
A TAAC pseudo code

Algorithm 1: Temporally abstract actor-critic
Input: θ, φ, λ (learning rate), and τ (moving average rate)
Initialize: Randomize θ and φ, θ̄ ← θ, D ← ∅
for each training iteration do

for each rollout step do
â ∼ πφ(â|s, a−) . first-stage policy
b ∼ β∗b (Eq. 10) . second-stage policy
a← a− if b = 0 else a← â
s′ ∼ P(s′|s, a)
D ← D

⋃
{(a−, s, b, a, s′, r(s, a, s′))}

(s, a−)← (s′, a)
end
for each gradient step do

θ ← θ − λ∆θ (gradient of Eq. 3 with the compare-through T πta
) . policy evaluation

φ← φ+ λ∆φ (Eq. 7) . policy improvement
α← α− λ∆α (gradient of Eq. 8, α = α′, α′′) . α adjustment
θ̄ ← θ̄ + τ(θ − θ̄) . target network update

end
end
Output: θ and φ

B State value of the two-stage policy

Let P (a|s, â, a−) , β0δ(a− a−) + β1δ(a− â), we have

V π
ta

θ (s|a−) =

∫
a

πta(a|s, a−)Qθ(s, a)da

=

∫
a

[∫
â

πφ(â|s, a−)P (a|s, â, a−)dâ
]
Qθ(s, a)da

=

∫
â

πφ(â|s, a−)

[∫
a

P (a|s, â, a−)Qθ(s, a)da
]

dâ

=

∫
â

πφ(â|s, a−)
[
β0Qθ(s, a

−) + β1Qθ(s, â)
]

dâ

= E
â∼πφ,b∼β

[
(1− b)Qθ(s, a−) + bQθ(s, â)

]
.

C Evaluating a policy by taking its (approximate) mode

An entropy-augmented training objective always maintains a pre-defined entropy level of the trained
policy for exploration (Haarnoja et al., 2018). This results in stochastic behaviors and potentially
lower scores if we measure the policy’s rollout trajectories. To address this randomness issue and
reflect a method’s actual performance, in the experiments we evaluate a method and compute its
unnormalized scores by taking the (approximate) mode of its policy distribution. Following Haarnoja
et al. (2018), we use a squashed diagonal Gaussian to represent a continuous policy for every
comparison method. Specifically, when sampling an action, we first sample from the unsquashed
Gaussian z ∼ N (µ, σ2), and then apply the squashing function x = a · tanh(z) + b to respect
the action boundaries [b − a, b + a]. However, because of the squashing effect, it’s difficult to
exactly obtain the mode of this distribution. So in practice, to approximately get the mode, we
first get the mode µ from the unsquashed Gaussian, and then directly apply the squashing function
µ̃ = a · tanh(µ) + b. This µ̃ is treated as the (approximate) mode of the Gaussian policy.

When evaluating TAAC, in the second stage of its two-stage policy, we also take the mode of the
switching policy distribution β as arg maxb∈{0,1} βb.

14

D Deriving the actor gradient

To maximize the objective in Eq. 6 with respect to β, one can parameterize β and use stochastic
gradient ascent to adjust its parameters, similar to Neunert et al. (2020). However, for every sampled
(s, a−, â), there is in fact a closed-form solution for the inner expectation over b ∼ β.

In general, suppose that we have N values X(i) ∈ R, i = 0, . . . , N − 1. We want to find a discrete
distribution P by the objective

max
P

N−1∑
i=0

P (i)(X(i)− α logP (i)),

s.t.

N−1∑
i=0

P (i) = 1,

where α > 0. Using a Lagrangian multiplier λ, we convert it to an unconstrained optimization
problem:

max
P,λ

N−1∑
i=0

P (i)(X(i)− α logP (i)) + λ(

N−1∑
i=0

P (i)− 1).

Taking the derivative w.r.t. each P (i) and setting it to 0, we have

P ∗(i) = exp

(
X(i) + λ− α

α

)
∝ exp

(
X(i)

α

)
,

where λ is calculated to ensure
∑N−1
i=0 P ∗(i) = 1. Furthermore, let Z =

∑
i exp(X(i)

α) be the
normalizer. The resulting maximized objective is

N−1∑
i=0

P ∗(i)(X(i)− α(
X(i)

α
− logZ)) =

N−1∑
i=0

P ∗(i)α logZ = α logZ. (9)

To derive β∗ for Eq. 6 given any (s, a−) ∼ D, â ∼ πφ, we set X(0) = Qθ(s, a
−) and X(1) =

