Under review as a conference paper at ICLR 2024

A NOTATIONS
In this appendix, we introduce some basic notations for use in subsequent proofs.

A.1 FEEDFORWARD NEURAL NETWORKS (FNN)

As is known to all, FNN is a function ® : R? :— R which is formed as the alternating compositions
of ReLU function ¢, and affine transformations All(y) = Uy + v; with U; € R%*di-1 o €
R%, dy = dfori=1,2,---, L. Specifically,
D (z) =LoocoAMogoAll"o...050 AN (x)
where L is a linear transformation. Here L denotes the number of layers of the FNN, and the width
of the FNN is conventionally defined by max{dy,ds, - ,dr} := K. The ReLU activation function
is defined by:
o(z) := ReLU(z) = max (z,0) = (z) .,z € R

and for z € R?, o(x) := (o(z1),- - ,0(xq)). Typically, it is presumed that the number of neurons
in each layer of an FNN is the same, which is equal to the width K, as any neuron deficits in a layer
can be dealt with by adding K — d; neurons whose biases are zero in layer j. The weights between
these extra neurons are consequently assigned to zero.

A.2 RESNET

ResNet R(z) : RY — R is a combination of an initial affine layer, multiple basic residual blocks with
identity mapping, and a final affine output layer:

R(x)=Lo(TH 4 I1d)o (TE U 4 Id)o---o (T 4 Id) 0 Ay(),)
where Ay : R? — R and £ : RF — R are affine transformations. Besides, 711 (i = 0,1, ..., L) are
basic residual blocks, i.e., T1(z) = Vo (W;z + b;) where W; € R™ ¥ V; € RF*™ b; € R™.

Concretely, we denote the output of the i-th block by z[?. Then the outputs of each block can be
formulated as follows:

Z[O] = Ak (Jj) = WO.’E + bOa
7’[73] (z) = Vo (le + bi) s
i) — i (z[i—l]) NI U N S TR ®)

R(z)=L (z[L]) = B!,
where Wy € R¥*? by € R¥ W; € Rk V; € RF*™ b € R™, B € R'* and 2 € R%.

The ResNet’s depth, denoted by L, is defined as the number of residual blocks. The ResNet’s width is
the maximum number of neurons in the activation layer, that is max{ny, na, ..., nr,}. The subscript
k of Ay, refers to the number of neurons in the identity layer. We denote by RA (k, N, L) the set of
ResNet functions width IV, depth L and k neurons in each identity layer.

Additionally, we define
¢ =TI = o (Wiz + b)),

Al = 78 (1) = 7 () = Vgl = v (261 and (©)
Ll = =1 7[i]
fori =1,2,---, L. See Figure [3|for an illustration.
Notation. Let column vectors a; € R™i, where i = 1,2,--- ,nand m; € Ny := {1,2,---}.
To represent these vectors concisely, we use (a1, as,- - ,a,) to denote [a?, al, .- ,aZ]T S

Rmitmzt+mn - Here, a7 denotes the transpose of a. Let a € R™. If we write a vector as
(R!,a) € R™*!, this implies that the value of the vector in the position represented by "R’ does
not matter. If [= 1, we always use ’-’ to substitute "R’, i.e., (—,a) € R™+1 implies the value of
the position represented by ’-’ does not matter. For a vector v in R™, v; is the i-th entry of v for
i=1,2,-,m.

13

Under review as a conference paper at ICLR 2024

X1

X2

,10] 21 2021 213
= pll4 Z10] = yl2l4 Z02] = yl314 22

Figure 3: An illustration figure for the notation. The yellow neurons are in the activation layer and
the grey neurons are in the identity layer.

B PROOF OF PROPOSITION [I[] AND THEOREM

In this appendix, we provide the proofs of conclusions in Sec. [3]

B.1 PROOF OF PROPOSITION[]

For a ResNetin RN (k, N, L) from [0, 1]¢ to R defined by the formula and @ we now construct
a special network with depth L and width N + £ having the same output. We first suppose the input
of the network is y[%) = A, (2) = 2 and denote the output of the i-th layer by y!”). What’s more, we
assume in each layer the bottom k neurons of each layer are ReLU-free, i.e., the activation function
of them is identity mapping o(z) = x. The activation of the rest of neurons are ReLU. Then by
assigning some weights to the first layer, we can have y!*! = (¢[!, 2[%). In the next layer, we can
easily compute 2"} = V;¢1 4- 2(%, Then we have y?! = (RY, 2[1). Now assume 3[? = (RY, 211).
Then in the first N neurons of the next layer, we compute 7'1[Z+1] (2l1) = ReLU(W; 41211 4 7). In
the bottom k ReLU-free neurons, we copy z[*). Then yli*1) = (¢[+1 2[). Then in the next layer,
we can compute

A1y el

ie., yP0+tD] = (RN, 2[+1]). By induction, we have found a special 2L deep network with top N
ReLU neurons and bottom k& ReLU-free neurons having the same output as the ResNet. This process
can be seen in Figure [

Next, we construct a real ReLU network ® that has the same size and output as the special Network.
Because the domain [0,1]% is compact, there exists C; € R* such that zl) + C; > 0 for all
i=0,1,2,---, L. Now, we suppose the first layer of ® is ul®) = ReLU(A(z)4+Cp) = ReLU (2l +

Co). Denote the j-th layer of ® is ul~1]. In each subsequent layer of ®, the width is N + k. We
@ i i

denote ul!l = (u(Ny U k)) where Uny is the value of top N neurons and U is the value of bottom
k: neurons in the layer i + 1. Then note 75" (2[%) = ReLU (W29 + b;). We can compute
ulll) = ReLU (Wl(u[o] —Co) + b1> — ReLU(W; 2% + ;) = ¢[1
and u() = ul% = ReLU(2% 4 Cp). Note 21 = ReLU(2l] — C;) 4 C;. We can compute
uff) = ReLU (Vaullly + ull) = Co + C1) = ReLU (Vg 4219 + €1) = ReLUGY + 1),

Now, we suppose ul2/] = (RY ReLU(2V! + C})). Then we can compute

ug\j[;i_l] = ReLU (Wj+1(u[2j] — Cj) + bj+1) = ReLU(Wj+1Z[j] +bj+1) = 7—1[j+1] (Z[J]) = C[jJrl]

14

Under review as a conference paper at ICLR 2024

1l 0
Y 4
¢t 10 ¢ P,
— \,/\
-
.
ResNet - 4 /_,/- y
— -
- = v
| ' L | —> .
- Ty +id +1d T
_/ +1d
0 +I1d T\/
7% s 20 o)
=yl 200 = plil4 211 = yll4 gli-1
Wi, by
b - L - Ml -
1M1
. v,
Special 0 / h ! Y
PN 20
20 | —rzl —> —gli-] ozl — —+l-1 el

Figure 4: ResNet (top) can be generated by a special FNN (bottom). All grey neurons are ReLU-free
and all yellow neurons are with ReLLU activation. Moreover, for ResNet, the yellow neurons are in
the activation layer and the grey neurons are in the identity layer.

and uggu = ReLU(quk])) = ReLU(z% 4 Cp). Then in the next layer,

2542 2j+1 25+1
uffy = RelU (Visauli Y +)™ = ¢+ ¢
= RelLU (V}Jrlrrl[jJrl](z[j]) + 2l 4 Cj+1)
= ReLU(ZVH 4 C;1y).

