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1.1 About the Dataset

All datasets are provided in standard binary file format (NPY). The format stores all of the shape and data type infor-
mation necessary to reconstruct the array correctly even on another machine with a different architecture.

1.1.1 Downloading NPY datasets

All datasets are hosted on https://structinfer.github.io/download/, where the links to download raw and split datasets
in NPY format can be found at. After downloading the datasets, please move the corresponding files into
/src/simulations/[name of the underlying graph]/directed [or undirected]/springs [or netsims]/. For the graph types are
gene coexpression networks and landscape networks, the trajectories should be saved under /src/simulations/[name of
the underlying graph]/undirected/springs [or netsims]/. For the others, please save them under /src/simulations/[name
of the underlying graph]/directed/springs [or netsims]/.

1.1.2 Loading datasets in Python

After downloading an NPY dataset, it is easy to load it into Python with Numpy. You can also load a dataset from a
directory of files in any supported structural data format by creating customized data-loading pipelines.

1.1.3 Naming policies of datasets

By default, daatasets contain all trajectories and underlying interacting graphs in each folder with cer-
tain training-validation-test split. For example, for the following properties: “directed”, “CRNA”,
“15 nodes”, “springs simulation”, “noise-free”, and “the first repetition” the data can be found at:
/src/simulations/chemical_reaction_networks_in_atmosphere/directed/springs/. The files are:

• Trajectories for training: loc_train_springs15r1.npy, vel_train_springs15r1.npy,

• Groundtruth graphs for training: edges_train_springs15r1.npy,

• Trajectories for validation: loc_valid_springs15r1.npy, vel_valid_springs15r1.npy,

• Groundtruth graphs for validation: edges_valid_springs15r1.npy,

• Trajectories for test: loc_test_springs15r1.npy, vel_test_springs15r1.npy,

• Groundtruth graphs for test: edges_test_springs15r1.npy.

For the following properties: “directed”, “BN”, “30 nodes”, “netsims simulation”, “noise-free”, and “the second repe-
tition” the data can be found at: /src/simulations/brain_networks/directed/netsims/. The files are:
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• Trajectories for training: bold_train_netsims30r2.npy,

• Groundtruth graphs for training: edges_train_netsims30r2.npy,

• Trajectories for validation: bold_valid_netsims30r2.npy,

• Groundtruth graphs for validation: edges_valid_netsims30r2.npy,

• Trajectories for test: bold_test_netsims30r2.npy,

• Groundtruth graphs for test: edges_test_netsims30r2.npy.

For the following properties: “undirected”, “LN”, “50 nodes”, “netsims simulation”, “noise level 2”, and “the third
repetition” the data can be found at: /src/simulations/landscape_networks/undirected/netsims/. The files are:

• Trajectories for training: bold_train_netsims50r3_n2.npy,

• Groundtruth graphs for training: edges_train_netsims50r3_n2.npy,

• Trajectories for validation: bold_valid_netsims50r3_n2.npy,

• Groundtruth graphs for validation: edges_valid_netsims50r3_n2.npy,

• Trajectories for test: bold_test_netsims50r3_n2.npy,

• Groundtruth graphs for test: edges_test_netsims50r3_n2.npy.

1.1.4 More comments

All of the trajectories are in the shape of: [trajectories, nodes, features, timesteps]. For trajectories generated by
springs simulations, for example, with a directed graph consisting of 15 nodes and with the first repetition, both
“loc_train_springs15r1.npy”, and “vel_train_springs15r1.npy” have the shape of [8000, 15, 2, 49]. Meanwhile, the
ground truth graph has the shape: [nodes, nodes], which is an adjacency matrix, and if the element at row i, column j is
one, it represents that there is an directed edge from node i to j. In order to get the full features, we have to concatenate
both files on the feature dimension, and obtain new trajectories with the shape: [8000, 15, 4, 49].

But for the trajectories generated by netsims simulations, for example, with a directed graph consisting of 30 nodes and
with the second repetition, “bold_train_netsims30r2.npy” has the shape of [8000, 30, 1, 49].

The trajectories for validation and test, each have 2000 trajectories, respectively.

1.2 About the Structural Inference Methods

The structural inference methods benchmarked with StructInf are collected from multiple discinplinaries such as bi-
ology and computer science. We follow the original implementation of these methods, but with slight modification
to intergrating data loading and metric calculations. In the following paragraphs, the implementation of the structural
inference methods in this work will be discussed in details.
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1.2.1 Structural Inference Methods in this Work

Methods Pa-
per

Official
Implemen-
tation

Our Implementa-
tion

ppcor: An R Package for a Fast Calculation to Semi-partial Correlation
Coefficients (ppcor)

Link Link /src/models/ppcor

TIGRESS: Trustful Inference of Gene REgulation using Stability Se-
lection (TIGRESS)

Link Link /src/models/TIGRESS

ARACNE: An Algorithm for the Reconstruction of Gene Regulatory
Networks in a Mammalian Cellular Context (ARACNe)