Qθ(s, â). Then β∗ can be found as below:

β∗b ∝ exp

(
(1− b)Qθ(s, a−) + bQθ(s, â)

α

)
. (10)

Since this is a global maximum solution given any sampled (s, a−, â), β∗ is guaranteed to be no
worse than any parameterized policy. Putting β∗ back into Eq. 6, we are able to simplify V π

ta

θ
(referring to Eq. 9) as

E
â∼πφ

α

[
log

1∑
b=0

exp

(
(1− b)Qθ(s, a−) + bQθ(s, â)

α

)
− log πφ(â|s, a−)

]
. (11)

Then we apply the re-parameterization trick â = fφ(ε, s, a−), ε ∼ N (0, I). Approximating the
gradient w.r.t. φ with a single sample of ε, we get Eq. 7.

E Multi-step actor gradient

Let us first consider on-policy training as a simplified setting when computing the actor gradient
for our two-stage policy πta. Suppose the unroll length is M , which means each time we unroll
the current policy πta for M steps, do a gradient update with the collected data, and unroll with
the updated policy for the next M steps, and so on. In this case, the rollout computational graph
is illustrated in Figure 6. Let β∗b (t + m) = β∗(b|st+m, ât+m, a−t+m) be the optimal β policy at
step t+m and define wt+m = β∗1(t)

∏m
m′=1 β

∗
0(t+m′) to be the probability of V π

ta

θ (st+m|a−t+m)
adopting ât via action repetition. The overall V value over the M steps to be maximized is

V ,
M−1∑
m=0

V π
ta

θ (st+m|a−t+m).

15

...

...

...

...

Figure 6: Rollout computational graph of πta starting from step t. Rectangles denote negative losses
to maximize. The red edges denote the gradient paths (reversed direction) for ât when maximizing
the sum of all V values:

∑M−1
m=0 V

πta

θ (st+m|a−t+m).

Ignoring the entropy term, its gradient w.r.t. ât is

∂V
∂ât

=

M−1∑
m=0

wt+m
∂Qθ(st+m, ât)

∂ât
, (12)

where the weights wt+m correspond to different red partial paths staring from ât and ending at
different negative losses in Figure 6.

The above computational graph assumes that when unrolling the current πta, we are able to interact
with the environment to obtain states {st+1, st+2, . . .}. This is true for on-policy training but not for
off-policy training. In the latter case, if we directly use the sampled sequence {st, st+1, st+2, . . .}
from the replay buffer in Eq. 12, the resulting gradient will suffer from off-policyness. Thus in
practice, we truncate the gradient to the first step, ∂V∂ât ≈ wt

∂Qθ(st,ât)
∂ât

. We believe that this truncation
is a simple but good approximation, for the two reasons:

a) Because Eq. 12 is defined for a sampled state-action trajectory, ∂Qθ(st+m,ât)
∂ât

has a much higher
sample variance as m increases.

b) The weights wt+m decrease exponentially so the influence of ât on future ∂Qθ
∂ât

quickly decays.

Empirically, the truncated one-step gradient yields good results in our experiments.

F Different temperatures for β and πφ

We use two different temperatures α′ and α′′ for weighting the entropy of β and πφ respectively, to
have a finer control of their entropy terms. Accordingly, the objective in Eq. 6 changes to

E
(s,a−)∼D,â∼πφ,b∼β

[
(1− b)Qθ(s, a−) + bQθ(s, â)− α′ log βb − α′′ log πφ(â|s, a−)

]
.

Revisiting Section 4.3, several key formulas are updated to reflect this change. Eq. 10 is updated to

β∗b ∝ exp

(
(1− b)Qθ(s, a−) + bQθ(s, â)

α′

)
. (13)

Eq. 7 is updated to

∆φ ,

(
β∗1
∂Qθ(s, â)

∂â
− α′′ ∂ log πφ(â|s, a−)

∂â

)
∂fφ
∂φ
− α′′ ∂ log πφ(â|s, a−)

∂φ
.

G SAC-Krep

Following Delalleau et al. (2020) we extend the original SAC algorithm to support a hybrid of discrete
and continuous actions 2, to implement the baseline SAC-Krep (Sharma et al., 2017; Biedenkapp

2An implementation of SAC with hybrid actions is available at https://github.com/HorizonRobotics/
alf/blob/pytorch/alf/algorithms/sac_algorithm.py.