By induction, we can output z[* in the last layer, i.e., ul?X] = (R, ReLU (2] + C1)). Then output
I by some affine transformation A(ul?tl) = ReLU(2" 4+ Cp) — Cf, = 215,

From the construction of the ReLU network, we can see the FNN has ©(W + kL) non-zero training
weights.

B.2 PROOF OF THEOREM [2]

Because the product function f(z) = zx2 - - - ¢4 belongs to P(d, p), it suffices to show the lower
bound of the complexity of an FNN on the approximation of f is ©4(log 1/¢). Letx € [0, 1]. Define

U(z =U(z,z,---,z)and f(z) = f(z,z,--- ,x) = z% Then by the assumption, we have
y p

B(a)— f@) <, we [%, 1.

In the interval [1/2, 1], f is strictly convex because

P(2) = d(d — 1)2® > d(d — 1)(%)01 = > 0.

By lemma 2.1 in [Telgarsky| (2015), ¥ is a CPwL function over [0, 1] with at most (2N)~ linear
pieces, i.e. [1/2,1] is partitioned into at most (2N) intervals for which W is linear. Now, we divide
[1/2,1] into (2N)% intervals. Thus, there exists an interval [a,b] C [1/2,1] with b —a > W
over which W is linear. Then define

G(z) = f(z) — ¥,z € [a,b].

Then |G(z)| < e and G”(x) > ¢; > 0 for any = € [a, b] due to the linearity of f. Then we consider
x € [a, b] and local taylor expansion at (a + b)/2:

a+b a+b a+b Gl a+b

Gla) = G2 + G (D) =) + (@) — Do) whereg € o,]

15

Under review as a conference paper at ICLR 2024

Then let x = a and x = b, we have

__a+b ,a+b b—a, G", b—a, a+b
Gla) = G("52) — G (S + O €€l 0] and
__a+b ,a+b b—a, G b—a., a+b
It follows that b b
max{G(a), GO} = G(10) + L (0
Thus, by noting b — @ > =+~ we have

2(2N)L

2
2e > max{G(a),G(b)} —G(a-‘rb) > Cl(b;a’)2 > % (4(2]1V)L> .

2 2
Then c
(2N>2L > -
€
where c is a constant depending on d. It follows from the number of neurons 7' = N L that
1 c
log — > —log -
L =ar
2T
4T > ¢ logE ZlogE where © = —.
log u € € L

Therefore, the number of neurons must be at least the order log 1/¢.

C PROOF OF THEOREM 3] AND THEOREM [4]

Our ideas in this appendix are from [DeVore et al.| (2021). It should be noted that while DeVore
et al.| (2021) inspired our approach to polynomial approximation, there are big differences in the
construction details. Significantly, our main contribution is the successful demonstration of ResNet’s
construction proof.

The discussion in Subsection [C.1]commences with a consideration of the fundamental functions,
ranging from 2% to 2y, which we use to construct our approximation using ResNet. Subsequently, in
Subsection|C.2} we begin by establishing Theorem for the case [0, 1]¢. This is then extended to the
case [~ M, M| for M > 1in Subsection

C.1 PRELININARIES

We recall that the so-called hat function A is defined by
1
+

Let h,,(z) be the m-fold composition of the function A, i.e. h,, = hoho---oh which is the
—_——

m times
so-called sawtooth function. Then

2=z Z 47 "hy (z), = €]0,1].
m>1

Next, we define

n

S(z):=2% and S,(z):=z— Z 47y (x), n>1, xz€][0,1].

m=1
We then have
o0 B 1 .
IS(x)—Sn(x)lskglzl F<ga we(0). (8)

Sp(z) is a piecewise linear interpolation of .S on [0, 1], using 2" + 1 uniformly distributed breakpoints,
as indicated in [Yarotsky| (2017)) (see Proposition 1). Using equation [§] we can generate .S,, and
approximate x2.

16

Under review as a conference paper at ICLR 2024

Proposition 9. There exists a ResNet R(x) € RN (2,4, L) with L = O(log 1/¢) such that
|R(z) — 2*| < e,z €[0,1]

while having O(log 1/¢) neurons. Especially, R(x) € RN (4,2,n) generate S,, exactly.

of (8) equal to ¢, i.e., %4_” = e. We then have n = O(log1/e). Next, we construct a ResNet

Proof. Tt suffices to construct a ResNet required to represent S,,. Then we let the right-hand side
(3
R(z) € RN (4,2,n) generating S,, () exactly.

[x]y & R [han ()14 gl P41 (x)
4 Sl _ gmt
X h{x) i dml _ mea ()
1 S DINS [hm(x) 71] e
x 2], 2l
0 _@ L C))
[x 11, 1T 00 Eo [h() — 1. et (1)
= 51(1) S () = Sm+1 (%)
x(= [x]4) P
41d +1d

Figure 5: [llustration for the constructive first block (left) and the m-th block (right). Grey represents
the identity layer and yellow represents the activation layer.

Let 219 = Ay(x) = (,0). Then by equation (7, we can use three ReLU units to store (), , (z
1/2)+ and (z — 1) and hence compute h(z). At the same layer, use one ReLU unit to copy x. Then
in the first residual block, we can compute

A = T = (—2 — h(z) /4,2 — h(z) /4)
so that

2= A0 20 — (g — h(x) /4,2 — h(x)/4) + (,0) = (—h(z)/4, S1(z)).
See Figure [5](left) for illustration.

Now we assume the output of the m-th block is 2[™ = (—4™h,,(z), Spm(z)) Also by (7) and
assigning appropriate weights, we can use three units to compute A (A, (z)) = 41 () and use one
unit to copy —4" h,, (z) by @ = —(—a) 4. Thus, we can output

A = A Iy = (=4 Ry 1 (2) = 4™ B (), =47 Ry g (2))
in the next block so that
Z[m+1] = (—4”L+1hm+1 (LL') — 47”hm (LU), —4m+1hm+1 ({L‘)) + Z[m] = (—4"L+1hm+1 (1’), Serl ((E))
See Figure [3| (right) for illustration. By induction, we complete our proof. Concretely, "] =

(=4"h,(2), Sp(z)) and R(z) = L(zI") = S, (z) by letting L (1, z2) = . O

Let z,y € [0, 1]. We can approximate the product function zy by using the equality xy = (@)2

(lm Y12, Define

x + T —
maley) = (220 s, (224 ©)
It then follows from equation (@)
|Tn(z,y) —2y| <477, Vao,y € [0,1]. (10)

For the later rigorous derivation, we also need to prove the following lemma:

Lemma 10.
malz,y) € [0,1], Va,y € [0,1]. (1)

17

Under review as a conference paper at ICLR 2024

Proof. According to the definition of \S,,, we have
2?2 < Sp(z) <z, for x€][0,1].