Link Link /src/models/ARACNE

Large-Scale Mapping and Validation of Escherichia coli Transcrip-
tional Regulation from a Compendium of Expression Profiles (CLR)

Link Link /src/models/CLR

Gene Regulatory Network Inference from Single-Cell Data Using Mul-
tivariate Information Measures (PIDC)

Link Link /src/models/PIDC/

Inferring Causal Gene Regulatory Networks from Coupled Single-Cell
Expression Dynamics Using Scribe (Scribe)

Link Link /src/models/scribe

dynGENIE3: dynamical GENIE3 for the inference of gene networks
from time series expression data (dynGENIE3)

Link Link /src/models/dynGENIE3

Inference of gene regulatory networks based on nonlinear ordinary dif-
ferential equations (XGBGRN)

Link Link /src/models/GRNs_nonlinear_ODEs

Neural Relational Inference for Interacting Systems (NRI) Link Link /src/models/NRI
Amortized Causal Discovery: Learning to Infer Causal Graphs from
Time-Series Data (ACD)

Link Link /src/models/ACD

Neural Relational Inference with Efficient Message Passing Mecha-
nisms (MPM)

Link Link /src/models/MPM

Iterative Structural Inference of Directed Graphs (iSIDG) Link Link /src/models/iSIDG

1.2.2 Methods based on Classical Statistics

Unless otherwises specified, the following args are used to select the trajectories to be used for evaluation:

parser = add_option(parser, c("--data-path"), type="character", default="/work/projects/
→˓bsimds/backup/src/simulations/",

help="The folder where data are stored.")
parser = add_option(parser, c("--save-folder"), type="character", default="",

help="The folder where resulting adjacency matrixes are stored.")
parser = add_option(parser, c("--b-portion"), type="numeric", default=1.0,

help="Portion of data to be used in benchmarking.")
parser = add_option(parser, c("--b-time-steps"), type="integer", default=49L,

help="Portion of time series in data to be used in benchmarking")
parser = add_option(parser, c("--b-network-type"), type="character", default="",

help="What is the network type of the graph.")
parser = add_option(parser, c("--b-directed"), action="store_true", default=FALSE,

help="Default choose trajectories from undirected graphs.")
parser = add_option(parser, c("--b-simulation-type"), type="character", default="",

help="Either springs or netsims.")
parser = add_option(parser, c("--b-suffix"), type="character", default="",

help='The rest to locate the exact trajectories. E.g. "50r1_n1" for␣
→˓50 nodes, rep 1 and noise level 1. Or "50r1" for 50 nodes, rep 1 and noise free.')
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ppcor

We use the official implementation of ppcor from the R package with a customized wrapper. Our wrapper will parse
multiple arguments to select a set of targeted trajectories for inference, transform trajectories into a suitable format,
feed each trajectory into the ppcor algorithm, and store the output into designated directories. Our implementation can
be found at /src/models/ppcor in the provided Anonymous GitHub repository. The method is implemented in R with
the help of NumPy Python package to store generated trajectories, reticulate from https://github.com/rstudio/reticulate
to load Python variables into the R environment, stringr from https://stringr.tidyverse.org for string operation, and
optparse from https://github.com/trevorld/r-optparse to produce Python-style argument parser.

TIGRESS

We use the official implementation of TIGRESS by the author at https://github.com/jpvert/tigress with a customized
wrapper. Our wrapper will parse multiple arguments to select a set of targeted trajectories for inference, transform
trajectories into a suitable format, feed each trajectory into the TIGRESS algorithm, and store the output into designated
directories. Our implementation can be found at /src/models/TIGRESS in the provided Anonymous GitHub repository.
The method is implemented in R with the help of NumPy Python package to store generated trajectories, reticulate
from https://github.com/rstudio/reticulate to load Python variables into the R environment, stringr from https://stringr.
tidyverse.org for string operation, and optparse from https://github.com/trevorld/r-optparse to produce Python-style
argument parser.

1.2.3 Methods based on Information Theory

Unless otherwises specified, the following args are used to select the trajectories to be used for evaluation:

parser = add_option(parser, c("--data-path"), type="character", default="/work/projects/
→˓bsimds/backup/src/simulations/",

help="The folder where data are stored.")
parser = add_option(parser, c("--save-folder"), type="character", default="",

help="The folder where resulting adjacency matrixes are stored.")
parser = add_option(parser, c("--b-portion"), type="numeric", default=1.0,

help="Portion of data to be used in benchmarking.")
parser = add_option(parser, c("--b-time-steps"), type="integer", default=49L,

help="Portion of time series in data to be used in benchmarking")
parser = add_option(parser, c("--b-network-type"), type="character", default="",

help="What is the network type of the graph.")
parser = add_option(parser, c("--b-directed"), action="store_true", default=FALSE,

help="Default choose trajectories from undirected graphs.")
parser = add_option(parser, c("--b-simulation-type"), type="character", default="",

help="Either springs or netsims.")
parser = add_option(parser, c("--b-suffix"), type="character", default="",

help='The rest to locate the exact trajectories. E.g. "50r1_n1" for␣
→˓50 nodes, rep 1 and noise level 1. Or "50r1" for 50 nodes, rep 1 and noise free.')
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ARACNe

