Appendix

The Appendix is organized as follows. In Section [A, we further discuss the geometry of bias
estimation, and provide additional results on the constants ., and x(A). Then, we provide in Section
a detailed version of the FAIR PHASED ELIMINATION algorithm [3| In Section[C| we prove the
main results of this paper. Finally, in Section[D, we discuss the extension of the biaised linear bandits
to more than 2 groups.

A On the geometry of bias estimation

We begin in Section|A.1|by highlighting the relationship of the constant «, with the problem of €4 1-
optimal design. Then, in Section we show that the geometrical constant «, can be expressed
in terms of separation of the two groups. In Section[A.3]and Section we relate . to classical
geometrical measures of the difficulty of a set of actions such as the condition.ing number and the
worst-case alignment constant of [20]]. In Section[A.5] we show that ., is equivalent to the variance
of the optimal design for estimation the bias against the worst parameter 0*. In Section |A.6| we
provide further results on x(A), the A-optimal regret for estimation the bias with variance 1 when
the gap vector is A. Finally, in Section[A.7] we propose guidance for computing the G-optimal and
A-optimal designs.

A.1 Bias estimation as a eq 1-optimal design problem

Recall that x. is the minimal variance of the bias estimator related to the problem of e4 ;-optimal
design.

ed+1-optimal design Optimal design theory addresses the following problem: a scientist must
design a set of n experiments {z1,...,2,} € X™ so as to estimate at best a parameter of interest,
where each experiment z € X’ corresponds to a point a, € R+, The aim of the scientist is to
choose a design, i.e. a function p : X — N indicating the budget p(z) to be allocated to each
experiment 2 € X. Each experiment x is then repeated exactly p(z) times, and the corresponding
observations ¥y 1, .-, Y (x) are collected for each w € X'. The law of the observations corresponding
to experiment x at point a,, is given by

Yz,i = QIH* + gm,ia

where &, ; ~ N(0,1) are independent noise terms, and #* € R+ is an unknown parameter. The
aim of the scientist is to choose the design p so as to best estimate (some features of) the parameter
¢, under a constraint on the total number of experiments ), p(z) < n for some n € N.

Different criteria can be used to characterize the optimality of a design p. For example, one may need
to estimate the full parameter 6%, in order to predict the outcomes of the experiments z € X with a
small uniform error: this leads to the G-optimal design problem (2). Alternatively, for ¢ a vector in
R9*1 one may aim at finding the best design 1 € V¥ for estimating the scalar product ¢ §* under

a budget constraint Y p(x) < n, where N¥ = {y : X — N}. This problem is known as c-optimal
TEX

design. Unbiased linear estimation of ¢
and in this case the best linear unbiased estimator of the scalar product ¢
0 is the least-square estimator defined as

T6* is possible only when ¢ belongs to the image of V (1),

T9* is given by ¢ 6, where

0=V Y ao| > wui| for V(w) = ux)asal. 5)

TEX i<p(z) zeEX
The variance of the estimator ¢! 8 is then equal to ¢ V(1) *c.

Exact c-optimal design aims at choosing the allocation ;1 € A minimizing the variance of a0
for a given budget > x(x) < n, under the constraint that ¢ € Range(V'(12)). Let us define the
normalized design 7 : © € X’ — p(x)/n, and let us underline that 7 defines a probability on X. The

variance of ¢' 0 is then equal to n~tc" V()T c. In the limit n — oo, the problem is equivalent to
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the problem of approximate c-optimal design (sometimes simply referred to as c-optimal design),
that aims at finding a probability measure 7 € P:¥ := {7 € P* : ¢ € Range(V (r))} solution to
the following problem

min ¢' V(m)Te. (c-optimal design)
TEPX

Note that when {a, : z € X'} spans R4*!, for any ¢ € R9*!, there exists a design 7 such that
¢ € Range(V (7)), and hence the c-optimal design problem admits a solution.

Computation of the eq 1 -optimal design Finding an exact optimal allocation iz € N'* under the
constraint that ) 5. p(z) < n is unfortunately NP-complete. However, finding an approximate

optimal design 7 € P2 can be done in polynomial time [41]]. Several algorithms, including
multiplicative algorithms [[13]] and a simplex method of linear programming [17], have been proposed
to iteratively approximate the optimal design. More recently, [32] suggested using screening tests to
remove inessential points to accelerate optimization algorithms.

Classical results from e, 1-optimal design show that there exists a c-optimal design supported by at
most d + 1 points (see, e.g., [30}[17] for a proof of this result). The following Lemma indicates how
to obtain an exact design by rounding an approximate design supported by at most d 4 1 points.

X
€d+1

@ — [mm(x)] is an unbiased estimator of e, 6 and it has a variance at most m™"e , V(7)Teqs1.

Lemma 3. For any m € M and any m > 0, the estimator e(—; +1‘/9\u computed from the design p

Obviously, similar results also hold for G-optimal design.

Lemma 4. Let 7 be a solution of the G-optimal design problem Q). Then, for any m > 0 and any
x € X, the estimator alé\u computed from the design 1 : x — [mn(z)] is an unbiased estimator of
the evaluation al 0, and it has a variance

aj V() Ta, <m ™ Y(d+1).

A.2 Interpretation of x, in terms of separation of the groups

Next theorem, due to Elfving, characterizes solutions to the c-optimal design problem.

