
A Proofs

A.1 Proof of Theorem 3.1

First we set up some notation. For two datasets S and S′, parameter α ≥ 1 and fixed a(t), we let1

Loss(t)(a(t);S, S′, α)
def
=

(
Pr
[
A(t)(S) = a(t)

]
Pr
[
A(t)(S′) = a(t)

])α .
Similarly, for fixed a(t) we also define

Losst(a
(t);S, S′, α)

def
=

(
Pr [At(a1, . . . , at−1, S) = at]

Pr [At(a1, . . . , at−1, S′) = at]

)α
.

Roughly speaking, Loss(t) denotes the total privacy loss incurred by the first t rounds of adaptive
composition, while Losst denotes the loss incurred in round t (which, due to adaptivity, depends on
the outcomes of the first t− 1 rounds).

Note that, since

Pr
[
A(t)(S) = a(t)

]
= Pr

[
A(t−1)(S) = a(t−1)

]
Pr [At(a1, a2, . . . , at−1, S) = at] ,

we have Loss(t)(a(t);S, S′, α) = Loss(t−1)(a(t−1);S, S′, α) · Losst(a
(t);S, S′, α).

Fix any (S, S′) ∈ S. In what follows, we take a(t) = (a1, . . . , at) to be distributed as the
random output of adaptive composition applied to S′, that is a(t) ∼ A(t)(S′). Consequently,
Loss(t)(a(t);S, S′, α) and Losst(a

(t);S, S′, α) are also random.

Let Mt
def
= Loss(t)(a(t);S, S′, α)e−(α−1)

∑t
j=1 ρj , and let M0 = 1. Consider the filtration Γt =

σ(a(t)). We prove that Mt is a supermartingale with respect to Γt; that is, we show E[Mt | Γt−1] ≤
Mt−1. This follows since:

E[Mt | Γt−1] = E

[
Loss(t)(a(t);S, S′, α) e−(α−1)

∑t
j=1 ρj

∣∣∣∣∣ Γt−1

]

= E

[
Loss(t−1)(a(t−1);S, S′, α) Losst(a

(t);S, S′, α) e−(α−1)
∑t

j=1 ρj

∣∣∣∣∣ Γt−1

]

= Loss(t−1)(a(t−1);S, S′, α) e−(α−1)
∑t

j=1 ρjE

[
Losst(a

(t);S, S′, α)

∣∣∣∣∣ Γt−1

]
≤ Loss(t−1)(a(t−1);S, S′, α) e−(α−1)

∑t
j=1 ρje(α−1)ρt

= Loss(t−1)(a(t−1);S, S′, α) e−(α−1)
∑t−1

j=1 ρj

= Mt−1,

where the third equality uses the fact that (ρj)
t
j=1 ∈ Γt−1, and the inequality applies the definition of

ρt. Therefore, by applying iterated expectations, we can conclude

E[Mk] = Ea(k)∼A(k)(S′)

[
Loss(k)

(
a(k);S, S′, α

)
e−(α−1)

∑k
j=1 ρj

]
≤ E[M0] = 1.

Since
∑k
j=1 ρj ≤ B by assumption, this inequality implies

Ea(k)∼A(k)(S′)

[
Loss(k)

(
a(k);S, S′, α

)]
≤ e(α−1)B .

After normalizing, we get

Dα

(
A(k)(S),A(k)(S′)

)
=

1

α− 1
log Ea(k)∼A(k)(S′)

[
Loss(k)

(
a(k);S, S′, α

)]
≤ B.

The same argument can be used to bound the other direction of the divergence. Since the choice of
(S, S′) was arbitrary, we can conclude sup(S,S′)∈S D

↔
α

(
A(k)(S),A(k)(S′)

)
≤ B, as desired.

1All algorithms we are considering, if not discrete, induce a density w.r.t. the Lebesgue measure. For such
instances, replacing expressions such as Pr

[
A(t)(S) = a

]
with the density of A(t)(S) at a gives the analysis

in the continuous case.
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A.2 Proof of Corollary 3.2

By Theorem 3.1,
∑k
t=1 ρ

(i)
t ≤ B implies that

D↔α

(
A(k)(S)‖A(k)(S−i)

)
≤ B.

Since this holds for all S ∈ Xn and i ∈ [n], we conclude that A(k) is (α,B)-Rényi differentially
private.

A.3 Proof of Theorem 4.3

The only difference between Theorem 3.1 and this theorem is that a privacy filter halts at a random
round, meaning the length of the output is random rather than fixed. Therefore, in this proof we
formalize the fact that Theorem 3.1 is valid even under adaptive stopping.

Fix any (S1, S2). By the argument in Theorem 3.1, Mt
def
= Loss(t)(a(t);S1, S2, α)e−(α−1)

∑t
j=1 ρj ,

where a(t) ∼ A(t)(S2), is a supermartingale with respect to Γt = σ(a(t)).