We use the implementation of ARACNe by the Bioconductor package minet with a customized wrapper. Our wrap-
per will parse multiple arguments to select a set of targeted trajectories for inference, transform trajectories into
a suitable format, feed each trajectory into the ARACNe algorithm, and store the output into designated directo-
ries. Our implementation can be found at /src/models/ARACNE in the provided Anonymous GitHub repository.
The method is implemented by minet in R with the help of NumPy Python package to store generated trajectories,
reticulate from https://github.com/rstudio/reticulate to load Python variables into the R environment, stringr from
https://stringr.tidyverse.org for string operation, and optparse from https://github.com/trevorld/r-optparse to produce
Python-style argument parser.

CLR

We use the implementation of CLR by the Bioconductor package minet with a customized wrapper. Our wrapper will
parse multiple arguments to select a set of targeted trajectories for inference, transform trajectories into a suitable format,
feed each trajectory into the CLR algorithm, and store the output into designated directories. Our implementation can
be found at /src/models/CLR in the provided Anonymous GitHub repository. The method is implemented by minet in
R with the help of NumPy Python package to store generated trajectories, reticulate from https://github.com/rstudio/
reticulate to load Python variables into the R environment, stringr from https://stringr.tidyverse.org for string operation,
and optparse from https://github.com/trevorld/r-optparse to produce Python-style argument parser.

PIDC

Following args are used to select the trajectories to be used for evaluation:

s = ArgParseSettings()
@add_arg_table s begin

"--data-path"
help = "The folder where data are stored."

arg_type = String
default = "/work/projects/bsimds/backup/src/simulations/"

"--save-folder"
help = "The folder where resulting adjacency matrixes are stored."
arg_type = String
required = true

"--b-portion"
help = "Portion of data to be used in benchmarking."
arg_type = Float64
default = 1.0

"--b-time-steps"
help = "Portion of data to be used in benchmarking."
arg_type = Int
default = 49

"--b-shuffle"
help = "Shuffle the data for benchmarking?"
action = :store_true
default = false

"--b-network-type"
help = "What is the network type of the graph."
arg_type = String

default = ""
"--b-directed"

(continues on next page)
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(continued from previous page)

help = "Default choose trajectories from undirected graphs."
action = :store_true

"--b-simulation-type"
help = "Either springs or netsims."
arg_type = String
default = ""

"--b-suffix"
help = "The rest to locate the exact trajectories. E.g. \"50r1_n1\" for 50 nodes,

→˓ rep 1 and noise level 1. Or \"50r1\" for 50 nodes, rep 1 and noise free."
arg_type = String

default = ""
end

We use the official implementation of PIDC by the author at https://github.com/Tchanders/NetworkInference.jl with a
customized wrapper. Our wrapper will parse multiple arguments to select a set of targeted trajectories for inference,
transform trajectories into a suitable format, feed each trajectory into the PIDC algorithm, and store the output into
designated directories. Our implementation can be found at /src/models/PIDC in the provided Anonymous GitHub
repository. The method is implemented in Julia with the help of NumPy Python package to store generated trajectories,
ArgParse.jl from https://github.com/carlobaldassi/ArgParse.jl to parse command line arguments, CSV.jl from https://
github.com/JuliaData/CSV.jl to save and load .csv files, DataFrames.jl from https://github.com/JuliaData/DataFrames.
jl to manipulate data array, and NPZ.jl from https://github.com/fhs/NPZ.jl to load .npy into the Julia environment.

Scribe

Following args are used to select the trajectories to be used for evaluation:

parser.add_argument('--data-path', type=str,
default="/work/projects/bsimds/backup/src/simulations/",
help="The folder where data are stored.")

parser.add_argument('--save-folder', type=str, required=True,
help="The folder where resulting adjacency matrixes are stored.")

parser.add_argument('--b-portion', type=float, default=1.0,
help='Portion of data to be used in benchmarking.')

parser.add_argument('--b-time-steps', type=int, default=49,
help='Portion of time series in data to be used in benchmarking.')

parser.add_argument('--b-shuffle', action='store_true', default=False,
help='Shuffle the data for benchmarking?')

parser.add_argument('--b-network-type', type=str, default='',
help='What is the network type of the graph.')

parser.add_argument('--b-directed', action='store_true', default=False,
help='Default choose trajectories from undirected graphs.')

parser.add_argument('--b-simulation-type', type=str, default='',
help='Either springs or netsims.')

parser.add_argument('--b-suffix', type=str, default='',
help='The rest to locate the exact trajectories. E.g. "50r1_n1" for 50␣

→˓nodes, rep 1 and noise level 1. Or "50r1" for 50 nodes, rep 1 and noise free.')
parser.add_argument('--pct-cpu', type=float, default=1.0,

help='Percentage of number of CPUs to be used.')