Theorem 5 ([10]). Let S = convex hull {+a,, —a, : © € X'} be the Elfving’s set of {a, : x € X'} C
R and let OS denote the boundary of S. A design © € P is c-optimal for ¢ € R+ if and only
if there exists ¢ € {—1,+1}* andt > 0 such that

te=Y m(x)Cea, € 0S.

zeX

Moreover, t=2 = ¢ (V(n))" ¢ is value of the c-optimal design problem.

Elfving’s characterization of the e4 -optimal design allows us to derive the following equivalent
characterization of ..

1
Lemma 5. k, = max
ueR? maxgex (U + 24)

3-

Lemma 1] follows from the characterization in Lemma[5] When . > 1, the vector @ defined as

% is a normal vector of the separating hyperplane H in Figure II
maxgex (' utzz

U = argmax, cgd
Moreover, as shown in the proof of Lemma the margin is in this case equal to 1 — K L/ ?, while the

maximum distance of all points to the hyperplane is 1 + 1/2

Application to the action set A of Lemma [10 To provide the reader with intuition on &,
we analyze here the set of actions used to derive the lower bound in Theorem [3. Let A =

{( €1 ) s ( Fd+1 )}, where (;1) = e + eqy1, fori € {2,...,[d/2]}, (i) = e; — €eqi1

Zaq Frgin
fori € {|d/2| +1,...,d}, and (Zf:l) =— (1 — ﬁ) €1 — eqy1. We show in Lemmathat
the minimal variance for estimating the bias on A4 is indeed x..
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x, = (0, 1) x,+1

I

1, 0)
H Z1 1

Figure 2: Illustration of Lemma on the action set A described above for d = 2.

The set of actions A spans R%T1, however it is easy to see that only x; and 4,1 can be used to

estimate the bias. On the one hand, when x = 1, (:‘”1 ) = (_01 , so the bias can be evaluated
Td+1

just by sampling z44 ;. In the other hand, in the limit where ., — oo, the problems becomes more

difficult as (Z““ ) tends to — (le ) . In the limit k, = oo, it is impossible to distinguish between
Td+1 1

the contribution of 7" e; and w in the evaluations of actions 1 and d 4 1: the problem becomes not
identifiable. We represent this setting for an intermediate value of «, in Figure[2] We also represent
the separating hyperplane, margin m and distance M of Lemmal[l]

A.3 Comparison to the conditioning number

By contrast to classical complexity measures such as conditioning numbers that give equal weight to
all observations, optimal design gives flexibility to choose d + 1 best actions to estimate the bias, and
therefore allows for sharper bounds.
Indeed, by definition of k.,

K < €1V (m") T eqrt,
where 7% is the uniform measure giving the same weight 1/k to all actions. Now, V (7*) is the

classical covariance matrix associated with the design points a,, € A, so the condition number C N
of this design is given by

Amax (V(Wu))
)‘min(v(ﬂu)) .

We see that eq 1V (7%) T eqgr1 < Amin(V (7)) ~1. When the actions a,, are bounded (for example
|laz|| < M), this implies that x,, < CN/M.

CN =

We provide an example showing that ., can be much smaller than the conditioning number. Consider
the following example in dimension d = 2 with k& > 4 actions, where x; = (1,0) and x2 = (—1,0

belong to group 1, and 3, ..., ), are identical, equal to (0,1), and in group —1. Then, Lemmaﬁ
shows that the minimal variance for estimating the bias is indeed 1, and that the optimal design puts
equal mass on x; and x5. On the other hand, straightforward computations show that the conditioning

. . 14(E—2) " /14 (k—2) "2 . .
number of the covariance matrix is +(h=2)7 4y 14(k=2) . Thus, on this example, CN/k, is of
14(k—2)~1—/1+(k—2)—2

order k.

A.4 Comparison to the worst-case alignment constant

Lemmal(5 also allows us to compare the bound in Theorem [T with previous results on linear bandit
with partial monitoring, expressed in terms of the worst-case alignment constant.
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Previous work on linear bandit with partial linear monitoring measures the difficulty of the bandit
game using the worst-case alignment constant o, defined as

max, o ex((z — 2')Tu)?

o = max
uweRd maxgex(z,x T u+ 1)2

The following Lemma shows that this constant is essentially equivalent to the minimal variance of
the bias estimator «,.
Lemma 6. %= < a < 16k..

On the one hand, Lemma [6|shows that ., and « are essentially equivalent. In particular, Theorem 3|
implies that the large T regret is of order o'/3 log(T)l/ 372/3_ This improves over previous known
rates, obtained in [20], by a factor d'/? log(T')*/6 (log(kT)/ log(T))'/2.

On the other hand, as underlined, the constant «, appears when considering the well-studied problem

of c-optimal design. Therefore, classical results and algorithms for optimal design can be used to
characterize and compute this constant.

A.5 Optimal bias estimation against the worst parameter

The constant k. also appears naturally when considering the related problem of optimal bias estima-
tion against the worst parameter.

Regret of e, 1-optimal design Recall that .. denotes the minimal variance of the bias estimator,
i.e. the value of the solution of the ey -optimal design problem

Ky = man 6}_,_1 (V(7T))+ €d+1
€d+41

The eg1-optimal design can be equivalently defined as the solution of the problem

minimize Zu(:c) such that p € /\/lf:f“r1 and e, V() Teqr1 < ke (6)
TEX
The characterization given in Equation (6) underlines that the e, 1-optimal design provides (up to
discretization issues) the minimal number of samples required for estimating w* with a variance k..
Let us denote by p* the optimal design for estimating w* with a variance 1, defined as

woo= argmanu such that y € M and ej,,V(u)Tearr < 1.

zeX

€d+1

Note that from the definition of x., we have > p*(2) = k..