16

https://github.com/HorizonRobotics/alf/blob/pytorch/alf/algorithms/sac_algorithm.py
https://github.com/HorizonRobotics/alf/blob/pytorch/alf/algorithms/sac_algorithm.py

et al., 2021) in Section 5.2. We denote the discrete and continuous actions by b (1 ≤ b ≤ B) and
a, respectively. Let the joint policy be π(a, b|s) = πφ(a|s)π(b|s, a), namely, the joint policy is
decomposed in a way that it outputs a continuous action, followed by a discrete action conditioned
on that continuous action. Let Qθ(s, a, b) be the parameterized expected return of taking action (a, b)
at state s. Then the entropy-augmented state value is computed as

V πθ (s) = E
(a,b)∼π

[
Qθ(s, a, b)− α′′ log πφ(a|s)− α′ log π(b|s, a)

]
.

Similar to Section 4.3, we can derive an optimal closed-form π∗(b|s, a) given any (s, a), and then
optimize the continuous policy πφ(a|s) similarly to Eq. 7.

For policy evaluation, in the case of SAC-Krep, b represents how many steps a will be executed
without being interrupted. Thus the objective of learning Qθ is

min
θ

E
(st,at,bt,st+bt)∼D

[Qθ(st, at, bt)− BπQθ̄(st, at, bt)]
2
,

with BπQθ̄(st, at, bt) =

t+bt−1∑
t′=t

γt
′−tr(st′ , at′ , st′+1) + γbtV πθ̄ (st+bt),

Namely, the Q value is bootstrapped by b steps. We instantiate the Q network by having the continuous
action a as an input in addition to s, and let the network output B heads, each representing Q(s, a, b).

H SAC-Hybrid

Following H-MPO (Neunert et al., 2020) we define a factored policy of a newly sampled continuous
action â and a binary switching action b:

π((â, b)|s, a−) = πφa(â|s, a−)πφb(b|s, a−),

where the observation consists of state s and previous action a−. Note that a big difference between
this formulation with either TAAC or SAC-Krep (Appendix G) is that â and b are independent. That
is, the decision of “repeat-or-act“ is made in parallel with the new action. The entropy-augmented
state value is computed as

V πθ ((s, a−)) = E
â∼πφa ,b∼πφb

[
Qθ((s, a

−), (â, b))− α′′ log πφa(â|s, a−)− α′ log πφb(b|s, a−)
]
,

and φa and φb can be optimized by gradient ascent. Finally, the Bellman operator for policy evaluation
is

BπQθ̄((s, a−), (â, b)) = r(s, a, s′) + γV πθ̄ ((s′, a)),

where a = (1−b)a−+bâ is the action output to the environment. Similar to SAC-Krep, to instantiate
the Q network, we use (s, a−, â) as the inputs and let the network output two heads for b = 0 and
b = 1. Compared to TAAC’s Q formulation (Eq. 3), clearly SAC-Hybrid’s Q has to handle more
input/output mappings for the same transition dynamics, which makes the policy evaluation less
efficient.

I Task details

All 14 tasks are wrapped by the OpenAI Gym (Brockman et al., 2016) interface. All of them, except
Town01, are very standard and follow their original definitions. The environment of Town01 is
customized by us with various map options using a base map called “Town01” provided by the
CARLA simulator (Dosovitskiy et al., 2017), which we will describe in detail later. We always scale
the action space of every task to [−1, 1]A, where A is the action dimensionality defined by the task
environment. The observation space of each task is unchanged, except for Town01. Note that we use
MuJoCo 2.0 (Todorov et al., 2012) for simulating Locomotion and Manipulation 3. A summary of
the tasks is in Table 5.

3A different version of MuJoCo may result in different observations, rewards, and incomparable environments;
see https://github.com/openai/gym/issues/1541.

17

https://github.com/openai/gym/issues/1541

Category Task Gym environment name Observation space Action space Reward
normalization

SimpleControl
MountainCarContinuous MountainCarContinuous-v0 R2 [−1, 1]1

[−5, 5]LunarLanderContinuous LunarLanderContinuous-v2 R8 [−1, 1]2

InvertedDoublePendulum InvertedDoublePendulum-v2 R11 [−1, 1]1

Locomotion

Hopper Hopper-v2 R11 [−1, 1]3

×Ant Ant-v2 R111 [−1, 1]8

Walker2d Walker2d-v2 R17 [−1, 1]6HalfCheetah HalfCheetah-v2

Terrain BipedalWalker BipedalWalker-v2 R24 [−1, 1]4 [−1, 1]BipedalWalkerHardcore BipedalWalkerHardcore-v2