We optimize the official implementation of Scribe by the author at https://github.com/aristoteleo/Scribe-py with a
customized wrapper. Our wrapper will parse multiple arguments to select a set of targeted trajectories for inference,
transform trajectories into a suitable format, feed each trajectory into the Scribe algorithm, and store the output into des-
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ignated directories. Our implementation has customized causal_network.py and information_estimators.py scripts so
as to modify the hyperparameters directly from command line arguments. We also have optimized the parallel support
and computation efficiency and kept minimal functionality for benchmarking purposes, at the same time maintaining
its general mechanism. Our implementation can be found at /src/models/scribe in the provided Anonymous GitHub
repository. The method is implemented in Python with the help of NumPy package to store generated trajectories and
tqdm from https://github.com/tqdm/tqdm to create progress bars.

1.2.4 Methods based on Tree Algorithms

Following args are used to select the trajectories to be used for evaluation:

parser.add_argument('--data-path', type=str,
default="/work/projects/bsimds/backup/src/simulations/",
help="The folder where data are stored.")

parser.add_argument('--save-folder', type=str, required=True,
help="The folder where resulting adjacency matrixes are stored.")

parser.add_argument('--b-portion', type=float, default=1.0,
help='Portion of data to be used in benchmarking.')

parser.add_argument('--b-time-steps', type=int, default=49,
help='Portion of time series in data to be used in benchmarking.')

parser.add_argument('--b-shuffle', action='store_true', default=False,
help='Shuffle the data for benchmarking?')

parser.add_argument('--b-network-type', type=str, default='',
help='What is the network type of the graph.')

parser.add_argument('--b-directed', action='store_true', default=False,
help='Default choose trajectories from undirected graphs.')

parser.add_argument('--b-simulation-type', type=str, default='',
help='Either springs or netsims.')

parser.add_argument('--b-suffix', type=str, default='',
help='The rest to locate the exact trajectories. E.g. "50r1_n1" for 50␣

→˓nodes, rep 1 and noise level 1. Or "50r1" for 50 nodes, rep 1 and noise free.')
parser.add_argument('--pct-cpu', type=float, default=1.0,

help='Percentage of number of CPUs to be used.')

dynGENIE3

We optimize the official Python implementation of dynGENIE3 by the author at https://github.com/vahuynh/
dynGENIE3 with a customized wrapper. Our wrapper will parse multiple arguments to select a set of targeted trajecto-
ries for inference, transform trajectories into a suitable format, feed each trajectory into the dynGENIE3 algorithm, and
store the output into designated directories. Following the principle of maintaining dynGENIE’s general mechanism,
we have modified the dynGENIE3.py script so as to tune the hyperparameters directly from command line arguments,
increase computation efficiency on big datasets, enable calculation of self-influence, and retain minimal functionality
for benchmarking purposes. Our implementation can be found at /src/models/dynGENIE3 in the provided Anony-
mous GitHub repository. The method is implemented in Python with the help of NumPy package to store generated
trajectories.

1.2. About the Structural Inference Methods 7
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XGBGRN

We use the official implementation of XGBGRN by the author at https://github.com/lab319/GRNs_nonlinear_ODEs
with a customized wrapper. Our wrapper will parse multiple arguments to select a set of targeted trajectories for
inference, transform trajectories into a suitable format, feed each trajectory into the XGBGRN algorithm, and store
the output into designated directories. Our implementation can be found at /src/models/GRN nonlinear ODEs in the
provided Anonymous GitHub repository. The method is implemented in Python with the help of NumPy package to
store generated trajectories.

1.2.5 Methods based on VAEs

In general, we added following arguments to the argparse variable in these methods:

parser.add_argument('--save-probs', action='store_true', default=False,
help='Save the probs during test.')

parser.add_argument('--b-portion', type=float, default=1.0,
help='Portion of data to be used in benchmarking.')

parser.add_argument('--b-time-steps', type=int, default=49,
help='Portion of time series in data to be used in benchmarking.')

parser.add_argument('--b-shuffle', action='store_true', default=False,
help='Shuffle the data for benchmarking.')

parser.add_argument('--data-path', type=str, default='',
help='Where to load the data. May input the paths to edges_train of␣

→˓the data.')
parser.add_argument('--b-network-type', type=str, default='',

help='What is the network type of the graph.')
parser.add_argument('--b-directed', action='store_true', default=False,

help='Default choose trajectories from undirected graphs.')
parser.add_argument('--b-simulation-type', type=str, default='',

help='Either springs or netsims.')
parser.add_argument('--b-suffix', type=str, default='',

help='The rest to locate the exact trajectories. E.g. "50r1_n1" for 50 nodes, rep 1␣
→˓and noise level 1.'

' Or "50r1" for 50 nodes, rep 1 and noise free.')