Then
r+y |z —y
() = Su(TiY) — 5, (=2
2 2
ity (—y)?
- 2 4
1
=5 @2 -2) +y(2—y) + 22y)
1
Next, we show 7, (z,y) > 0. We start from
T + €T —
male0) = (2 - s, (P2

2 2

— min{z,y} + 224 (hi(2 =yly 3t y)) .

2 2

Now we introduce the function
C(z) :=2min{jlx —s|: s € Z}, xR
Then for z € [0, 1] we have
h(z) =¢(z) and hp,(z) = (2™ 12),m > 2.
Since (is subadditive, i.e. ¢ (t +t') < ((t) + ¢ ('), we have

Tty
2

= (T minge,)

= @' (T minga,)

hi(

< ot minge)

|z -y
2

= h;() + h;(min{z, y}).
Namely,
T +y

2

h (28 g

.) > —hy(min{z, y}).
From (12), we then have

7 (x,y) > min{x, y} — Z4‘i (min{z,y}) = S, (min{z, y}) > min{z, y}* > 0.
i=1

For z,y € [—M, M], we can approximate xy by the following remark.

Remark 11. If z,y € [-M,M], we can approximate xy by using the equality xy

M? (%)2 - (‘EX/}")2} Because the domain of S,, is [0, 1], we define

~ x T + T —
Faley) = Mom, (0 Ly a2 (5,20 g, (]

M’ M oM

We have
[Tn(z,y) — 2y| < M247" Y,y € [-M, M].

18

T+Y =i Ty, T—yl i, T
—24 hi()_T+Z4 hZ(T)
i=1 i=1

12)

13)

(14)

15)

Under review as a conference paper at ICLR 2024

Now we show ResNet can approximate the product function zy.
Proposition 12. Let z,y € [—M, M]. There exists a ResNet

R e RN (3,(4,L))
from [—M, M] to R with L = O(log M /) such that
|R(z,y) —xy| <e 2,y € [-M, M|
while having O(log M /e) neurons and tunable weights. Especially, the ResNet R(x,y) with width 4

and depth 2n can generate T, (z,y) exactly.

Proof. Tt suffices to construct a ResNet required to output 7, (z, y). Let the right-hand side of
equal €. We can get n = O(log M /<). Now, we construct a ResNet with width 4 and depth 2n to
represent m, (z, y).

Let As(z) = (4%, Z22,0). Next, we can use the first block to output 2!l = (Iw;&yl’ |m2My‘ ,0) by

the simple observation a| (a)4 + (—a)4. See Figure [6]for illustration.

G~ -l =]

+1d

Figure 6: Tllustration for computing |z| by a residual block.

Then, it follows from the proof of [9| that we can use the first n layers and 4 units in each layer to

output 2"+ = (— 1T le—ul y' ,Sn (|$+y)) while keeping the value of the second neuron in each identity
layer unchanged. Next by the same operation, we use the next n blocks to output

T 52 < e)

Thus, R(z,y) = L(—, —, mn(z,y)/M?) = 7, (z, y) by letting L(x1, 22, x3) = M>z3. See Figure
[for illustration.

Z[2n+1] = (_a) Sn(

0(n) blocks 0(n) blocks

r—‘—\

Output
T (X,Y)

+Id

<E

Figure 7: llustration for generating 7, (x, y) by the constructive ResNet. Grey represents the identity
layer and yellow represents the activation layer.

O
Moreover, we can approximate the multiple product function x5 - - - x4 where x1, 22, -+ , 24 €
[0, 1]. We can well-define by (TT)) that
ﬂ_::l (ml’x% T 7xm) = Tn (ﬂ_;n—l (xlax%‘ o ,Z’m_l) 7$m) , M = 3v47' - for T1,00 ,Tq € [0’ 1]
(16)

and 72 (21, x2) = 7, (21, 22). Then we have

Under review as a conference paper at ICLR 2024

Proposition 13.
|70 (21, T, o+ Tm) — T1To -+ T | < emd™™, 1,29, , Ty € [0, 1] 17

as long asn > 1+ logy m.

Proof. First, It follows from the definition of S,, and S(x) = x? that

S(@) = Sp(x) == > A "hy(2).

m=n+1

Note h,, has the Lipschitz norm 2. We have

18" =Sl oay <1 D2 47" (@) 0,1

m=n-+1

é‘ i 4—m2m|

m=n-+1
<27, n>1.

S’(xz) = 2x so we have
S/ (r)=2x+¢d where §<27" (18)
Define 7(x,y) := xy. We have

r+y 1 r—y 1 Yy—x
alwn(x,y)=5é< 5)-2'1{x>y}5§l< 5)+2'1{z<y}5% 5

1 1 1
= §(m+y+5)—§1{w2y} (a:—y—|—51)+§1{w<y} (y—il?+62) (19)
=y+— 1{w2y}51 + 1{w<y}52

= 617T (may) +6— 1{:1:27;}61 + 1{x<y}62;

where , d1, 02 < 27™. Moreover, it is the same when considering about da7,, (z, y). Thus, we have

|0y — aﬂ””Lw([O,lP) < 27"t where §; := O0z;,1=1,2. (20)
Define 7™ (1, T2, ,Tm) = T1T2 - * - Ty NOW We assume
77—l lleqoay) < ¢d™ 2n
holds for all ; < m — 1. Note, the inequality literally holds for j = 2 by letting c; = 1. Then we
have
7™ — 7o,y < N (T, ™) = 70 (T, ™™ ooy + 1700 (T, ™™ 7)) = 70 (2, 70 Nl g0,17m)

<47+ %emall oy 7™ =T
<474 (1427 e,) 47"

= (1 + ancm_l) 47",
By induction, we have proved

_chqo,umfl)

m

7™ — 7 leqoamy < emd™"

where ¢,, satisfies the recurrence formula c,,, = 1 + &, ¢,,—1, m > 3, with initial value C5 = 1. The
solution is

Cm = Z ol < (m—1)a™ 2,
If m < 2" ! we have

<(1+ ! m72< 1+1 m<
Cm = (M on—1 m o em.

Then we complete the proof and get

||=™ — W;n‘|c([071]m) <emd™ "

form =3,4,5,---,aslongasn > 1 + log, m. O

20

Under review as a conference paper at ICLR 2024

C.2 PROOF OF THEOREM [3|OVER [0, 1]¢

Now, we are ready to prove Theoremover [0, 1]¢
theorem.