Manipulation

FetchReach FetchReach-v1 R13

[−1, 1]4 [−1, 1]
FetchPush FetchPush-v1

R28FetchSlide FetchSlide-v1
FetchPickAndPlace FetchPickAndPlace-v1

Driving Town01 Town01

“camera”: R128×64×3,

[−1, 1]4 [−5, 5]

“radar”: R200×4,
“collision”: R4×3,
“IMU”: R7,
“goal”: R3,
“velocity”: R3,
“navigation”: R8×3

“prev action”: [−1, 1]4

Table 5: The 14 tasks with their environment details. Note that reward clipping is performed after
reward normalization (if applied). Except Town01, the input observation is a flattened vector.

I.1 Reward normalization

We normalize each task’s reward using a normalizer that maintains adaptive exponential moving
averages of the reward and its second moment. Specifically, let ξ be a pre-defined update speed
(ξ = 8 across all experiments), and L be the total number of times the normalizer statistics has been
updated so far, then for the incoming reward r, the mean m1 and second moment m2 are updated as

ηL = ξ
L+ξ ,

m1 ← (1− ηL)m1 + ηLr,
m2 ← (1− ηL)m2 + ηLr

2,
L ← L+ 1,

with L = m1 = m2 = 0 as the initialized values. Basically, the moving average rate ηL decreases
according to 1

L . With this averaging strategy, one can show that by step L, the weight for the reward
encountered at step l ≤ L is roughly in proportional to (lL)(ξ−1). Intuitively, as L increases, the
effective averaging window expands because the averaging weights are computed by the changing
ratio l

L . Finally, given any reward r′, it is normalized as

min(max(
r′ −m1√
m2 −m2

1

,−c), c),

where c > 0 is a constant set to either 1 or 5, according to which value produces better performance
for SAC on a task. We find that the suite of Locomotion tasks is extremely sensitive to reward
definition, and thus do not apply reward normalization to it. The normalizer statistics is updated only
when rewards are sampled from the replay buffer. Note that for a task, the same reward normalization
(if applied) is used by all 8 evaluated methods with no discrimination.

I.2 Town01

Our Town01 task is based on the “Town01” map (Dosovitskiy et al., 2017) that consists of 12 T-
junctions (Figure 7). The map size is roughly 400× 400 m2. At the beginning of each episode, the
vehicle is first randomly spawned at a lane location. Then a random waypoint is selected on the map
and is set as the destination for the vehicle. The maximal episode length (time limit) is computed as

Nframes =
Lroute

Smin ·∆t
where Lroute is the shortest route length calculated by the simulator, Smin is the average minimal
speed expected for a meaningful driving, and ∆t is the simulation step time. We set Smin = 5m/s
and ∆t = 0.1s through the experiment. An episode can terminate early if the vehicle reaches the

18

destination, or gets stuck at collision for over a certain amount of time. We customize the map to
include 20 other vehicles and 20 pedestrians that are programmed by the simulator’s built-in AI to act
in the scenario. We use the default weather type and set the day length to 1000 seconds.

Figure 7: The layout of the
map “Town01” (picture from
https://carla.readthedocs.io).
The actual map is filled with other
objects such as buildings, trees, pedes-
trians, and traffic lights to make it a
realistic scene of a small town.

The action space of the vehicle is 4 dimensional: (“throt-
tle”, “steer”, “brake”, “reverse”). We customize the obser-
vation space to include 8 different multi-modal inputs:

1. “camera”: a monocular RGB image (128× 64×
3) that shows the road condition in front of the
vehicle;

2. “radar”: an array of 200 radar points, where each
point is represented by a 4D vector;

3. “collision”: an array of 4 collisions, where each
collision is represented by a 3D vector;

4. “IMU”: a 7D IMU measurement vector of the
vehicle’s status;

5. “goal”: a 3D vector indicating the destination
location;

6. “velocity”: the velocity of the vehicle relative to
its own coordinate system;

7. “navigation”: an array of 8 future waypoints on
the current navigation route, each waypoint is a
3D vector in the coordinate system of the vehicle;

8. “prev action”: the action taken by the vehicle at
the previous time step.

Since the observation space of Town01 is huge, we apply normalization to all input sensors for more
efficient training. We normalize each input sensor vector in a similar way of reward normalization.
After normalization, the vector is element-wisely clipped to [−5, 5].