A first (naive) approach to obtain an estimate of the bias parameter w* with precision level € > 0
would consist in sampling actions according to e ~2u*, rounded according to the procedure defined in
Lemma E Let us denote by A, the gap A, = max,cx (2’ — x)Tv* between the (non-observed)

reward of the best action and the reward of the action x. The regret corresponding to this estimation

phase would then be
€2 Zu*(x)Aw,

zeX

which can be as large as .2 max, A,. Interestingly, we show that the regret corresponding to the
eq+1-optimal design is equivalent (up to a small multiplicative constant) to the minimax regret.

Optimal worst-case estimation The minimax regret corresponds to the regret of the best sampling
scheme against the worst admissible parameter . Note that, for a given design p, this worst-case
regret is given by
max (2 — )
' e€X ,veC(X) Z ,U ’Y

where we recall that C(X {7 €eR?:Vr € X |z Ty| < 1} is the set of admissible parameters. To
achieve the lowest regret against the worst parameter, we must use the minimax optimal design j
solution to the problem

[ = argmin  max Zu (z' — ) T~ such that y € M¥ and e:irHV(u)JredH <1
o

@/ €X,7EC(X) £ Cd+1
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Lemma [2|underlines that the regret corresponding to the ey 1-optimal design is no larger than twice
the minimax regret.

A.6 Additionnal results the A-optimal design

Recall that for a vector of gaps A = (A,) w2 denotes the A-optimal design, defined as the

solution of the following problem

TeEX?

ud = arg;ninZu(x)Az such that i € ./\/lfd+1 and e V() eqr1 < 1. (A-optimal design)

reX

If we knew the gaps A, we could sample the actions according to the A-optimal design ;*, and pay
the regret € 2k (A) (up to rounding error) for estimating w* with an error smaller than e, where

R(A) = 3 uA(@)A,.

reX
Lemma 7. [fv* € C(X), then k(A) < 2k,
Proof. Be definition of C(X), for all v* € C(X), all 2, 2" € X, we have
(¢ —2")Ty" < JaTy*| + 2Ty < 2,
Then,

K(A) < le}nz,u(x) such that p € Mgfi“ and e, V() Teqr < 1.

Let u, be the solution of the ey 1-optimal design problem

minimize edT_H V(1) €eqs1 such that p1 € PeXdH'
o

By definition of ., we see that e,V (t.)Teq1 = k.. This implies that the measure ., Xy,

verifies the constraints e,V (k. X p15) Tegp1 < 1and kypi, € MQZH. Thus,
K(A) < 22/{*”*(33) = 2Ky
reX

On the regret x(A) The function « verifies the following properties.

Lemma 8. For two vectors of gaps A, A, denote by A N A’ (respectively AV A') the vector of gaps
given by (ANA"), = Ay N Al (respectively (AV A'), = A, V AL) for all x € X. Moreover,
denote A < A" if A, < A/, forall x € X. Then, the following properties hold :

i) forall ¢ > 0, k(cA) = ck(A);
i) if A < A/, then k(A) < K(A');
i) K(AVA") > k(A) V K(A);

iv) the function € — k(A V €) is continuous at 0.

A.7 Computation of G- and A-optimal design

Computing the optimal design is a convex problem, for which many algorithms have been proposed.
The first method to compute G-optimal design is due to [12] and [44]; later, [39] proposed a
multiplicative weight update algorithm. More recently, [40] suggested to use a Semi-Definite
Programming approach to solve the G-optimal design problem. Linear programming was used in
[L7] to compute c-optimal design, while [34] studied a SDP formulation of this problem. Reducing
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the G-optimal problem to a Mixed-Integer, Second Order Cone Programming, [37] proposed a new
algorithm based on interior point methods. We refer the interested reader to the review in [36].

In practice, one can rely on the R package OptimalDesign or the Python Package PICOS [38] to
compute G- and c-optimal design.

The following Lemma allows us to reduce the problem of finding a A-optimal design to that of a
c-optimal design for some rescaled features.

Lemma 9. For any vector A € (0,400)%, let ™ be the eq 1-optimal design relative to the set
AB = {A;lp ( N ) tx € X} and let K& = €;+1V(7TA)+6’(1+1 be the eqy1-optimal variance

Zx
relative to A®. Then, the A-optimal design ;1> is given by > (z) = k272 (2)A; forall v € X.
In addition, the support of u> can be chosen to be of cardinnality at most d + 1.

Thus, Lemma [9] shows that to compute the A-optimal design, one should follow these steps :

1. Compute the rescaled features AR

A A

2. Compute the ey i-optimal design 72 on A%, as well as the variance term &

A +
T 2 (x) T .
€411 (ZwEX A %%) €d+1;

3. Compute the A-optimal design 2 given by 2 (z) = k272 (2)A; ! forall z € X.

B Detailed Fair Phased Elimination algorithm

We present the notations used in Algorithm E The phases are indexed by [ € N*. The sets Xl(z)
for z € {—1,+1} corresponds to actions in group z that are considered as potentially optimal in

phase [. The variable zAl* encodes the group determined as optimal: it is O as long as this group has
not been determined. The subscript (z) refer to the group z when z € {—1,+1}, and otherwise

to the estimation of the bias w*: for example, the probability 7Tl(z) forz € {—-1,+1} and! > 1

corresponds to the approximate G-optimal design on Xl(z). Then, for z € {—1,+1}, allocations
p?) (resp. 1(9) correspond to allocation of samples in the exploration phase Expl(z) (resp. Expl(o)).
()
Similarly, Vi(z) (resp VZ(O)) denotes the variance matrix of the estimator (al(z> ) (resp. @l(o)) obtained
1
from observations made during phase Exp,@ (resp. Expl(o)). Finally, Explorel(z) (resp. Explorel(o))
is a Boolean variable indicating whether the exploration at phase [ for group z (resp. for the bias
parameter) has been performed. It is used in the proofs to ensure that the corresponding estimators
are well defined.
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Algorithm 4 Fair Phased Elimination (detailed version)