Theorem 14 (Theorem . Let v = (x1,29,---,14) € [0,1]% a € N? and z be any given
monomial with degree p. Then

. For the completeness, we show the following

(1) there is a ResNet Ry € RN (d+ 1,4,0(dlog(d/<))) such that
||R1 - .731%‘2 A $d||c([0711d) < g

while having O(dlog(d/e)) tunable weights. Moreover, there is a ResNet belonging to
Ry € RN (d +1,4,0(nd)) can generate 78 (1, w2, -+ , x3) exactly.

(2) there is a ResNet Ry € RN (d + 3,4,0(plog(p/e))) such that
[R2 — %[c(jo,10) <€
while having O (plog (p/e)) tunable weights.

Proof. We prove (1) first. Let the right-hand side of inequalityequal to € and note m = d under
the condition of (1). Then, n is the order log d/e. Now we construct a ResNet required with width 4
and depth O(nd) generating 7¢ (z1, 72, -+, x4).

Let Agr1 = (21,22, -+ ,x4,0). It follows from the proof of propositionthat we can assign some
weights for the first 2n blocks to output

z[2n] = (_a —y X3, T4, ,Td, ﬂ.n(mh 56'2))
while only changing the value of the first, second, and last neurons in each activation layer. In the
next block, we set the value of the first and second neurons to zero by using identity mapping. In the
next block, we then can output

Z[2n+1] = (070756371‘4, to ,xd771'n($1,$2)).

The zero-value neuron in the activation layer is ready to store the results in the next phase. Then in

the next 2n blocks we can compute 73 (21, 72, 23). Concretely, by the proof of proposition |12} we
can have

Z[4n+1] = (07 ,/T?l(xlv Z2, :173); L4y, Xd, 7)'
By repeatedly doing the operation above, we can use about (2n+1)(d— 1) blocks totally with width 4
to approximate 7% (1, x2, - - - , z4). Moreover, there are about 4d + 4 weights in each building block.

However, from the operation above, we can see only a constant number of weights are non-zero.
Therefore, this network has at most cdn tunable weights where c is an absolute constant.

For (2), if p < d, the case can be the same with (1). Let’s assume p > d. We just need to note

x{xy? - x5 can be approximated by
d((e}
71'”(7'(',”1(.%‘1, o 7561)7' o aﬂ-nd('xda T axd)) - Wﬁ('rlv R P15 PIERR(/5 PIRN € 7 S ,O(d).
——
«q times o times g times
(22)
Thus, we must store the value of x1, - - - , x4 in each building block. However, in the proof of (1), if

we complete the output of 7, (1, z2), we will lose the value of x1 and x5 in the neurons. That’s why
we need d + 3 neurons in the identity layer in this case. The two more neurons in the identity layer
can help us preserve z1, - - - , 24 in each identity layer. Here we briefly show a constructive ResNet

generating 22] exactly.

Let Ag+s = (z,21,21,0). By the proof of proposition we can compute 7, (x1, 1) using
2n blocks and get 2" = (x, — — m,(x1,2;)) in the 2n-th block. In the next block, we com-
pute 22"+ = (20,21, 7, (x1,21)). Then in the next 2n block, we compute 72 (1, x1,21) =
72 (xy, 7, (21, 1)) and hence get 2"+ = (2, 73 (21, 21, 21), —, —). Then by doing it repeatedly,
we can use O(pn) blocks to generate . Similarly by the inequality where m = p, we can get
the depth is O(plog £) if the desired accuracy is €. Moreover, note there is only a constant number
of weights being non-zero in each block. Thus, the total number of the non-zero weights (tunable
weights) is O(plog £). We can see an illustration in Figure

O

21

Under review as a conference paper at ICLR 2024

0(n) blocks 0(n) blocks 0(nd) blocks

0 \‘"3(11.12,13) \‘ _

—

+1d W +1d W +1d W
: - . Output
A
0 T Xy, X3) 0 b (X1, ..., Xa)
Figure 8: Illustration for generating 7% (z1,--- ,24) by the constructive ResNet. The topmost d

neurons are used for storing values. Grey represents the identity layer and yellow represents the
activation layer.

Following this theorem, we supplement some discussions about why are monomials important.
Monomials are the essential constituents of polynomials, which serve an integral role in both theory
and applications. Additionally, monomials possess a straightforward mathematical structure, which
aids in analyzing and comparing the approximation capabilities of neural networks. Numerous
intriguing studies have been conducted in this field. Both deep [Yarotsky| (2017) and shallow
Blanchard & Bennouna (2021) ReLU networks can efficiently approximate monomials over [0, 1]¢
with poly(d) neurons. However, for monomials over [0, M| (M > 1), shallow ResLU networks
will at least cost exp(d) neurons approximating it to € (Shapira| (2023). Further, the cost of shallow
networks will be reduced to poly(d) if the monomial is normalized over [0, M| (multiplied by some
normalization constant M/ ~P). More comprehensive discussion can be found in |Shapira(2023).

C.3 PROOF OF THEOREM[3

In this subsection, we extend Thm, to [—M, M]d where M > 1. First, we extend the lemma
to the [—1, 1].

Lemma 15. Let x,y € [—1,1]. Then m,(x,y) € [—1,1]

Proof. Since z,y € [—1, 1], it suffices to show

|z + y|

S (5

|7on (2, y)| =

)—Sn(|x;y|)’<1. (23)

First, we show that S,, () is monotone incresing over [0, 1]. Forany 0 < z < y <1,

Sn(x) = Sn(y) =z —y+ Zfi (hi(y) — hi()).

Then by
hi(z) =hi(y+x—y) =C2 y+az—y)) <2y + (27 (@ —v))) = hi(y) + hi(z —y)

we have

S@) = Su(y) =z =y + D 47 (hily) —hi(@) 2w —y =) 47 hi(z —y) = (@ —9)* 2 0.

i=1

Note |z + y| > |x — y| is equivalent to xy > 0. So we only care about the following case to show

22

Under review as a conference paper at ICLR 2024

e x,y < 0.
Tty T—y
male) = (T s (22
ety (@—y)?
- 2 4
1
= 7 (212 = |z) + 912 — [y[) + 2zy)
1
§1u+1+2%:L
ey <0
rT—y Tty
Tn(2,y) = Sn(%) - Sn(%)
ety @y
- 2 4
1
= 7 (el@ = fz]) + |yl(2 — [y]) - 22y)
Siﬂ+1+2y:L

O

Thus, 777" can be well-defined over [—1, 1] (equation . Next, we show that Propositionholds
for zq, 29, -+ x4 € [-1,1], 1.,

Proposition 16.
| (21, T2, Tp) — T1T2 - Ty | S emd™", 21,20, Xy, € [—1,1] (24)

as long asn > 1+ logy m.

Proof. For x,y € [—1, 1], the only change of the proof is equation We note

|z + y|

!
s

1 1 1
)= 1{x+y20}§(x +y+er)— 1{x+y<o}§(*ﬂf —y+er)= 5(53 +y+e)
where €1, €2, < 27". Then we can still get
10im = Qimnll o (aajey S27"FY, where 8; := 8,0 = 1,2. (25)

Then we can show the result following the proof of [C.1} O

Then Thm. 3] can be easily showed by the following remark.