Let T be the last round before Algorithm 1 halts; that is,

T = min {t : Fα,B(ρ1, . . . , ρt+1) = HALT} ∧N.

Note that T is a stopping time with respect to Γt, that is {T = t} ∈ Γt, due to the fact that ρt+1 ∈ Γt.
Since T is almost surely bounded by construction, we can apply the optional stopping theorem for
supermartingales to get

E[MT ] = Ea(T )∼A(T )(S2)

[
Loss(T )

(
a(T );S1, S2, α

)
e−(α−1)

∑T
j=1 ρj

]
≤ E[M0] = 1.

By definition of the RDP filter, we know that
∑T
j=1 ρj ≤ B almost surely; otherwise the filter would

have halted earlier. Thus, we can conclude

Ea(T )∼A(T )(S2)

[
Loss(T )

(
a(T );S1, S2, α

)
e−(α−1)B

]
≤ 1.

After rearranging and normalizing, this implies

Dα

(
A(T )(S1),A(T )(S2)

)
=

1

α− 1
log Ea(T )∼A(T )(S2)

[
Loss(T )

(
a(T );S1, S2, α

)]
≤ B.

The same argument can be used to bound the other direction of the divergence. Therefore, Fα,B is a
valid RDP filter.

A.4 Proof of Theorem 4.5

Denote by Afilt
t the subroutine given by the t-th step of the individual filtering algorithm; that is,

at = Afilt
t (a1, . . . , at−1, S). Note that Afilt

t is not equal to At. By analogy with the notation A(t), we
also let Afilt(t)(·) def

= (Afilt
1 (·),Afilt

2 (Afilt
1 (·), ·), . . . ,Afilt

t (Afilt
1 (·), . . . , ·)).

We argue that the privacy loss of pointXi in round t, conditional on the past reports, is upper bounded
by ρ(i)

t (after ρ(i)
t has been updated):

max
{
Ea(t)∼Afilt(t)(S−i)

[
Lossfilt

t (a(t);S, S−i, α)
∣∣∣ a(t−1)

]
,Ea(t)∼Afilt(t)(S)

[
Lossfilt

t (a(t);S−i, S, α)
∣∣∣ a(t−1)

]}
≤ e(α−1)ρ

(i)
t ,

where Lossfilt
t (a(t);S, S′, α) =

(
Pr[Afilt

t (a1,...,at−1,S)=at]
Pr[Afilt

t (a1,...,at−1,S′)=at]

)α
. Similarly, we adopt the definition of

Losst from the proof of Theorem 3.1.

To do so, we reason about the active set of points at time t when the input to adaptive composition
is S, and when the input is S−i. Denote by St the active set given input S, and by S(i)

t the active
set given input S−i. Observe that, conditional on a1, . . . , at−1, we have (St, S

(i)
t ) ∈ S(Xi, n); that
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is, St and S(i)
t differ only in the presence on Xi. This follows because the sequence (ρ

(i)
j )tj=1 is

measurable with respect to a1, . . . , at−1, and whether pointXi is active at time t is in turn determined
based only on (ρ

(i)
j )tj=1. In particular, whether any given point is active does not depend on the rest

of the input dataset (S or S−i), given a1, . . . , at−1. Therefore, if Xi 6∈ St, then Xi loses no privacy
in round t, because Afilt

t (a1, . . . , at−1, S)
d
= Afilt

t (a1, . . . , at−1, S
−i), conditional on a1, . . . , at−1.

On the other hand, if Xi ∈ St, then its privacy loss can be bounded as

max
{

E
a(t)∼Afilt(t)(S−i)

[
Lossfilt

t (a(t);S, S−i, α)
∣∣∣ a(t−1)

]
, E
a(t)∼Afilt(t)(S)

[
Lossfilt

t (a(t);S−i, S, α)
∣∣∣ a(t−1)

]}
≤ max

{
E

a(t)∼Afilt(t)(S−i)

[
Losst(a

(t);St, S
(i)
t , α)

∣∣∣ a(t−1)
]
,

E
a(t)∼Afilt(t)(S)

[
Losst(a

(t);S
(i)
t , St, α)

∣∣∣ a(t−1)
]}

≤ sup
(S1,S2)∈S(Xi,n)

max
{

E
a(t)∼A(t)(S2)

[
Losst(a

(t);S1, S2, α)
∣∣∣ a(t−1)

]
,

E
a(t)∼A(t)(S1)

[
Losst(a

(t);S2, S1, α)
∣∣∣ a(t−1)

]}
≤ e(α−1)ρ

(i)
t .

With this, we have showed that ρ(i)
t is a valid estimate of the privacy loss of Xi, for all i ∈ [n].