To train the vehicle, we define the task reward by 4 major components:

1. “distance”: a shaped reward that measures how much closer the vehicle is to the next
navigation waypoint after one time step;

2. “collision”: if a collision is detected, then the vehicle gets a reward of −min(20, 0.5 ·
max(0, R̄)), where R̄ is the accumulated episode reward so far;

3. “red light”: if a red light violation is detected, then the vehicle gets a reward of
−min(20, 0.3 ·max(0, R̄)), where R̄ is the accumulated episode reward so far;

4. “goal”: the vehicle gets a reward of 100 for reaching the destination.

The overall reward at a time step is computed as the sum of the above 4 rewards. This reward
definition ensures that SAC obtains reasonable performance in this task.

I.3 Network structure

The model architecture of all compared methods is identical: each trains an actor network and a critic
network 4. Following Fujimoto et al. (2018), the critic network utilizes two replicas to reduce positive
bias in the Q function. We make sure that the actor and critic network always have the same structure
(but with different weights) except for the final output layer.

Below we review the network structure designed for each task category, shared between the actor and
critic network, and shared among all 8 evaluated methods. No additional network or layer is owned
exclusively by any method.

− SimpleControl: two hidden layers, each of size 256.
− Locomotion: two hidden layers, each of size 256.
− Terrain: two hidden layers, each of size 256.
− Manipulation: three hidden layers, each of size 256.

4SAC-Krep actually has an extra discrete Q network that models the values of repeating 1, 2, . . . , N steps. It
has the same structure with the critic network for the continuous action, but with multiple output heads.

19

https://carla.readthedocs.io

Hyperparameter SimpleControl Terrain Driving Manipulation Locomotion
(Plappert et al., 2018) (Haarnoja et al., 2018)

Learning rate 10−4 5× 10−4 10−3 3× 10−4

Reward discount 0.99 0.98
Number of parallel actors for rollout 1 32 4 38
Replay buffer size per actor 105 2× 104 106

Mini-batch size 256 4096 64 4864
Entropy target δ (Eq. 14) 0.1 0.2 0.184
Target Q smoothing coefficient 5× 10−3 5× 10−2

Target Q update interval 1 40
Training interval (env frames) per actor 1 5 10 50/40
Total environment frames for rollout 105 5× 106 107 107 106

Table 6: The hyperparameter values of SAC on 5 task categories. The two shaded columns Manipu-
lation and Locomotion use exactly the same hyperparameter values from the original papers, and we
list them for completeness. An empty cell in the table means using the same hyperparameter value
as the corresponding one of SimpleControl. The training interval of Manipulation (50/40) means
updating models 40 times in a row for every 50 environment steps (per actor), which also follows the
convention set by Plappert et al. (2018).

− Driving: We use an encoder to combine multi-modal sensor inputs. The encoder uses a mini
ResNet (He et al., 2016) of 6 bottleneck blocks (without BatchNorm) to encode an RGB image
into a latent embedding of size 256, where each bottleneck block has a kernel size of 3, filters of
(64, 32, 64), and a stride of 2 (odd block) or 1 (even block). The encoder then flattens any other
input and projects it to a latent embedding of size 256. All the latent embeddings are averaged
and input to an FC layer of size 256 to yield a single encoded vector that summarizes the input
sensors. Finally, the actor/critic network is created with one hidden layer of size 256, with this
common encoded vector as input. We detach the gradient when inputting the encoded vector to
the actor network, and only allow the critic network to learn it.

We use ReLU for all hidden activations.

J Experiment details

J.1 Entropy target calculation

When computing an entropy target, instead of directly specifying a floating number which is usually
unintuitive, we calculate it by an alternative parameter δ. If the action space is continuous, then
suppose that it has K dimensions, and every dimension is bounded by [m,M]. We assume the
entropy target to be the entropy of a continuous distribution whose probability uniformly concentrates
on a slice of the support δ(M −m) with P = 1

δ(M−m) . Thus the entropy target is calculated as

−K
∫ M

m

P (a) logP (a)da = −K log
1

δ(M −m)
= K [log δ + log(M −m)] . (14)

For example, by this definition, an entropy target of -1 per dimension used by Haarnoja et al. (2018)
is equivalent to setting δ = 0.184 here with M = 1 and m = −1. If the action space is discrete with
K > 1 entries, we assume the entropy target to be the entropy of a discrete distribution that has one
entry of probability 1− δ, with δ uniformly distributed over the other K− 1 entries. Thus the entropy
target is calculated as

−δ log
δ

K − 1
− (1− δ) log(1− δ). (15)

We find setting δ instead of the direct entropy target is always more intuitive in practice.