Remark 17 (Theorem . Let x1,x2, -+ , Ty, € [—M, M] To approximate x1xy - - - Ty, We COR-
sider a function defined by T (x1, ..., Tm) = M7 (|21|/M, . . ., |Xm|/M) with the approxi-
mation accuracy

120 T — T (21,)| < emM™ 47" Ny a9, Xy € [—M, M| (26)

as long as n > 1 + loggm. Moreover 7' can be generated by a ResNet R(x) €
RN (m + 1,4, O(mn)) while having at most O(mn) tunable weights.

Proof. The remark is the direct corollary from the proof of Theorem [T4] By letting the right hand
side of Equation [26]equal to € where m = p and p is the degree of the monomial, we complete the
proof of Theorem O

23

Under review as a conference paper at ICLR 2024

C.4 PROOF OF THEOREM[4]

Proof. By Theorem|[3] for each 2® : o € E, we can use a ResNet with width 4, depth O(plog p/<)
and d + 3 neurons in each identity layer to output R, (x) such that

|Ro(z) — 2% <e, z€l0,1]%

Thus,
| Z caRa(x) — Z cax®| < e- Z lcal, = €10,1]%
acEE a€E laleE
Then Let Ag14 = (x,21,21,0,0). To generate each R, (x), we need 4 more computational

units in each identity layer and depth O(plog p/e) while having O(plogp/e) non-zero weights.
Then store the value of R,(x) in the last neuron in each identity layer. Then we can output
(7, =, =, =, > aecp Calla(z)) finally with depth O(p|E|log(p/c)) while having O(p|E|log(p/e))
non-zero weights totally. O

D PROOF OF THEOREM

In this section, we prove Theorem [5| Before that, we will give the definition supplement about
Sobolev space in subsection .2}

D.1 DEFINITION SUPPLEMENT OF SOBOLEV SPACES
Fora = (ay,...,aq) € Ntand z = (z1,...,24) € [0,1]¢, define
olal f

DYf=
Ll o T

where |a| = aj + -+ + a4. Let 7 € N.. The Sobolev space W"°°([0, 1]¢) is the set of functions
belonging to C"~1(]0, 1]¢) whose (1 — 1)-th order derivatives are Lipschitz continuous with the norm

I fllwz, = (hax eSSSUPyefo,) |DYf(2)] < oco.

We denote by U ([0, 1]¢) the unit ball of W™>°([0,1]%), i.e. U"([0,1]%) = {f € W™>([0,1]¢) :
| fllwz < 1}. Note

esssup f =inf{a e R: u({z: f(z) > a}) =0}

where p is Lebesgue measure.

D.2 PROOF OF THEOREM[3

We follow the proof of theorem 1 in Yarotsky|(2017). In our proof, we skip some details and focus
on the constructions of ResNet. The details can be found in theorem 1 of [Yarotsky| (2017). Now let
feU([0,1]%) and @ € N

Let N be a positive integer to be determined and m = (my, ..., mg) € {0,1,..., N}?. The function
¢®m 1s defined as the product

ot = [T 0% (- 2)

k=1
where
1, x| <1,
¥(z) = {0, 2 <lzl,
2— |z, 1< |z]<2.
Let

A= Y Y tmatm®) (xf%)a

me{0,...,N}¢ a:|a|<r

24

Under review as a conference paper at ICLR 2024

where am o, are some specific coefficients when considering the locally Taylor expansion of f. Then

by choosing
rloe\ YT
N=||=== 27
{<2ddT 2) —‘ @7)

where [-] is the celling function, we have

If = Alle < 5.

Now, we consider to approximate ¢, (x) (x — %)a by ResNet.

The following lemma follows directly from remark [T7] that
Lemma 18. Letx € [0,1]% and g1(21), -+ , g2(xa) € [~1,1]. Then

|7 (g1(21), g2(x2), -, ga(za)) — g1(x1)g2(w2) - - ga(za)| < edd™, n>1+logyd

Sforall z1,2z9, -+ ;x4 € [-1,1].

Moreover, we need the following lemma for the construction.

Lemma 19. There is a ResNet R(x) € RN (k =1, N = 3, L = 4) such that R(x) = ¢ (z) for any
r eR

Proof of lemma[I9, [Lin & Jegelka) (2018)) has shown that the following operations are realizable by
a single basic residual block of ResNet with one neuron: (a) Shifting by a constant: R+ = R + ¢ for
any ¢ € R. (b) Min or Max with a constant: Rt = min{R, ¢} or Rt = max{R, ¢} for any ¢ € R.
(c) Min or Max with a linear transformation: R* = min{R, «R + 3} (or max) for any «, 3 € R.

For the ResNet, z[% = z. In the first layer, we use one computational unit to compute ReLU(z + 2)
and two units to compute 2 = (x), — (—z),. Then we output z!'/ = ReLU((z +2) —z + = =
ReLU(z 4 2) in the first layer. In the remaining layers, we only need one neuron per layer. we can
output 22l = 211 — 22111 —2), 2181 = min{zP 1} and 2[4 = max{zP®, 0} = ¥(x). O

Then now we define

Runalz) = 72 (w(ngl —3my), -, Y(38Nzg — 3ma), 70 (2, — %), om0 (g — %))
m m m
:ﬂ—g+|a| 'L)[}(SNl'l_?)ml)a'”7¢(3Nxd_3md)axl_ﬁlv"';xl_le"’al'd_de' 5
1 times agtimes
By lemma T8 and note
W(3Nz; —3m;)| <1 and |z; — %\ <1 for i=1,2,---,d
, we have
m\ < —n d
Bma(X) — om(x) (x=) | <elr+dd™ =eo, x€[0,1)% (28)

by letting n = O(log (:(7;7404)) Then with similar proof of Theoremand lemma we have a ResNet

with k = d + 3 to generate Ry, o (x) such (28) satisfies while having O(d(r + d)log e(r + d) /)
weights. It follows from the proof of Theorem 4] we have a ResNet with k = d + 4 can generate

f(x) = Z Z am,oBom, o (%)
me{0,...,N}¥ a:|a|<r
while having

€o

25

Under review as a conference paper at ICLR 2024

weights. From the proof of theorem 1 in|Yarotsky|(2017) we then have
F(x) = fix)] < 2%d7e0.

Let ey = £/(2%F1d"). We have ||f — f1||oc < £/2. Thus,

1 = Flloo < 1f = filloo + 11 = flloo < e

Now, substitute g = £/(2%+1d") and N with equation [27]into (29)), the upper bound on the total
weights of the ResNet are

rtoe\ Y 1 e(r + d)24d" a1
@ <<2ddr2) d (d+7‘)logf —Odﬂa <€ s IOgE) .