1:
2:
3:
4:
5
6

7:

10:
11:

12:
13:

14:
15:
16:
17:
18:
19:
20:
21:
22:

23:
24:
25:
26:
27:
28:
29:

30:
31:

32:
33:
34

Input: §, T, k = | X|
Initialize: Recovery < 0, ¢t <+ 0,1+ 1 z7 < 0,

X1(+1) —{z: 2, =1}, Xl(*l) {2, = -1}, ﬁglc —2forx e X

while ¢t < T do

Initialize: ¢, « 22!, 2%, < 2z, A1 Al Explorel(z) < False for z € {—1,0,+1}
for z € {—1,41} such that z # —z/ do > G-optimal Exploration and Elimination

. e
m(z) « argmin § max a] V(r)*a, : 7€ P ., |supp(m)| < (CZLQ(CHQ)
™ IEXZ(Z) %

&) ,
(@) F(dﬂzgl @) 1og (kl(?l))-‘ forall 2 € )
1

nl(z) )y ul(z)(x), Expl(z) — {t +1, TN+ nl(z))}
xGXl(Z)
if t +n\*) < T then

) ()

Explore!* « True, choose each action z € X*) exactly 1u\*) () times

) +
‘/l(Z) «— ZtGEXp]FZ) azta’;rt’ 0[ — (%(Z)) ZtEExp;z) YtQy,

z z ~z)
Xl(-&-)l — {J? S Xl( ) : maXm’EXl(z) (ay — ax)T 6, < 36[}
() )

else for ¢ € Exp,;”’, sample empirical best action in Xl(z
tt+n
if zAl* = 0 then
compute the Al-optimal design Ji; and the corresponding regret m(ﬁl )
ife; < (li(ﬁl) 1og(T)/T) v then > Recovery phase
Recovery « {¢,...,T'}
sample empirical best action in & ;_:11) U Xl(_pl until the end of the budget, ¢t < T’
else > Al-optimal Exploration and Elimination

MI(O)(x) — [2’”7?(” log (@ﬂ forallz € X

nl(o) — ZX/AI(O)(QT), Expl(o) — {t, o TA(E+ nl(o))}
xTe
if t +n\”) < 7T then

Explorel(o) + True, choose each action z € X exactly ul(o) (x) times

+
(0) T ~(0) T (0)
Vvl = ZtGExpEO) Qg Qg,> Wy — €d+1 ‘/l ZtGExpEO) YtQy,
(-1) (1)
for x € Xl+1 inJrl do
~ 2z) ~
Mz < a’;—al — zzwl(o)
ANl+1 ~ _
Aw — (maxwlexz(;l)UXlt)l My,
for z€ {—1,+1} do
if max m;, —2¢ > max My, + 2¢ then 2% + 2z

fr\ux + 461) A2

eeX}) seX
else sample empirical best action in Xl(J:ll) U ‘Xl(i)l until the end of the budget, ¢t < T'
tet+n
l+—1+1

21



C Proofs

Before proving the main results our this paper, we begin by outlining in Section [C.T the main ideas
used to obtain upper and lower bounds on the regret. Then, Theorem [T/ is proved in Section [C.2]
Theorem[2 is proved in Section Theorem 3 is proved in Section[C.4, and Theorem 4 is proved
in Section|C.5| Extension of Theorem4 to d = 2 and d = 3 is discussed in Section|C.6| Finally,
auxiliary lemmas are proved in Appendix [C.7.

For an event F such that P (F) > 0, we denote by E|» (resp. PPr) the expectation (resp. the
probability) conditionally on F.

C.1 Outline of the proofs

C.1.1 Outline of the proof of TheoremT]

The proof of Theorem [T|can be found in Appendix [C.2. We outline here the keys ingredients to this
proofs. We begin by introducing some notations.
1/3

Notations We denote by Ly the largest integer [ such that ¢, > /T~ /3 1og(T)'/3. We denote by

L) the last phase where ﬁl-optimal Exploration and Elimination happens. We denote by Expl(z)

the time indices where G-exploration is performed on Xl(z) and by Expl(o) the time indices where
A-exploration is performed at phase [. We also denote by Recovery the time indices subsequent to
the stopping criterion, this set being empty when the stopping criterion is not activated.