J.2 Hyperparameters

We use Adam (Kingma and Ba, 2015) with β1 = 0.9, β2 = 0.999, and ε = 10−7 to train each
method. Below we first describe the hyperparameter values of the vanilla SAC baseline. These values
are selected by referring to either previously published ones or our typical options for SAC runs.
For Locomotion and Manipulation, we directly adopt the hyperparameter values from the original
papers. Among the remaining 3 task categories (SimpleControl, Terrain, and Driving), several

20

hyperparameter values vary due to task differences (Table 6). This variance also serves to test if our
comparison result generalizes under different training settings.

The hyperparameter values of the other 7 evaluated methods are the same as shown in Table 6, but
with extra hyperparameters if required by a method. Note that for open-loop action repetition methods
like SAC-Nrep and SAC-Krep, the counting of environment frames includes frames generated by
repeated actions. For the repeating hyperparameterN in Section 5.2, we set it to 3 for SimpleControl,
Locomotion and Manipulation, and to 5 for Terrain and Driving. For SAC-EZ, we set µ of the zeta
distribution to 2 following Dabney et al. (2021), and linearly decay ε from 1 to 0.01 over the course
of first 1

10 of the training. ε is then kept to be 0.01 till the end of training. Finally, for SAC-Hybrid,
TAAC-1td, TAAC-Ntd, and TAAC, the discrete action requires its own entropy target (Appendix F)
computed by Eq. 15. We set δ in that equation to 0.05 in all task categories. In Locomotion, we clip
the advantage Qθ(s, â)−Qθ(s, a−) to [0,+∞) when computing β∗ for TAAC-1td, TAAC-Ntd, and
TAAC. This clipping biases the agent towards sampling new actions.

J.3 Computational resources

The required computational resources for doing all our experiments are moderate. We define a job
group as a (method, task_category) pair, e.g., (TAAC, Locomotion). We used three RTX 2080Ti
GPUs at the same time for training the jobs within one group simultaneously. We evenly distributed a
job group (each job in the group represents a (task, random_seed) combination, e.g., (Ant, seed0))
across the three GPUs. Finally, all job groups were launched on a cluster. Among the groups, (TAAC,
Driving) took the longest training time which was roughly 36 hours, while (SAC, SimpleControl)
took the shortest time which was about 2 hours. The rest of job groups mostly finished within 12
hours each.

K More experimental results

For the 8 comparison methods in Section 5.2, we list their n-score curves of all 5 task categories
in Figure 8, and their unnormalized score curves of all 14 tasks in Figure 9. The score curves are
smoothed using exponential moving average to reduce noises.

21

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e5

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Sc

or
e

SimpleControl

0.0 0.6 1.2 1.8 2.4 3.0
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Sc

or
e

Locomotion

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Sc

or
e

Terrain

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e7

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Sc

or
e

Manipulation

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Sc

or
e

Driving

Figure 8: The n-score curves of the 5 task categories. Each curve is a mean of a method’s n-score
curves on the tasks within a task category, where the method is run with 3 random seeds for each task.