By the well-known Stirling’s approximation

27r (f) e H <l < /277 (i) eﬁ7 (30)
e e
the hidden constant ¢(d,) in the Og4,, notation can be bounded by
d+1 d+1
27 d 27 d
()4 < e(d,r) < (=——)4d"*(d+r)r 31
r

where C is an absolute constant.

E PROOF OF THEOREM

In this appendix, we give the proof of Theorem [6] The proof of Theorem [6]is mainly based on the
following lemma.

Lemma 20. Fix the integer d > 1 and let f : R® — R be a CPwL function. Then there exist affine
Sunctions py, qp : R? — R such that f can be written as the difference of positive convex functions:

= —_ h = =
f=p—q, where p (AX, Pa, = MAX g

where P, Q) are some positive numbers.

Proof. For any CPwL function f : R? — R, by theorem 1 in Wang & Sun| (2005), there exists a
finite set of affine linear functions /1, .. .,) and a finite integer M such that

M
aded

where S; C{1,...,k},|S;| <d+1lando; € {+1,—1}foralli=1,2,---, M. We write

M
= o; | max/; | = max {; — Z max¥; =p—q.
f 2; J (iGSj Z) 1€S; ! i€S; ’ p q
j:

Jioj=1 jioj=—1

The last equation holds by the fact that the sum of convex functions is convex and the sum of CPwL
functions is also CPwL. We can easily see P,) is bounded by Md. However, M is an implicit
number that may depend on the property of the CPwL function (e.g., the number of pieces, and the
number of linear components). More details can be found in the proof details in [Tarela & Martinez
(1999); [Wang & Sun|(2005)).]

Now we are ready for the proof of Theorem [6]

26

Under review as a conference paper at ICLR 2024

E.1 PROOF OF THEOREM [6]

The proof is based on the observation
max{z,y} =y + ReLU(z — y)

Now we construct a single-neuron per hidden layer ResNet with £ = d 4 1 to output f exactly.
We use the same notation as lemma Let 2[% = Ay, (x) = (x,p1(x)). In the next block, we
compute ¢ = T (210 = ReLU(py(2) — p1(x)) in the activation layer and U737 (2[0) =
(0, ReLU(pa(z) — p1(z))) in the identity layer by choosing the appropriate weights. Then we can
output

2 = 7[1] + 200 = (0, ReLU(pa(x) — p1(x)) + 2100 — (, max{p1,p2}).

By repeatedly doing this, we can output !’ = (x, max;<,<p{p.}) in the P-th block. In the next
two block, we output zl7+2 = (z, p(x) — ¢1()). Here we use two single-neuron blocks to compute

q1(z) = (q1)4 — (—q1)+. Then by the same operation, we can get the result z2["+@+2l = (2, p — ¢)
in the (P + @ + 2)-th block. Then the ResNet outputs f = p — ¢ exactly.

To approximate continuous functions, we give the following precise result.

Corollary 21. For any continuous function f : [0,1]% — R, there is a ResNet
R(z) e RN (d+1,1,L)
with L = Oq(ws(e)~*) such that || f — R||¢(jo,1)4) < € where

w(t) = sup{[f(2) = fy)| : [z —y [< ¢}

The proof is directly from the proof of equation (6), (7) of theorem 1 in|[Hanin/ (2019). One point
of difference is that the continuous functions are assumed to be from [0, 1] to R, in that paper.
Actually, the domain [0, 1]¢ of f is compact so there exists a constant C' such that f + C' > 0. Then
our assumption can be converted into the same as theirs. Here we just briefly talk about their proof
ideas.

They first sub-divide [0, 1]¢ into at most wy(¢)~? cubes of side length at most wy (). Then, they
subdivide each such smaller cube into d ! copies of the standard simplex {P;}; (which has volume
1/d ") rescaled to have side length wy(¢). Then define a CPwL function f. which equals to f on the
vertices of P and is affine on their interiors. Then

If - fch([o,l]d) <e

Then by Lemma[20|and Theorem @ We can use ResNet belonging to RA (d + 1,1, L) to generate
f- where L = O(wy(e)~%).

E.2 SOME DISCUSSIONS

Piecewise linear interpolation holds a significant position in approximation theory, as it is a basic
method of approximating functions. Therefore, studying the expressive power of neural networks for
piecewise linear functions becomes particularly important. Every ReLLU FNN is a CPwL function,
bringing forth intriguing questions about the relationship between ReLU neural networks and CPwL
functions, such as the network size required to represent an arbitrary CPwL function. According to
Arora et al.| (2016), any CPwL function from R? to R can be represented by a deep ReLU network
with depth at most [log,(d + 1)] + 1 and sufficient width. Later, Hanin|(2019) and |DeVore et al.
(2021) revealed that a ReLU network of fixed width (d 4+ 3 and d + 2 respectively) can generate any
CPwL function with sufficiently large depth. In our new result for ResNet, Theorem [6| shows that a
ResNet with one neuron per activation layer can represent any CPwL function over R* given enough
depth. While Lin & Jegelka (2018)) demonstrated the construction of ResNet for approximating step
constant functions, its methods are limited to generating CPwL functions. Our Proposition [T aligns
with |DeVore et al.| (2021)) and shows that a sufficiently deep ReLLU network with width d + 2 can
generate any CPwL function over [0, 1]d. However, ResNet, with the same number of neurons, offers
fewer tunable parameters, and superior training efficiency for very deep networks due to its ability to
solve the issue of gradient exploding/vanishing.

27

Under review as a conference paper at ICLR 2024

F PROOF OF THEOREM [§]
Before proceeding to the proof of Thm. [8] we first discuss more explanations and a conclusion.

To approximate function f (z1,--- ,z4) = Zid:o g (Zle Aidq (sz)) € K¢ ie., gand ¢4(q =
1,2, -+ ,d) are Lipschitz continuous functions, one can use piecewise linear splines to approximate
g and ¢4. Concretely,

G(x) =D wro(e —yp) ~g(x) and dgi(w:) =D cgji0(@i — Ygii) ~ Ny ()
k=1 j=1
for any x € [0, 1] where wg, ¢q; € R,y € [0,1],y4; € [0, 1]. Then we can use

2d d
Flone ma) :25(25;@0») ..
q=0 i=1

to approximate f and can achieve the approximation rate in Theorem
Theorem 22 (Theorem 4, Lai & Shen| (2021)). We have

C(2d +1)?
where
2d n d n
Knn= ZZwkU ZZcqu (i — Yqj) — Yk | s Wi, cqj € Ryyx €10,1],y4; € [0,1]

q=0 k=1 i=1 j=1

We then ready to prove Thm. [§]

F.1 PROOF OF THEOREM[§]

n neurons

0(d?n) blocks @

@}@

Figure 9: Illustration for generating the KST structure in KC,, ,,. Grey represents the identity layer and
yellow represents the activation layer.