We define a "good” event F such that the errors

a, (9* - 5;) ’ and |w* — ©"| are smaller than ¢,

for all [ such that these quantities are defined, and all x € X l(_l) and X, l(+1). In the following, we use
¢, ¢’ to denote positive absolute constants, which may vary from line to line. With these notations, we
decompose the regret as follows :

R TN D3N DEND DINTRFRLI P b S p A
lgLTze{—1,+1}t€Exp§z> ZSL(O)tGExpgm
R{ R
* T % * T %
T N wewr e T ey
lZLT+lz€{—1,+1}t€Expl(2) tERecovery

Rec
Ry

Bound on TP (F). Using arguments based on concentration of Gaussian variables, we show that
P(F) <271

Bound on R$. We show that on F, only actions with gaps smaller than ce; remain in the sets

Xl(fl) and Xl(+1). The length of each G-optimal Exploration and Elimination phase is of the order

dlog(kIT)/€?, so the regret of each phase is of the order dlog(kIT')/e;. Summing over the different
phases, we find that

RS < cdlog(kLyT)/er,. (7)
Using the definition of Ly, we find that RS < cdlog(kLyT)rky */* log(T)~/3T/3,

Bound on R%. ‘We show that on F, Al > A forall [ > 1. Then, our choice of design ul(o) ensures
that for I < L9, on F,

Yo @) v < <1og(l(lz+1mn(ﬁl) +d+ 1)

€
teExplw)
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for some constant ¢ > 0. Summing over the different phases, we find that
RY < cr(AX") log(LOT)/é2 ). @®)

Now, the algorithm does not enter the Recovery phase before phase L(°) + 1, so we must have
€72, < T*31og(T)~*/3k(AM")2/3. This implies that R} < cx(AX")/310g(T)/3T%/3,
Since r(Al) < 2k, we find that RS < /ki/* log(T)'/3T%/3,

(-1 (+1 for

Bound on RE*¢. On the one hand, the actions selected during the Phases Exp and Exp,
| > Lt + 1 are sub-optimal by a gap at most cer,,. on the event F. On the other hand, if the algorithm
enters the Recovery phase at a phase [, then

(0)

o < K(&L )1/3T—1/3 1og(T)1/3 < K:i/ST’l/‘Q’ log(T)1/3,

so we must have [ = L(®) + 1 > Ly + 1. Therefore, all actions selected during the Recovery phase
are sub-optimal by a gap at most cer,,.. Then, R%¢ can be bounded as RF*¢ < cey,,. T This implies

in particular that RFec < ri? log(T)'/3T2/3,

When T > T, 4. for some T}, 4 large enough, we find that Ry < /3 log(T)'/3T2/3,

C.1.2 Outline of the Proof of Theorem

The proof of Theorem 2 is close to that of Theorem|[I, and we adopt the same notations as in the
proof sketch above.

Notations We denote by L(°) the last phase where ﬁl—optimal Exploration and Elimination happens.
We denote F some "good" event such that the errors |a, (6* — gl(z’”))| and |w* — @l(o) | are smaller than

€; for all [ such that these quantities are defined, and all z € Xl(_l) U Xl(+1). We denote by Expl(z)

the time indices where G-exploration is performed on Xl(z) and by Expl(o) the time indices where

A-exploration is performed at phase [. We also denote by Recovery the time indices subsequent
to the stopping criterion, this set being empty when the stopping criterion is not activated. In the
following, we use ¢, ¢’ to denote positive absolute constants, which may vary from line to line.

Fact 1 Let /4, be the largest integer such that €, > C'Ay,;, for some well-chosen absolute

constant C' > 0. We show that on the good event F, no more than [, G-optimal Exploration and
Elimination phases are needed to find the best action. For all phases [ > [a_. , the algorithm always
chooses z*, and suffers no regret.

min

Fact 2 We show that on the good event F, for each phase [, Al < ¢(AV ¢) for some constant c.
Lemmathen implies that for all I < L and all 7 > 0, k(A!) < ck(AVe) < c(1+em HR(AV

7).

Fact 3 Let [, be the largest integer such that ¢ AL > C'A_ for some well-chosen absolute constant

C > 0. On the good event F, if the algorithm enters the ﬁl-optimal Exploration and Elimination
phase at round [ > I, we show that the algorithm finds the best group at this phase. This implies

that L0 <[4 .

Fact 4 We denote by Ly the largest integer [ such that ¢; > (k. log(T)/T)1/3. Since k., > K(A!)
for all I > 1, we see that if the algorithm enters the Recovery phase, we must have Ly < L© and
€ < €L, R ET.
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Using Fact 1, we find that the regret can be written as

Y Y Y weay]

lSlAmin2€{71’+1}teEXpl(z)

Rr < 2TP(F)+Ez

R

SO @)

ISLO) tepxp(®

+E >

+Ex

Z (x* —J:t)T'y*].

tERecovery

Rec
R% Ry

Bound on R%. We rely on arguments similar to those used in Equation (7)) to show that
R$ < c(d+1)log(kla T)el;1 . Since €, > C'App, this implies that
e(d+1)log(kla,,T) < ddlog(T)

Amin - Amin

min

RS <

if T > k.

Bound on RS + REec. We begin by bounding R%. Recall that Equation (8) states that R <
CH(AL<O)) log(lL(o)T)eZ?U). Using Fact 2, we find that for any 7 > 0,
Ry < cr(AV 1) log(lpoT) (62(20) + 6;(10)7'_1> . )

Let us now consider two cases, corresponding to Recovery= () and Recovery## {).

Case 1: Recovery= (). On the one hand, our case assumption implies that
REec = 0,

On the other hand, by Fact 3, we know that on F. LO < A Then, using the definition of A 2 and
Equation (9) with 7 = A, we find that

RE < ck(AV AL)log(LOT)AZ?.

Case 2: Recovery# (). All actions selected during the Recovery phase belong to X’ L(Z)pﬂ Ux L(?;)H’

so on F these actions are sub-optimal by a gap at most cep (o) 1, SO R%"'C < cT'ep0),1- Now, since

the algorithm enters the Recovery phase, we must have € o) 41 < (k(AX” 1) 1log(T)/T)/3, which
implies that

k(AL +1) 1og(T)

R%ec < 5
€L 41

Using Fact 2 with 7 = €0y together with Equation (9)), we find that

R% N R?“‘ < ck(AV erw) log(T).