22

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e5

50

25

0

25

50

75

100

Av
er

ag
e

Ep
iso

di
c

Re
tu

rn

MountainCarContinuous

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e5

800

600

400

200

0

200

Av
er

ag
e

Ep
iso

di
c

Re
tu

rn

LunarLanderContinuous

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e5

0

2000

4000

6000

8000

10000

Av
er

ag
e

Ep
iso

di
c

Re
tu

rn

InvertedDoublePendulum

0.0 0.6 1.2 1.8 2.4 3.0
Environment Steps 1e6

0

1000

2000

3000

4000

Av
er

ag
e

Ep
iso

di
c

Re
tu

rn

Hopper

0.0 0.6 1.2 1.8 2.4 3.0
Environment Steps 1e6

0

2500

5000

7500

10000

12500

15000

Av
er

ag
e

Ep
iso

di
c

Re
tu

rn

HalfCheetah

0.0 0.6 1.2 1.8 2.4 3.0
Environment Steps 1e6

0

1000

2000

3000

4000

5000

6000

Av
er

ag
e

Ep
iso

di
c

Re
tu

rn

Walker2d

0.0 0.6 1.2 1.8 2.4 3.0
Environment Steps 1e6

0

1000

2000

3000

4000

5000

6000

Av
er

ag
e

Ep
iso

di
c

Re
tu

rn

Ant

0 1 2 3 4 5
Environment Steps 1e6

100

0

100

200

300

Av
er

ag
e

Ep
iso

di
c

Re
tu

rn

BipedalWalker

0 1 2 3 4 5
Environment Steps 1e6

150

100

50

0

50

100

150

Av
er

ag
e

Ep
iso

di
c

Re
tu

rn

BipedalWalkerHardcore

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e7

80

60

40

20

0

Av
er

ag
e

Ep
iso

di
c

Re
tu

rn

FetchReach

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e7

60

50

40

30

20

10

Av
er

ag
e

Ep
iso

di
c

Re
tu

rn

FetchPush

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e7

50

40

30

20

10

Av
er

ag
e

Ep
iso

di
c

Re
tu

rn

FetchPickAndPlace

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e7

50

45

40

35

30

25

Av
er

ag
e

Ep
iso

di
c

Re
tu

rn

FetchSlide

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e7

0

100

200

300

400

500

Av
er

ag
e

Ep
iso

di
c

Re
tu

rn

Town01

Figure 9: The unnormalized reward curves of the 14 tasks. Each curve is averaged over 3 random
seeds, and the shaded area around it represents the standard deviation.

23

...

...

...

...

Figure 10: The stochastic binary tree defined by T π . Circles are inner nodes and rectangles are leaves.
Whenever the sampled action ãn is not equal to the rollout action an, a tree path terminates.

L Proof of multi-step policy evaluation convergence

We now prove that the compare-through Q operator T π in Section 4.2 is unbiased, namely, Qπ is a
unique fixed point of T π (policy evaluation convergence). Assuming a tabular setting, value functions
and policies are no longer parameterized and can be enumerated over all states and actions.

L.1 Definition

We first present a formal definition of T π. Suppose that we consider N -step (N ≥ 1) TD learning.
Each time we sample a historical trajectory (s0, a0, s1, rs0,a0,s1 , . . . , sN , rsN−1,aN−1,sN) of N + 1
steps from the replay buffer to update Q(s0, a0). For convenience, we define a sequence of auxiliary
operators Γπn for the V values backup recursively as

ΓπNV (s̃N) = E
π(ãN |s̃N)

Q(s̃N , ãN),

ΓπnV (s̃n) = E
π(ãn|s̃n)

1ãn 6=an Q(s̃n, ãn)︸ ︷︷ ︸
“stop”

+1ãn=an E
P(s̃n+1|s̃n,ãn)

[
rs̃n,ãn,s̃n+1 + γΓπn+1V (s̃n+1)

]
︸ ︷︷ ︸

“expand”

 ,
for 1 ≤ n ≤ N − 1,

(16)
and based on which we define

T πQ(s0, a0) = E
P(s̃1|s0,a0)

[rs0,a0,s̃1 + γΓπ1V (s̃1)] (17)

as the final operator to updateQ(s0, a0). Intuitively, the above recursive transform defines a stochastic
binary tree, where ΓπnV (·) are inner nodes and Q(·) are leaves (Figure 10). The branching of an inner
node (except the last ΓπNV (s̃N)) depends on the indicator function 1ãn 6=an . From the root Γπ1V (s̃1)
to a leaf, the maximum path length is N + 1 (when all ãn = an) and the minimum path length is 2
(when ã1 6= a1).

To actually estimate T πQ(s0, a0) during off-policy training without access to the environment for
P and r, we use the technique introduced in Section 4.2 to sample a path from the root to a leaf on
the binary tree, by re-using the historical trajectory as much as possible. Specifically, we first set
s̃1 = s1 and rs0,a0,s̃1 = rs0,a0,s1 as in the typical 1-step TD learning setting. Starting from n = 1,
we sample ãn ∼ π(·|sn) and compare ãn with an. If they are equal, we continue to set s̃n+1 = sn+1

and rs̃n,ãn,s̃n+1
= rsn,an,sn+1

. We repeat this process until ãn 6= an. In a word,

T πQ(s0, a0) ≈ rs0,a0,s1 + γrs1,a1,s2 + . . .+ γnQ(sn, ãn), n = min ({n|ãn 6= an} ∪ {N}) .

Usually for a continuous policy π, 1ãn 6=an is 1 with a probability of 1 because two sampled actions
are always unequal. So T π will stop expanding at s1 and it seems no more than just a normal Bellman
operator for 1-step TD learning. However, if π is specially structured and has a way of generating
two identical actions in a continuous space, then it has the privilege of entering deeper tree branches
for multi-step TD learning. For example, TAAC is indeed able to generate ãn identical to the rollout
action an if b̃k = bk = 0, for all 1 ≤ k ≤ n. In this case, ãn = an = a0.