Based on the above discussion, it suffices to show ResNet R(x) € RN (d + 2,n, L) with L = O(d?)
can generate any function in K, ,, using O(d?n) non-zero weights. We then get the conclusion by
Theorem

Assume = € [0, 1]%. For a ResNet, let 2 = (,0,0). Then we can output

C[l] = 7-1[1](2[0]) = (o(z1 —y111),0(x1 —y121), (21— Yin,1))-
in the next layer. By choosing some weights, we can compute

0 0 0
0 0 0
Mewndi=1 05 T | = 0esuEo
€111 C12,1 "t Cindl
0 0 0

d+2,n

28

Under review as a conference paper at ICLR 2024

Thus, the output of the first block is z[1 = 2[00 4 A1 = (z, Eﬁfﬁ (x1),0). By repeatedly doing this in
the next d blocks, we can generate

d
Z[d] = (.27, Z (bl,ia O)
i=1

In the next layer, we compute

¢t = TG — (oM —), 0EL —) o EL =).

Then by choosing some appropriate weights, we have

d
A = (x 0,9 (Z&? (sm))) .
i=1

Also by repeatedly doing the operation, we can get in the (d? + 2d + 1)-th block that

2d d
z[(d+1)2] = (:L‘, _7 Zg (Z (}; (%))) '
q=0 =1

See Figure [0 for an illustration.

Moreover, in each block, only O(n) weights are non-zero. Thus, the total tunable weights of this
neural network is O(d?n)

G SUPPLEMENTARY DISCUSSIONS

G.1 RELATED WORK

These are supplementary details to the related work section (Sec. [I.I) of this paper.

Universality. The universality of a function family implies that this family is dense in the space of
continuous functions, meaning it can approximate any continuous function with arbitrary precision.
In the earlier years, Cybenko| (1989) made a groundbreaking argument by demonstrating that shallow
neural networks equipped with sigmoid activation functions possess universal approximation prop-
erties. This activation condition was further expanded by [Pinkus|(1999) who showed that shallow
networks employing non-polynomial activation functions also exhibit universal approximation ca-
pabilities. In recent years, the universality of narrow deep networks has also attracted considerable
attention. Hanin & Sellke| (2017} determined that a deep ReLU neural network must have a minimum
width of d + 1 to ensure universality, where d is the input dimension. |Kidger & Lyons|(2020) then
showed that deep narrow networks with any continuous activation function can achieve universality,
provided that the activation satisfies a very mild condition. Over the past decades, a variety of
network architectures have been developed to cater to diverse tasks and objectives, extending beyond
feedforward ReLU networks. The universal approximation theorem has been proven for multiple
network architectures, including: standard deep ReLU CNN [Zhou| (2018};|2020), deep ReLU CNNs
with classical structures |He et al.| (2022), continuous-time recurrent neural network (RNN) [Li et al.
(2020; [2022b), continuous-time ResNet Li et al.| (2022a), ResNet|Lin & Jegelkal (2018), and ResNet
for finite-sample classification tasks Hardt & Ma|(2016)).

Approximation Capabilities. There has been substantial progress in enhancing our theoretical
understanding of neural networks. Some studies have focused on comparing the expressive power
of both shallow and deep neural networks, examining their respective capabilities (e.g.,/Arora et al.
(2016); Eldan & Shamir| (2016); |Liang & Srikant| (2016); Telgarsky| (2016); [Yarotsky| (2017); |[Poggio
et al. (2017)). Some others have quantified the number of linear regions within deep neural networks,
casting light on their complexity (e.g., Montufar et al.| (2014); [Serra et al.| (2018); |Arora et al.
(2016)). Moreover, constructive methods have been utilized to probe the approximation capabilities
across different function classes. Notably, researchers have delved into the optimal approximation
of continuous functions (e.g., |Shen et al.| (2022b)); |Yarotsky| (2018))), the optimal approximation
of smooth functions (e.g., |Yarotsky| (2017); [Lu et al.| (2021); Montanelli & Dul (2019)), and the
approximation of analytic functions (e.g., 'Wang et al.|(2018)); Schwab & Zech| (2021)). These diverse

29

Under review as a conference paper at ICLR 2024

investigations collectively deepen our understanding of both the potential and constraints of neural
networks in approximating various types of functions.

Perspectives on the Curse of Dimensionality. The ’curse of dimensionality’ coined by [Bellman
(1957) refers to a phenomenon that a model class will suffer an exponential increase in its complexity
as the input dimension increases. This impact is explicitly observed in ReL.U networks, as well-
documented in |Yarotsky|(2017). Importantly, the curse of dimensionality, not limited to MLPs, is
also a challenge for almost all classes of function approximators aiming to uniformly approximate in
the Lipschitz domain (have sufficient regular boundary) on some compact subset of a metric space
due to the entropy limitation [Kolmogorov & Tikhomirov]|(1959).

More specifically, any continuous function approximatorlﬂ will suffer the curse of dimension in
the smooth function space C" [DeVore et al.|(1989) because the metric entropy of the unit ball in
C™ with respect to the uniform topology is @(s*d/ ™). The property is applied to ReLU neural
networks in Thm. 3 |Yarotsky| (2017). In an attempt to mitigate the curse of dimensionality,
initial strategies involved the consideration of specialized function spaces whose metric entropy is
expected to reduce such as analytical functions Wang et al.[(2018)), bandlimited functions Montanelli
et al.| (2019), Korobove space |[Montanelli & Du|(2019). Specifically, for analytical functions on
[-1+4 6,1 — 6]¢ (Wang et al.| (2018)), ReLU networks can achieve the exponential approximation
rate of O(exp{—dd(e~'L'/?? —1)}) for any small § > 0. For band-limited functions, [Montanelli
et al(2019) shows that ReLU networks with a depth of O (log® 1 J/|and a width of O (2 log? 1)
can achieve an e-approximation. Additionally, [Montanelli & Du|(2019) demonstrates that ReLLU
networks with a total neuron count of O (e ~/2(log 1/¢) 2 (4=1)+1]og d) can approximate any function
in Korobov space using a sparse grids structure.

More recently, researchers have shifted their focus toward the structure of neural networks, suggesting
a potential solution to circumvent the curse of dimensionality. Some researchers consider the
parameters-sharing method (e.g., repeated-composition structure [Zhang et al.[(2023)), CNN |Zhou
(2018))). A more recent trend aims to serve neural networks as discontinuous function approximators,
thereby examining neural networks with novel activation functions (e.g., ReLU-floor activation [Shen
et al.[(2020), ReLU-sine-exponential activation Jiao et al.|(2023), floor-exponential-step activation
Shen et al.|(2021])), activation composed of triangular-wave and softsign function [Shen et al.|(2022a)).
Meanwhile, they incorporate the Kolmogorov Superposition Theorem (KST)(see Sec. [3) to tackle
the curse of dimensionality, yielding promising theoretical results. For instance, |Yarotsky|(2021) and
Shen et al.|(2022a) show that deep networks with particular activation can approximate any continuous
functions over [0, 1]¢ with complexity O(d?). Moreover, |[Lai & Shen|(2021) and He (2023) show
that ReLU networks can overcome the curse of dimensionality within a special function class derived
from KST. However, the failure of these model classes in practice is due to the discontinuity of the
function approximators, wherein even minor perturbations in the training data can lead to chaotic
changes in the input-output relationship. Consequently, to circumvent the curse of dimensionality, it
is imperative to make appropriate choices within the unstable model class and the restricted objective
function space.