2
€L
On the one hand, Fact 3 guarantees that, since we entered the Recovery phase before finding the best
group, we must have e;,) > € AL On the other hand, Fact 4 ensures that €7,y < e7. Thus,

ck(AVer)log(T)
AZ '

Ré{ec S

Conclusion Combining these results, we find that
d K(AVAL)  K(AVer)
Rr < V V log(T
= (Amin Ai Ai Og( )

when T' > k. Using Lemmal|8, we get that k(A V A) V k(A Ver) < k(A V AL Ver), which
concludes the proof of the results.
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C.1.3 Outline of the Proof of Theorem [

We outline the main ingredients used to prove Theorem 4| Theorem [3|relies on similar arguments.

To prove the lower bounds, we need to construct two close problem instances with optimal actions
belonging to different groups - to obtain the part of the lower bound involving A - and in addition
we must also create confusing instances with different optimal actions belonging to a same group - to
obtain the part of the lower bound involving A ;. This is done by considering the following set of
actions and of problems.

Lemma 10. Ser A = {( 1 ) s ( Tat1 )} where (Z,) = e; + eqq1, fori € {2,...,]d/2]},

Zzy Frgia

() = ¢; —eqsr fori € {|d/2] +1,....d}, and (;ﬁ) S (1 - ﬁ) €1 — eqsr. It holds
that N
x "
min < ej Z () ( > ( ) €yl ¢ = Kx-
TEPA : Rz Rz
dt (7)eAa

We also define the following parameters:

1+A;£_Amin 1*A;£*Amin
1<5i<|d/2] d/2]+1<;5<d
+Aminel + Al‘ﬂine|_d/2j+1
7D = W L 2A e + 2Amine aj2) 1 Vi € {2, ..., [d/2]}
1-A *Amin 1+A 7Amin
O e I D B ¢
1<j<[d/2) d/2]+1<j<d

+Aminel + AI1'1in€|‘d/2J+1'
The bias parameters are given by w® = —52 i € {1,..., |d/2]}, and w(l4/21+D) = 22 The
_ re > s eens , =.
parameters () = (lm) characterize |d/2]| + 1 problems, with noise distribution i.i.d. A'(0,1).

We write Problem i for the problem characterized by 6. Note that by construction and for any
i€{1,...,|d/2] + 1}, we have that () € @4

The following facts hold:

min> Az

» Foranyi € {1, ..., |d/2] 4 1}, action z; is the unique optimal action in Problem i. Since
1/2 > Ay > Anin, sampling any other (sub-optimal) action leads to an instantaneous regret
of at least A ;. Moreover, choosing an action in the group —z; leads to an instantaneous
regret of at least A_..

* In Problem i forany i € {1, ..., |d/2]| + 1}, action d + 1 is very sub-optimal and sampling
it leads to an instantaneous regret higher than (1 —2/(\/kx +1))(1 = A 4+ Apin) + (1 +
Az + Amin)/2 > 1/2, since £, > 1and 1/2 > A > A,;,. This action is the worst
action in all problems.

* Many actions are such that their distributions are the same across problems. More specifi-
cally:

- Foranyi € {2,...,[d/2]}, between Problem 1 and Problem i, the only actions that
provide different evaluations when sampled are action 4 and action |d/2] + ¢, and the
mean difference between the evaluations in both cases is 2A ;5.

- Between Problem 1 and Problem |d/2] + 1, the only actions that provide different
evaluations when sampled is action d+ 1, and the mean gap in this case is ﬁA¢ =

OzA;g.

The proof is then divided in two parts, one part for proving the part of the bound depending on A,
and one part for proving the part of the bound depending on A_..
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Part of the bound depending on A ,;;,,. This part of the proof is obtained using classical arguments
for K -armed bandit problems. For i € {2, ..., [d/2], all actions but z; and x| 4/2)+; have the same
feedback under Problem 1 and Problem i. On the other hand, the average feedback for actions x;

and x| 4/2|4; differs by 2A,1,, so either action needs to be selected approximately Ag( ) times in

order to identify the problem at hand with high enough probability. In Problem 1, the 51mple regret
for choosing z; or | 4/2)4; is larger than Ay, so the total regret obtained when doing this is at least

of the order log( ) . Summing over the different actions ¢ leads to a lower bound of the order dg’g(.T) .

Part of the bound depending on A. To obtain the second part of the lower bound, we note
that all actions but 2441 have the same feedback under Problem 1 and Problem |d/2] + 1. The
average feedback for actions x4 differs by A under these parameters, so action x 411 needs to
log(T) > log(A ) Kox

~

be selected approximately - times to identify the problem at hand with high enough

probability. Since selecting actlon Z4+1 leads to an simple regret larger than 1/2 under Problem 1,

this implies that the regret must be at least of the order %g(ﬂ.

Bounds on x(A) Finally, the following lemma allows to express x(A) as a function of k.
Lemma 11. Foranyi € {1,...,|d/2]| + 1}, the gap vector A verifies

1 2)2A
H(A) = ( +\//€4) d+1
where Ag11 = max;(z; — xd+1)T7(i).
On the one hand, since k. > 1, we see that k., < (1 + 1/fi*)2 < 4£K,. On the other hand,
1/2 < Agyr < 2,50 6(A) € [%,2k.].