NRI

We use the official implementation code by the author from https://github.com/ethanfetaya/NRI with customized
data loaders for our chosen datasets. The customized data loaders are named “load_customized_springs_data” and
“load_customized_netsims_data”. Both of them are implemented in the “utils.py” file. The metric calculation pipeline
is integrated into the “test” function. Besides that, the remaining part are in consistent with its official implementation.
The code of our implementation can be found at /src/models/NRI in the provided Anonymous GitHub repository.
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ACD

We use the official implementation code by the author https://github.com/loeweX/AmortizedCausalDiscovery with a
customized data loader for our datasets. The customized data loader is named “load_data_customized”, and is imple-
mented in “data_loader.py”. The metric calculation pipeline is integrated into the function “forward_pass_and_eval”
of “foward_pass_and_eval.py” file. Besides that, the remaining part are in consistent with its official implementation.
The code of our implementation can be found at /src/models/ACD in the provided Anonymous GitHub repository.

MPM

We use the official implementation code by the author at https://github.com/hilbert9221/NRI-MPM with a customized
data loader for our chosen datasets. The customized data loader function is named “load_customized_data”, and with
data preprocessing functions “load_nri” and “load_netsims”. The first function is implemented in “run.py”, while the
rest are implemented in “load.py”. The metric calculation pipelines are integrated into the “test” function of “XNRIIns”
class in “XNRI.py” file. Besides that, the remaining part are in consistent with its official implementation. The code
of our implementation can be found at /src/models/MPM in the provided Anonymous GitHub repository.

iSIDG

We use the official implementation sent by the authors. We modified it with a customized data loader function:
“load_data_benchmark”, which is implemented in “utils.py”. Besides that, the remaining part are in consistent with its
official implementation. The code of our implementation can be found at /src/models/iSIDG in the provided Anony-
mous GitHub repository.

1.3 How to Reproduce the Results

Before the reproduction of the results in out benchmark, please follow the instructions in About the Dataset to download
the datasets, and store them correctly under every subfolder. Then the structural inference methods in the benchmark
and their results can be reproduced with following steps.

1.3.1 Methods based on Classical Statistics

ppcor

Requirements

To configure the environment, you can create a conda environment and install the environment.yml by:

$> conda env create -f environment.yml --name ppcor

Our environment included:

• r-base=4.1.3

• r-matrix=1.5_3

• r-optparse=1.7.3

• r-ppcor=1.1

• r-reticulate=1.28

• r-stringi=1.7.12
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• r-stringr=1.5.0

Reproduction Examples

Reproduce the results of ppcor in the noise-free trajectories generated by NetSims simulation, and by Brain Networks
with 15 nodes, with the first repetition number:

$> Rscript run.R --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims15r1.npy" &

Reproduce the results of ppcor in the noise-free trajectories generated by NetSims simulation, and by Brain Networks
with 30 nodes, with the second repetition number:

$> Rscript run.R --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims30r2.npy" &

Reproduce the results of ppcor in the noisy trajectories generated by NetSims simulation, and by Brain Networks with
50 nodes, with the third repetition number, with two levels of added Gaussian noise:

$> Rscript run.R --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims50r3_n2.npy" &

Reproduce the results of ppcor in the noise-free trajectories generated by NetSims simulation, by Brain Networks with
30 nodes, with the second repetition number, and with 5 time steps:

$> Rscript run.R --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims30r2.npy" --b-time-
→˓steps 5 &

TIGRESS

Requirements

To configure the environment, you can create a conda environment and install the environment.yml by:

$> conda env create -f environment.yml --name TIGRESS

Our environment included:

• r-base=4.1.3

• r-doparallel=1.0.17

• r-foreach=1.5.2

• r-matrix=1.5_4

• r-optparse=1.7.3

• r-reticulate=1.28

• r-stringr=1.5.0

Reproduction Examples

Reproduce the results of TIGRESS in the noise-free trajectories generated by NetSims simulation, and by Brain Net-
works with 15 nodes, with the first repetition number:

10 Chapter 1. Contents



StructInfer, Release 0.1

$> Rscript run.R --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims15r1.npy" &

Reproduce the results of TIGRESS in the noise-free trajectories generated by NetSims simulation, and by Brain Net-
works with 30 nodes, with the second repetition number:

$> Rscript run.R --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims30r2.npy" &

Reproduce the results of TIGRESS in the noisy trajectories generated by NetSims simulation, and by Brain Networks
with 50 nodes, with the third repetition number, with two levels of added Gaussian noise:

$> Rscript run.R --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims50r3_n2.npy" &

Reproduce the results of TIGRESS in the noise-free trajectories generated by NetSims simulation, by Brain Networks
with 30 nodes, with the second repetition number, and with 5 time steps:

$> Rscript run.R --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims30r2.npy" --b-time-
→˓steps 5 &

1.3.2 Methods based on Information Theory

ARACNe

Requirements

To configure the environment, you can create a conda environment and install the environment.yml by:

$> conda env create -f environment.yml --name ARACNE

Our environment included:

• r-base=4.2.3

• r-biocmanager=1.30.20

• r-optparse=1.7.3

• r-reticulate=1.26

• r-stringi=1.7.12

• r-stringr=1.5.0

• bioconductor-minet

Reproduction Examples

Reproduce the results of ARACNe in the noise-free trajectories generated by NetSims simulation, and by Brain Net-
works with 15 nodes, with the first repetition number:

$> Rscript test.R --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims15r1.npy" &
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Reproduce the results of ARACNe in the noise-free trajectories generated by NetSims simulation, and by Brain Net-
works with 30 nodes, with the second repetition number:

$> Rscript test.R --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims30r2.npy" &

Reproduce the results of ARACNe in the noisy trajectories generated by NetSims simulation, and by Brain Networks
with 50 nodes, with the third repetition number, with two levels of added Gaussian noise:

$> Rscript test.R --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims50r3_n2.npy" &

Reproduce the results of ARACNe in the noise-free trajectories generated by NetSims simulation, by Brain Networks
with 30 nodes, with the second repetition number, and with 5 time steps:

$> Rscript test.R --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims30r2.npy" --b-time-
→˓steps=5 &

CLR

Requirements

To configure the environment, you can create a conda environment and install the environment.yml by:

$> conda env create -f environment.yml --name CLR

Our environment included:

• r-base=4.2.3

• r-biocmanager=1.30.20

• r-matrix=1.5_3

• r-optparse=1.7.3

• r-reticulate=1.26

• r-stringi=1.7.12

• r-stringr=1.5.0

• bioconductor-minet

Reproduction Examples

Reproduce the results of CLR in the noise-free trajectories generated by NetSims simulation, and by Brain Networks
with 15 nodes, with the first repetition number:

$> Rscript test.R --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims15r1.npy" &

Reproduce the results of CLR in the noise-free trajectories generated by NetSims simulation, and by Brain Networks
with 30 nodes, with the second repetition number:

$> Rscript test.R --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims30r2.npy" &
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Reproduce the results of CLR in the noisy trajectories generated by NetSims simulation, and by Brain Networks with
50 nodes, with the third repetition number, with two levels of added Gaussian noise:

$> Rscript test.R --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims50r3_n2.npy" &

Reproduce the results of CLR in the noise-free trajectories generated by NetSims simulation, by Brain Networks with
30 nodes, with the second repetition number, and with 5 time steps:

$> Rscript test.R --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims30r2.npy" --b-time-
→˓steps 5 &

PIDC

Requirements

To configure the environment, you have to install a Julia executable.

Our environment included:

• ArgParse

• CSV

• DataFrames

• NPZ

• NetworkInference

After installing Julia, you have to install packages in our project by:

1. Install it in Julia interactive session.

julia> using Pkg
julia> Pkg.instantiate()

2. Alternatively, install it in Julia REPL mode. On the shell:

$> julia --project=./PIDC/

On the Julia REPL mode:

(PIDC) pkg> instantiate

Reproduction Examples

Reproduce the results of PIDC in the noise-free trajectories generated by NetSims simulation, and by Brain Networks
with 15 nodes, with the first repetition number:

$> julia --project=./PIDC/ -- run.jl --save-folder="./results" --b-network-type="brain_
→˓networks" --b-directed --b-simulation-type="netsims" --b-suffix="test_netsims15r1.npy"␣
→˓&

Reproduce the results of PIDC in the noise-free trajectories generated by NetSims simulation, and by Brain Networks
with 30 nodes, with the second repetition number:
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$> julia --project=./PIDC/ -- run.jl --save-folder="./results" --b-network-type="brain_
→˓networks" --b-directed --b-simulation-type="netsims" --b-suffix="test_netsims30r2.npy"␣
→˓&

Reproduce the results of PIDC in the noisy trajectories generated by NetSims simulation, and by Brain Networks with
50 nodes, with the third repetition number, with two levels of added Gaussian noise:

$> julia --project=./PIDC/ -- run.jl --save-folder="./results" --b-network-type="brain_
→˓networks" --b-directed --b-simulation-type="netsims" --b-suffix="test_netsims50r3_n2.
→˓npy" &

Reproduce the results of PIDC in the noise-free trajectories generated by NetSims simulation, by Brain Networks with
30 nodes, with the second repetition number, and with 5 time steps:

$> julia --project=./PIDC/ -- run.jl --save-folder="./results" --b-network-type="brain_
→˓networks" --b-directed --b-simulation-type="netsims" --b-suffix="test_netsims30r2.npy"␣
→˓--b-time-steps=5 &

Scribe

Requirements

To configure the environment, you can create a conda environment and install the environment.yml by:

$> conda env create -f environment.yml --name scribe

Our environment included:

• numpy=1.23.5

• pandas=1.5.2

• python=3.9.16

• pip: - scikit-learn==1.2.1 - scipy==1.10.0 - tqdm==4.64.1

Reproduction Examples

Reproduce the results of scribe in the noise-free trajectories generated by NetSims simulation, and by Brain Networks
with 15 nodes, with the first repetition number:

$> python run.py --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims15r1.npy" &

Reproduce the results of scribe in the noise-free trajectories generated by NetSims simulation, and by Brain Networks
with 30 nodes, with the second repetition number:

$> python run.py --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims30r2.npy" &

Reproduce the results of scribe in the noisy trajectories generated by NetSims simulation, and by Brain Networks with
50 nodes, with the third repetition number, with two levels of added Gaussian noise:

$> python run.py --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims50r3_n2.npy" &
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Reproduce the results of scribe in the noise-free trajectories generated by NetSims simulation, by Brain Networks with
30 nodes, with the second repetition number, and with 5 time steps:

$> python run.py --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims30r2.npy" --b-time-
→˓steps=5 &

1.3.3 Methods based on Tree Algorithms

dynGENIE3

Requirements

To configure the environment, you can create a conda environment and install the environment.yml by:

$> conda env create -f environment.yml --name dynGENIE3

Our environment included:

Our environment included:

• numpy=1.23.5

• pandas=1.5.2

• python=3.10.9

• scikit-learn=1.2.0

• scipy=1.10.0

Reproduction Examples

Reproduce the results of dynGENIE3 in the noise-free trajectories generated by NetSims simulation, and by Brain
Networks with 15 nodes, with the first repetition number:

$> python run.py --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims15r1.npy" &

Reproduce the results of dynGENIE3 in the noise-free trajectories generated by NetSims simulation, and by Brain
Networks with 30 nodes, with the second repetition number:

$> python run.py --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims30r2.npy" &

Reproduce the results of dynGENIE3 in the noisy trajectories generated by NetSims simulation, and by Brain Networks
with 50 nodes, with the third repetition number, with two levels of added Gaussian noise:

$> python run.py --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims50r3_n2.npy" &

Reproduce the results of dynGENIE3 in the noise-free trajectories generated by NetSims simulation, by Brain Networks
with 30 nodes, with the second repetition number, and with 5 time steps:

$> python run.py --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims30r2.npy" --b-time-
→˓steps=5 &
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XGBGRN

Requirements

To configure the environment, you can create a conda environment and install the environment.yml by:

$> conda env create -f environment.yml --name GRNs_nonlinear_ODEs

Our environment included:

Our environment included:

• numpy=1.23.5

• pandas=1.5.2

• py-xgboost-cpu=1.7.3

• python=3.10.9

• scikit-learn=1.2.0

Reproduction Examples

Reproduce the results of XGBGRN in the noise-free trajectories generated by NetSims simulation, and by Brain Net-
works with 15 nodes, with the first repetition number:

$> python run.py --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims15r1.npy" &

Reproduce the results of XGBGRN in the noise-free trajectories generated by NetSims simulation, and by Brain Net-
works with 30 nodes, with the second repetition number:

$> python run.py --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims30r2.npy" &

Reproduce the results of XGBGRN in the noisy trajectories generated by NetSims simulation, and by Brain Networks
with 50 nodes, with the third repetition number, with two levels of added Gaussian noise:

$> python run.py --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims50r3_n2.npy" &

Reproduce the results of XGBGRN in the noise-free trajectories generated by NetSims simulation, by Brain Networks
with 30 nodes, with the second repetition number, and with 5 time steps:

$> python run.py --save-folder="./results" --b-network-type="brain_networks" --b-
→˓directed --b-simulation-type="netsims" --b-suffix="test_netsims30r2.npy" --b-time-
→˓steps=5 &
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1.3.4 Methods based on VAEs

NRI

Please install the required packages first.

Requirements

• Python >= 3.8

• Numpy >= 1.23.4

• pandas >= 1.5.1

• matplotlib >= 3.6.2

• sklearn >= 0.0.post1

• torch >= 1.13.1

• torchinfo >= 1.7.2

• tqdm >= 4.64.1

Arguments

• b-network-type: name of the graph type (in full name)

• b-directed: if called, will load data from directed graphs

• b-simulation-type: springs or netsims

• b-suffix: choose graph with node X, the Y repetition and with noise level K with format “XrY_nK”. If use
noise-free, omit “_nK”

Reproduction Examples

Run NRI with “chemical reaction networks in atmosphere (CRNA)”, “directed”, “15 nodes”, “springs simulation”,
“noise-free”, and “the first repetition” :

$> cd /src/models/NRI/
$> python3 train.py --b-network-type 'chemical_reaction_networks_in_atmosphere' --b-
→˓directed --b-simulation-type 'springs' --b-suffix '15r1'

Run NRI with “brain networks (BN)”, “directed”, “netsims simulation”, “30 nodes”, “noise-free”, and “the second
repetition”:

$> cd /src/models/NRI/
$> python3 train.py --b-network-type 'brain_networks' --b-directed --b-simulation-type
→˓'netsims' --b-suffix '30r2'

Run NRI with “landscape networks (LN)”, “directed”, “netsims simulation”, “50 nodes”, “the third repetition”, and
“noise level 2”:

$> cd /src/models/NRI/
$> python3 train.py --b-network-type 'landscape_networks' --b-simulation-type 'netsims' -
→˓-b-suffix '50r3_n2'
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ACD

Please install the required packages first.