Now we argue that, at the end of every round t (after ρ(i)
t has been updated), Fα,B(ρ

(i)
1 , . . . , ρ

(i)
t ) =

CONT for all i ∈ [n]. This follows by induction. For t = 1, this is clearly true because
Fα,B(0) = CONT. Now assume it is true at time t − 1. Then, at time t, the filter clearly
continues for all Xi ∈ St simply by definition of St. If Xi 6∈ St, then Fα,B(ρ

(i)
1 , . . . , ρ

(i)
t ) =

Fα,B(ρ
(i)
1 , . . . , ρ

(i)
t−1, 0) = Fα,B(ρ

(i)
1 , . . . , ρ

(i)
t−1) = CONT. Therefore, we conclude that at the end

of every round t ∈ [k] and for all i ∈ [n], the filter would output CONT. By the validity of Fα,B , we
know that Fα,B(ρ

(i)
1 , . . . , ρ

(i)
t ) = CONT implies

D↔α

(
A(t)(S)‖A(t)(S−i)

)
≤ B,

and since this holds for all S and all i ∈ [n], we conclude that Algorithm 2 is (α,B)-RDP.

A.5 Proof of Theorem 4.8

By conversions between DP and zCDP [4], we know that εt-DP implies 1
2ε

2
t -zCDP, that is (α, 1

2ε
2
tα)-

RDP, for all α ≥ 1. Thus, a Rényi filter with parameters (α, αB?) would stop once 1
2

∑k
t=1 ε

2
t > B?.

Since this condition is independent of α, the output of adaptive composition with this stopping
condition satisfies (α,B?)-RDP for all α ≥ 1. This guarantee is equivalent to B?-zCDP, and by
assumption this implies (εg, δg)-DP as well.

By Fact 2.4, B?-zCDP implies
(

minα αB
? +

log(1/δg)
α−1 , δg

)
-DP. Optimizing over α and solving for

B? such that minα αB
? +

log(1/δg)
α−1 = εg yields B? =

(
−
√

log(1/δg) +
√

log(1/δg) + εg

)2

.

A.6 Proof of Proposition 5.1

By properties of the Gaussian mechanism, the individual RDP parameters of order α are ρ(i)
t =

α‖ḡt(Xi)‖22
2σ2 . Therefore, by properties of the individual filter, as long as

α
∑t

j=1 ‖ḡj(Xi)‖22
2σ2 ≤ B, the

output is (α,B)-individually RDP for Xi. The clipping step ensures this inequality holds with
B = αBnorm

2σ2 for all t ∈ N and for all data points Xi, and therefore the algorithm is
(
α, αBnorm

2σ2

)
-RDP.

B Tracking privacy loss via multiple filters

A privacy filter is meant to shape the course of adaptive composition by limiting the incurred privacy
loss. In practice, one might want to track the privacy loss incurred so far without constraining the
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analyses. Rogers et al. [29] formalize this desideratum in terms of a privacy odometer. We provide
an alternative approach to this task, by observing that a valid Rényi privacy filter can be utilized to
design an approximate tracker of the privacy loss.

We denote by ρt the RDP parameter of order α ofAt conditional on the past reports, as in equation (1).

Algorithm 4 Tracking privacy loss via multiple privacy filters
input :dataset S ∈ Xn, discretization error ∆ > 0, sequence of algorithms (At)kt=1

Initialize tracker O1 = ∆, set Trestart = 1
for t = 1, 2, . . . , k do

Compute at = At(a1, . . . , at−1, S), set Ot ← Ot−1

if Fα,∆(ρTrestart
, . . . , ρt) = HALT then

Augment tracker Ot ← Ot + ∆, set Trestart ← t
end

end

In words, every time an RDP filter with privacy budget ∆ halts, we restart a new filter and augment
the tracker by ∆. Here, ∆ > 0 is the discretization error of the tracker. An important question here is
how one should go about choosing ∆. If ∆ is large, then the tracker is very coarse and inaccurate.
On the other end, if ∆ is small, the filters might halt often, and whenever a filter halts we effectively
make the upper bound on the tracker a bit looser. Roughly speaking, if we restart at time t we lose a
factor of ∆−

∑t−1
j=Trestart

ρj , where Trestart is the last restart time before t.

We state the guarantees of Algorithm 4. For all j ∈ N, let Tj denote the step before the j-th time
a filter restarts in Algorithm 4. More formally, we can define the sequence {Tj}j recursively as2

Tj = min
{
k,min

{
t > Tj−1 : Fα,∆(ρTj−1+1, . . . , ρt+1) = HALT

}}
, where T0 = 0.