C.2 Proof of Theorem[T]
We begin by defining for z € {—1,0,+1}
L&) = max{l >1: Explore( 2 = True}

the largest integer [ such that Explore( ) = True. Recall that K4 1s the e441-optimal variance. By
definition of the algorithm, for all [ < LO 41, Al <2,s0 KJ(AZ) < 2k4. Now, let us also define

1/3
LT:maX{l>1:q><W> }

Then, if Recovery## (), we must have LO > Lr. Moreover, we see that since €1, = 22-Lr e
have Ly <2+ l°g2(T/(2§* loe(™)) < 3log, (T') when T > 1.

(2) ~(2)

We define a "bad" event F, such that, on F, our estimators ﬁl and @ w,”’ are close to the true
parameters v* and w* for all rounds /. More precisely, let
Ux. (10)
1>1
where for [ > 1
5 o\ T
Fi = {3z € {-1,1} such that Explore!” = True, and = € X\*) such that ( l(z) ) (
W, —w*
U {Explorel(o) = True and ‘@l(o) } .
Then, the regret decomposes as
Rr <Y Ez[(@* —x) y*] +2TP[F]. (11)

t<T

The following lemma relies on concentration of Gaussian variables to bound the probability of the
event F.

26



Lemma 12. P (F) < 24.

Now, the first term of can be decomposed as

L&) 41
E (¥ —z) "y < g E E (% — ) Ty* + E (z* — ) ",
t<T z€{-1,0,+1} I=1 tEEXpl(z) tERecovery

where we use as convention that the sum over an empty set is null. Note that for z € {—1,+1},

during the phase Expl( %) the algorithm only samples actions from XZ(Z). By contrast, during the

(0) , even actions eliminated from the sets Xl(z) can be sampled. Finally, if the algorithm

phase Exp;,
stops during phase Exp(LO<)O) 10 but does not have enough budget to complete the last Al- optimal

Exploration and Ehmmatlon Phase, it samples the remaining actions in the set X ( (012 Ui (81_2
Hence, the first term of (L1]) can be upper-bounded by

Lt
Z(:ﬂ*—xt)Tv* < Z Z Z 12 () ‘max (z* —x) Ty (12)

t<T ze{—1,+1}I=1 xeXl(z) LEXZ(Z)
L&) 41
+ Z Z Z (" — ) Ty + Z (z* —x) T y*
z€{71,+1}l:LT+1teExpl(Z) tERecovery
(0
+Z Zu(o) )AL +1 {Explore(L(0>+1 = False} Z max (% — ) Ty".
-1 +1)
I=lzeXx GEXP(O()O) reX (0)+2UXL(O)+2

We begin by bounding the sum of the regret corresponding to the Recovery phase and to the phases

Expg) for 2 € {—1,+1} and [ > L7 on the event F.

L3 41
Bound on E E E (" —x) ' v + E (z* — ) T
ze{—1,+1}l:LT+1t€EXpI(Z) tERecovery

Lemma 13. Let x* € argmax, .y x ' y* be an optimal action. Then, on the event F defined in
Equation (10), for | > 1 such that Explorel(%*) = True,

-)(l(_i;*) c {I c Xl(zm*) . (.CC* . I)T'Y* < 105l+1}- (13)

(721.*)

Moreover, for | > 1 such that Explore, = True,

Xl(_;f“) C {z € Xl(_z"*) S(at—2) Tyt < 4261+1}.

Recall that if Recovery# (3, L(®) > L. Then, all actions sampled during the Recovery phase belong
to XZ(H ) U Xl(jll) for some [ > L. Lemmalﬁshows that, on F, for { > L, the actions in X( z)

I+1
are sub-optimal by at most 42¢y,,, 1. Then, we get that on the event F,

L3 41
g E g (x*—xt * g (z* —zf v < T x42ep,,,
zE{—l,—i—l}l:LTJrlteExpl(z) tERecovery

IA

536/ T2/3 10g(T)Y/¢14)

27



L©
Bound on Z > ,u ( A, +1 {Explore(o) = False > max (x* —

I=1zeX Lo+ teExp(LO()O) LGX(<01>)+2UX£T01>)+2
)Ty,
We begin by bounding 1 {Explore(L()o)+1 False z(;) max (2*—2)Ty*. Recall
t€ExD ) EENL© 42" 04
that L<0> 1= Z ,u L<0> +1( «) is the budget that would be necessary to complete the Al-optimal

Exploration and Ehmlnanon phase at phase L(®) + 1. On the one hand, Lemma@ implies that on
the event F,

(0) * T % (0) (0)
{ExploreL(o)+1 = False E max (2" —z)'v* < 420 ) €00 42 < 210) @) €00 41
o wext ) ux(s
LEEXD ) L) 4277 L(0) 4o

On the other hand, for all [ < L(® + 1, the definition of A! implies that AL > ¢, for all z € X.
Therefore, 2171(LO<)0)+16L(0>+1 < 21nf) min,, Aa’j(%“l. This implies that on F,

©)+1
© = (0) ALO® 41
1 {ExploreL(o)+1 = False Z e 1r)naxX(+1) (z* * <21 E 'LLL(0>+1 z)AL . (15)
tEExp(O) z€ (0)+2U £(0) 42 TEX
£(0) ¢

Next, to bound the remaining terms of Equation (12), we bound the regret > /,Ll(o) (z)A, of explo-
TEX
(0)

ration phase Exp,
Lemma 14. Foralll > 0, and z € {—1,+1}, we have

T ) < 2(d€;2r 1) log(kl(l(;_ 1)) . (d+1)2(d+2).

using the following lemma.

xeXl(z)
and on F, we have

S % @as <Y @) 2“(231) log (l(l ; 1)> +2(d +1).