Requirements

• Python >= 3.8

• Numpy >= 1.23.4

• pandas >= 1.5.1

• scipy >= 1.9.3

• sklearn >= 0.0.post1

• torch >= 1.13.1

• torchinfo >= 1.7.2

• tqdm >= 4.64.1

Arguments

• b-network-type: name of the graph type (in full name)

• b-directed: if called, will load data from directed graphs

• b-simulation-type: springs or netsims

• b-suffix: choose graph with node X, the Y repetition and with noise level K with format “XrY_nK”. If use
noise-free, omit “_nK”

Reproduction Examples

Run ACD with “chemical reaction networks in atmosphere (CRNA)”, “directed”, “15 nodes”, “springs simulation”,
“noise-free”, and “the first repetition” :

$> cd /src/models/ACD/
$> python3 train.py --b-network-type 'chemical_reaction_networks_in_atmosphere' --b-
→˓directed --b-simulation-type 'springs' --b-suffix '15r1'

Run ACD with “brain networks (BN)”, “directed”, “netsims simulation”, “30 nodes”, “noise-free”, and “the second
repetition”:

$> cd /src/models/ACD/
$> python3 train.py --b-network-type 'brain_networks' --b-directed --b-simulation-type
→˓'netsims' --b-suffix '30r2'

Run ACD with “landscape networks (LN)”, “directed”, “netsims simulation”, “50 nodes”, “the third repetition”, and
“noise level 2”:

$> cd /src/models/ACD/
$> python3 train.py --b-network-type 'landscape_networks' --b-simulation-type 'netsims' -
→˓-b-suffix '50r3_n2'
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MPM

Please install the required packages first.

Requirements

• Python >= 3.8

• Numpy >= 1.23.4

• scipy >= 1.9.3

• sklearn >= 0.0.post1

• torch >= 1.13.1

• torch-geometric >= 2.2.0

• torchinfo >= 1.7.2

• tqdm >= 4.64.1

Arguments

• b-network-type: name of the graph type (in full name)

• b-directed: if called, will load data from directed graphs

• b-simulation-type: springs or netsims

• b-suffix: choose graph with node X, the Y repetition and with noise level K with format “XrY_nK”. If use
noise-free, omit “_nK”

Reproduction Examples

Run ACD with “chemical reaction networks in atmosphere (CRNA)”, “directed”, “15 nodes”, “springs simulation”,
“noise-free”, and “the first repetition” :

$> cd /src/models/MPM/
$> python3 run.py --b-network-type 'chemical_reaction_networks_in_atmosphere' --b-
→˓directed --b-simulation-type 'springs' --b-suffix '15r1'

Run ACD with “brain networks (BN)”, “directed”, “netsims simulation”, “30 nodes”, “noise-free”, and “the second
repetition”:

$> cd /src/models/MPM/
$> python3 run.py --b-network-type 'brain_networks' --b-directed --b-simulation-type
→˓'netsims' --b-suffix '30r2'

Run ACD with “landscape networks (LN)”, “directed”, “netsims simulation”, “50 nodes”, “the third repetition”, and
“noise level 2”:

$> cd /src/models/ACD/
$> python3 run.py --b-network-type 'landscape_networks' --b-simulation-type 'netsims' --
→˓b-suffix '50r3_n2'
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iSIDG

Please install the required packages first.

Requirements

• Python >= 3.8

• Numpy >= 1.23.4

• pandas >= 1.5.1

• matplotlib >= 3.6.2

• sklearn >= 0.0.post1

• torch >= 1.13.1

• torchinfo >= 1.7.2

• tqdm >= 4.64.1

Arguments

• b-network-type: name of the graph type (in full name)

• b-directed: if called, will load data from directed graphs

• b-simulation-type: springs or netsims

• b-suffix: choose graph with node X, the Y repetition and with noise level K with format “XrY_nK”. If use
noise-free, omit “_nK”

Reproduction Examples

Run NRI with “chemical reaction networks in atmosphere (CRNA)”, “directed”, “15 nodes”, “springs simulation”,
“noise-free”, and “the first repetition” :

$> cd /src/models/iSIDG/
$> python3 train.py --b-network-type 'chemical_reaction_networks_in_atmosphere' --b-
→˓directed --b-simulation-type 'springs' --b-suffix '15r1'

Run NRI with “brain networks (BN)”, “directed”, “netsims simulation”, “30 nodes”, “noise-free”, and “the second
repetition”:

$> cd /src/models/iSIDG/
$> python3 train.py --b-network-type 'brain_networks' --b-directed --b-simulation-type
→˓'netsims' --b-suffix '30r2'

Run NRI with “landscape networks (LN)”, “directed”, “netsims simulation”, “50 nodes”, “the third repetition”, and
“noise level 2”:

$> cd /src/models/iSIDG/
$> python3 train.py --b-network-type 'landscape_networks' --b-simulation-type 'netsims' -
→˓-b-suffix '50r3_n2'
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