24

Here we note that the above point estimate of T π can also be written as T πQ(s0, a0) ≈ Q(s0, a0) +
∆Q(s0, a0), where

∆Q(s0, a0) =

N−1∑
n=0

γn

(
n∏
i=0

1ai=ãi

)[
rsn,an,sn+1

+ γQ(sn+1, ãn+1)−Q(sn, ãn)
]
.

Thus it shares a very similar form with Retrace (Munos et al., 2016), except the traces are now binary
values defined by action comparison.

L.2 Convergence proof

Given any historical trajectory τ = (s0, a0, s1, rs0,a0,s1 , . . . , sN , rsN−1,aN−1,sN) from an arbitrary
behavior policy, we first verify that Qπ is a fixed point of T π. When Q = Qπ in Eq. 16, we have
ΓπNV (s̃n) = Eπ(ãN |s̃n)Q

π(s̃n, ãN) = V π(s̃n). Now assuming Γπn+1V = V π , we have

ΓπnV (s̃n) = E
π(ãn|s̃n)

[
1ãn 6=an ·Qπ(s̃n, ãn) + 1ãn=an E

P(s̃n+1|s̃n,ãn)

[
rs̃n,ãn,s̃n+1

+ γV π(s̃n+1)
]]

= E
π(ãn|s̃n)

[1ãn 6=anQ
π(s̃n, ãn) + 1ãn=anQ

π(s̃n, ãn)]

= E
π(ãn|s̃n)

Qπ(s̃n, ãn)

= V π(s̃n).

Thus finally we have T πQπ(s0, a0) = EP(s̃1|s0,a0)[rs0,a0,s̃1 + γV π(s̃1)] = Qπ(s0, a0) for any
(s0, a0).

To prove that Qπ is the unique fixed point of T π, we verify that T π is a contraction mapping on
the infinity norm space of Q. Suppose we have two different Q instantiations Q and Q′, we would
like prove that after applying T π to them, ‖Q − Q′‖∞ becomes strictly smaller than before. Let
∆ = ‖Q−Q′‖∞ be the current infinity norm, i.e., ∆ = maxs,a |Q(s, a)−Q′(s, a)|. Then we have

‖ΓπNV − ΓπNV
′‖∞ = max

s
|ΓπNV (s)− ΓπNV

′(s)|

= max
s

∣∣∣∣ E
π(·|s)

(Q(s, ·)−Q′(s, ·))
∣∣∣∣

≤ max
s

E
π(·|s)

|Q(s, ·)−Q′(s, ·)|

≤ max
s

E
π(·|s)

∆

= ∆,

and for 1 ≤ n ≤ N − 1 recursively
‖ΓπnV − ΓπnV

′‖∞ = max
s
|ΓπnV (s)− ΓπnV

′(s)|

= max
s

∣∣∣∣ E
π(a|s)

[
1a 6=an(Q(s, a)−Q′(s, a)) + 1a=anγ E

P(s′|s,a)
[Γπn+1V (s′)− Γπn+1V

′(s′)]

]∣∣∣∣
≤ max

s
E

π(a|s)

[
1a 6=an |Q(s, a)−Q′(s, a)|+ 1a=anγ E

P(s′|s,a)

∣∣Γπn+1V (s′)− Γπn+1V
′(s′)

∣∣]
≤ max

s
E

π(a|s)
[1a6=an∆ + 1a=anγ∆]

≤ max
s

E
π(a|s)

[1a6=an∆ + 1a=an∆]

= max
s

E
π(a|s)

∆

= ∆.

Finally,
‖T πQ− T πQ′‖∞ = max

s,a
|T πQ(s, a)− T πQ′(s, a)|

= max
s,a

∣∣∣∣γ E
P(·|s,a)

[Γπ1V (·)− Γπ1V
′(·)]

∣∣∣∣
≤ γmax

s,a
E

P(·|s,a)
|Γπ1V (·)− Γπ1V

′(·)|

≤ γmax
s,a

E
P(·|s,a)

∆

= γ∆
= γ‖Q−Q′‖∞.

25

Since the discount factor 0 < γ < 1, we have proved that T π is a contraction mapping.

Importantly, this contraction holds for any historical trajectory τ , even though this trajectory differs
each time for an operator transform. Namely, every operator transform step will bring Q and Q′
closer, regardless of the actual value of the historical trajectory referred to. Combining this with Qπ
being a fixed point of T π , we have shown that any Q will converge to Qπ if we repeatedly apply T π
to it.

26

