazard

Figure 16: Training performance of Goal_Point_Hazard

(a) Goal_Point_1Hazard (b) Goal_Point_4Hazard (c) Goal_Point_8Hazard

Figure 17: ISSA performance of Goal_Point_Hazard



(a) Goal_Point_1Pillar (b) Goal_Point_4Pillar (c) Goal_Point_8Pillar

Figure 18: Evaluation performance of Goal_Point_Pillar



(a) Goal_Point_1Pillar (b) Goal_Point_4Pillar (c) Goal_Point_8Pillar

Figure 19: Training performance of Goal_Point_Pillar

(a) Goal_Point_1Pillar (b) Goal_Point_4Pillar (c) Goal_Point_8Pillar

Figure 20: ISSA performance of Goal_Point_Pillar



(a) Goal_Swimmer_1Hazard (b) Goal_Ant_1Hazard (c) Goal_Walker_1Hazard

Figure 21: Evaluation performance of link robots



(a) Goal_Swimmer_1Hazard (b) Goal_Ant_1Hazard (c) Goal_Walker_1Hazard

Figure 22: Training performance of link robots

(a) Goal_Swimmer_1Hazard (b) Goal_Ant_1Hazard (c) Goal_Walker_1Hazard

Figure 23: ISSA performance of link robots