Proposition B.1. Fix m ∈ N, and suppose that ρj ≤ ∆ almost surely, for all j ∈ N. Then, the
tracker in Algorithm 4 satisfies sup(S,S′)∈S D

↔
α

(
A(Tm)(S)‖A(Tm)(S′)

)
≤ m∆ = OTm

.

Proof. The algorithm A(Tm) can be written as an adaptive composition of m algorithms, each of
which outputs (aTj−1+1, . . . , aTj ), j ∈ {1, . . . ,m}. Therefore, by the standard adaptive composition
theorem for RDP, it suffices to argue that each of these m algorithms is RDP, conditional on the
outputs of the previous algorithms. Since Fα,∆ is a valid Rényi privacy filter by Theorem 4.3, each
of these m algorithms is indeed (α,∆)-RDP, which completes the proof.

Notice that Proposition B.1 immediately implies that Algorithm 4 is also valid for any T such that
Tm−1 ≤ T ≤ Tm, since (a1, . . . , aT ) is a post-processing of (a1, . . . , aTm

).

Proposition B.1 allows designing a personalized tracker O(i)
t for all Xi ∈ S. The update is analogous

to that of Algorithm 4, the difference being that a separate filter is applied to the individual privacy
parameters of each point. Naturally, each point has its own times of filter exceedances, {T (i)

j }j .
Notice that the values O(i)

t are sensitive, as they depend on the value of Xi. Importantly, they can be
disclosed to the respective user without violating the other users’ privacy; O(i)

t depends on Xi, but it
does not depend on the other data points (other than through a(t−1), which is reported privately).

C Experimental details

We train a convolutional neural network using the implementation of private gradient descent from
the Opacus PyTorch library [33]. We use the same architecture as in the MNIST example of the
library. Since we run batch gradient descent and not SGD as in the library example, we tune all
hyperparameters from scratch. Each step of gradient descent (which is computed using the whole
dataset) took about 22 seconds on average on a Macbook Pro from 2019.

2We think of the minimum of an empty set as∞.
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For ε = 0.3, we set σ = 170, C = 10, ηt ≡ η = 0.2, and k = 112 for private GD without
filtering. To achieve the same privacy guarantees using private GD with individual filtering, we set
Bnorm = kC2 = 11200.

For ε = 0.5, we set σ = 130, C = 15, ηt ≡ η = 0.15, and k = 180 for private GD without filtering.
For GD with individual filtering, we set Bnorm = kC2 = 40500.

For ε = 1.0, we set σ = 100, C = 10, ηt ≡ η = 0.2, and k = 420 for private GD without filtering.
This parameter configuration achieves accuracy of (96.25 ± 0.23)%. When private GD achieves
such high accuracies, we observe little benefit to individual filtering. This is due to the fact that the
proportion of points filtered out right after round bBnorm/C

2c is comparable to the proportion of
points yet misclassified, suggesting that few misclassified points remain in the active pool. Therefore,
we set Bnorm = kC2 = 42000, and kmax = k.

To apply the individual filter, after kC2 steps we continue running gradient descent while adaptively
dropping points when their privacy budget is exhausted. In particular, starting with step bkC2c, we
query the training accuracy 8 times in intervals of 5 steps (hence, the total number of additional steps
is 35). As the final model we take the iterate when the queried training accuracy is highest.

Note that, technically, these additional queries should be reported in a privacy-preserving manner to
formally ensure DP. However, these are simple linear queries that can be reported with high accuracy
at little additional privacy cost. For ε ∈ {0.3, 0.5}, it suffices to report the training accuracy with
1% resolution. Eight such reports require a smaller privacy cost than, say, one or two additional
optimization steps. For ε = 1.0 it suffices to report the accuracy with 0.1% resolution since the
accuracy improvements after kC2 steps are generally smaller for large ε. The additional reports for
ε = 1.0 have the cost of a few dozen extra steps. In either case, the privacy cost of the additional
reports is less than 1% of the intended privacy parameter.

In the suboptimal regime, we increase C by a factor of 1.5 for ε ∈ {0.3, 0.5} and accordingly
decrease σ by the same factor. The number of steps is similarly decreased by a factor of 1.52. We do
a similar adjustment for ε = 1.0, where we increase C by a factor of 2. These results are shown in
the main body of the paper.

Here, we perform similar experiments where we decrease σ by a factor of 1.5 for ε ∈ {0.3, 0.5} and
by a factor of 2 for ε = 1.0. We adjust the number of optimization steps accordingly, and keep all
other hyperparameters as in the tuned regime. The results are shown below. As before, we observe
benefits to performing additional steps, especially for small values of ε.

ε GD (suboptimal noise scaling) GD (suboptimal noise scaling) w/ filtering
0.3 (86.88± 2.28)% (91.20± 0.73)%
0.5 (92.37± 1.32)% (93.86± 0.39)%
1.0 (94.35± 0.23)% (94.50± 0.14)%
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