G.2 RELATIONS WITH DYNAMIC SYSTEMS

ResNet shares a deep correlation with dynamic systems, to the point where one could consider ResNet
as a form of discrete dynamic system. In this subsection, we will briefly discuss the relationship
between ResNet and dynamic systems.

Dynamic systems is generally described by an ordinary differential equation (ODE):

%z(t) — fon(2(t), 0(t)€®, te[0,T], =(0)=zcR".

®In the context, we aim to approximate all functions in a space F using a model class as an approximator
(e.g., neural networks). We achieve this by choosing different parameters for different functions, meaning the
parameters § € © can be seen as a mapping of the target functions, i.e., 8 = h(f) where h : F — ©. If this
mapping h is continuous, we refer to the approximator as a continuous approximator.

"The subscript f implies the hidden constant depends on f including the domain and the dimension. More
detail can be found in the paper.

30

Under review as a conference paper at ICLR 2024

where fy;) : R™ — R"™ is the dynamics function of this dynamical system, and © is the parameter
space. z(T') can be regarded as a function of x, denoted by @y (x) which is known as the flow map.
Then we can use £ o pg() o A to approximate a target function f : R? — R where £, A are affine
transformations.

By using the Euler method to discretize the ODE, we have 251 = z540- fp, (z5) for some small § >
Ofors=1,2,---,S—1where T = §S. Inourresults, fy_ (zs) can be realized by a shallow constant-
neuron ReL.U network block, in which the number of tunable parameters can be absolute constant
which is independent of d. Then we can have zg = z(T) = pg(x).

Thus, our results reveal that a continuous-depth network generated via a dynamical system possesses
significant approximation capabilities even if its dynamics function is dimension-independent and
realized by a shallow constant-neuron ReLLU network block. Moreover, there is a comprehensive
review of the correlations between deep learning and dynamic systems in the recent work [Zhang
et al.|(2023)).

H EXPERIMENTS

In this appendix, we specify the experiment setting in Section[6] First, we assume that an appropriate
algorithm can effectively manage the optimization error (e.g., Adam optimizer (Kingma & Bal|[2014)).
We then choose a sufficiently complex target function to ensure that the approximation error is the
dominant factor. Specifically, we utilize the following function to test the universal approximation
capability of b-ResNet.

m

flx) = Z[ai H xj + b; sin(H k)]s (32)

=1 jes} kes?

where € [—1,1]%, S} and S} are the index sets randomly sampled from {1, ..., d} with replacement,
a; and b; are constant coefficients, and m is the total number of terms. Specifically, we set the
parameters for the defined function as d € {100,200, 300}, m = d/10, card(S}) < V/d, card(S?) <
Vd, a; = 1 and b; = 0.1. We then compare b-ResNet with fully connected NN for approximating
the defined function, with network structure as RN (d + 1,n,d/10) for n € {10,20,30}, and
NN (d+1,d/10), respectively. Next, We conduct Quasi Monte Carlo sampling over [—1,1]¢ with
1000 - d samples and use 90% for training and 10% for testing. We optimize the network parameters
using Adam (Kingma & Ba, 2014) with a learning rate of 1e~3 and present the test performance over
iteration.

The results include the mean square error (MSE) and the infinite norm error (MAX) on testing
samples. Further, we also compared the testing performance under different training losses, including
MSE and MAX, are shown in the following figures.

31

Under review as a conference paper at ICLR 2024

Input dimension: d=100

Input dimension: d=200

Input dimension: d=300

10 —— NN(101,10) —— NN(201,20) —— NN(301,30)
RN(101,10,10) RN(201,10,20) RN(301,10,30)
o - RN(101,20,10) . - RN(201,20,20) 01071 RN(301,20,30)
CE —-= RN(101,40,10) £ 1073 —-= RN(201,40,20) 2 —-= RN(301,40,30)
w i w w
0 1} 0 0
= 10-21\ = =
% \ 7 %
< W) S IS
VR WAL TF7 A AW/ 102
NECANES Y
0 20 40 60 80 100 0 20 40 60 80 [20 40 60 80 100
Number of epoch Number of epoch Number of epoch
Figure 10: Comparison of testing MSE loss by training with MSE loss.
Input dimension: d=100 Input dimension: d=200 Input dimension: d=300
—— NN(101,10) —— NN(201,20) —— NN(301,30) |
RN(101,10,10) 10° RN(201,10,20) . RN(301,10,30) i
a0\ e RN(101,20,10) T O VO, N R P RN(201,20,20) w 100 RN(301,20,30) il
2 —-= RN(101,40,10) 2 —-~ RN(201,40,20) 2 —-= RN(301,40,30) i
w w w
0 101])
s s s
e - o 100
% 7 %
IS < IS
102 107t
0 20 40 60 80 100 0 20 40 60 80 [20 40 60 80 100
Number of epoch Number of epoch Number of epoch
Figure 11: Comparison of testing MSE loss by training with MAX loss.
» Input dimension: d=100 ’s Input dimension: d=200 Input dimension: d=300
1'3 —— NN(101,10) 2'50 —— NN(201,20) 30— NN(30L30)
’ RN(101,10,10) : RN(201,10,20) 25 RN(301,10,30)
0l2 RN(101,20,10) | 92, RN(201,20,20) o w ------ RN(301,20,30)
211 —-= RN(101,40,10) —-= RN(201,40,20) >—‘<’2_0 —-= RN(301,40,30)
<
s
15
3 \ I
@
vof S AN e sl 1 4L I L
RSN TR VA LA
BTV .‘(\!q‘.ﬂ‘ﬂ, J
0.5
80 100

20 80 100

40 6
Number of epoch

0 20 40 60
Number of epoch

0 20

40 6
Number of epoch

Figure 12: Comparison of testing MAX loss by training with MSE loss.

Input dimension: d=100

Input dimension: d=200

Input dimension: d=300

Test MAX loss

—— NN(101,10)
RN(101,10,10)
RN(101,20,10)

—-= RN(101,40,10)

—— NN(201,20)

RN(201,10,20)
RN(201,20,20)
—-= RN(201,40,20)

«

>

Test MAX loss
w

N

Test MAX loss

—— NN(301,30)

RN(301,10,30)
RN(301,20,30)
—-= RN(301,40,30)

o 20 40 60 80 100

20 40 60 80 100
Number of epoch

0 20 40 60 80
Number of epoch

Number of epoch

Figure 13: Comparison of testing MAX loss by training with MAX loss.

32