€
reX zeX

Then, Equation and Lemmaimply that on F

L
ZZMO) VA, +]l{Explore( 20)“ False} Z ax (" —z)Ty*
I=lzeX tEExp(O()O) GXL(0>+2UXL(0)+2
L 41
<2’y S
=1 zeX
L(0>+1
I(0+1)
<42 42(d+1)(L© +1
> ( )+ a2t o + )

(16)

We rely on the following Lemma to bound n(ﬁl).
Lemma 15. On F, we have for any | > 1 and any T > 0
r(A1) <513 (1+ L) (A v ).
T
and

k(AN > k(A V ¢).

28



Lemma|14{and Lemma with 7 = €,y imply that on F,

LO41 LO 41 L© 41
k(A (l+1 LO £ 1)(LO 49 1 1
> (62 )log<( : )> 513H(A\/6L<o))10g<( )( )) T

1) €€
=1 =1 =1 LO®

L© 1 4
< B513k(AVepw)log (6 5 > ( 26 + )
L

2
€L Lo

IN

0) ALY
6L ) k(A" (17)

]

where the last line follows from the second claim of Lemma E Now, by definition of L(©),

/3
€ > (H(AL( ))log( )/T) . Then, Equation (17) implies that

< 102601log ( =
€L

L1 N (0) o
3 M) 1o (WH)) < 10260log (6% )K(AL(>)1/3log(T)_2/3T2/3. (18)

— 612 6
Moreover, we observe that during each phase [, but the last one, we sample at least
(=) > M loo(kl(l +1)/§
S N B
TEX, =

actions during the G-optimal explorations, so the number of phases L(°) is never larger than
b =1Vlogy(T).
Using this remark, together with Equations and (I8), we find that on F

L©
ZZ”(O) lf + 1 {Explore(L()D>+1 —False} Z L max (* —z)Ty*
+
I=1zeX remp ) TEX, 0)159% 1 (0) 4
19 6L ANLO\12/3 —2/3
< 2" log k(A" )T log(T) + 420, (19)

Lt
Boundon Y > > ul(z) () | max (x* —x)Ty*. We bound the remaining term in
z€{~1+1}=1 \ ex(® zex?

Equation using the first claim in Lemmal[14]and Lemmal[13] On F,

L .
Z Z Z P (@) | max (¥ —2)Ty" < 22( (dj )1og <kl( . )>+ [+ 1+ )>426l
= zex(® C e 3 5
ze{—-1,+1}I=1 Xl(z) ) —
d+1 kLr(1+ L
< 336(d + )10g( r(1+ T)>+168(d+1)(d+2)
€Lr 1)
< 267(d+ 1)rs /T log(T) ™/ log <]€LT(15+LT)>
+168(d + 1)(d + 2). (20)

Combing Equations (TT), (T2), (1), (19), and @0), and using § = T-!, K(AX”) < &k, and
Ly < 4T/log(2), we get for allT 2 1

Rr <C (/@1/3T2/3 log(T)'3 + (d V k) log(T) + d? + dry 3T/3 log(kT) log(T)fl/S)
for some absolute constant C' > 0. Finally, for
T ((dV k:)*?1og(T)) v d*  (dlog(kT))?
- Vs (ks log(T))*’

Ry < C'klPT2/310g(T) /3.

we get
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C.3 Proof of Theorem

The beginning of the proof of Theorem [2]follows the same lines as the proof of Theorem[I] We begin
by decomposing the regret as
Ry <Y Ez[(@" —w) y"] +2TP[F]. 1)
t<T

where F is defined in Equation . On the one hand, Lemma@ implies TP [F] < 26T. Then,
Equation (21) implies

L® 41
Rr < WT+Ez| >, 3, ), @-e)r | +Ez| > @ -o)'y 22)
ze{—1,41} I>1 teExpiz) tERecovery
A
+E= ZZMEO)@)AI +Ez ]l{Explore(L()o)H —False} Z ax (z* — )Ty
l=1lxeX (0) reX uXx

(0) (0)
tEExPL(U>+1 L9 42 L9 42

where F is defined in Equation (10, and where we used the convention that the sum over an empty
set is null.

(0) _ * T %
Boundon 1 {ExploreL(o)Jrl = False 2(; Ieg{n&(nfﬂ(x x) 'yt
tEExp< ()0) L=

Similarly to the proof of Theorem |1} we use Lemman 13|and Lemma |15|to show that on F

{Explore(L()O)H = False} Z max (z"—x) 7" <21 ZML(wH AL(O)—H (23)

reX (2) +1
(0) L TEX
tGExpL(U)Jrl

L 41
Bound on > oY (zf—x) T
ze{—-1,+1} I>1 teExpEZ)

LemmalE shows that for [ < L(#), the actions in Xlg_)l are sub-optimal by at most an additional

factor at most 21¢;. Letus set Ia ., = [— logy(Amin/21)], so that

Amin < < Amin
€ .
427 = Tamn = T
Forl > Ia,,,, we have Xl(ﬂl) U Xl(;rll = {z.-}. Thus, I(=%+*) < Ia ., andforl > I, the

algorithm selects only z* during the phase Expl(z*). Then, combining Lemmas |1 Eand E, and the
fact that L(*) + 1 < ¢7, we find that, on F,

L) 41 18 F1ALT
Z Z Z (z* —x) 7" < Z Z Z ,u(z) max (z* —z) "
2e{-141} =1 yepyp®) se{—1,41}  I=1 vex( reX
I8y F1ALT

<y Z (2(d+1)10g<kl(l6+1))+(d+1)2(d+2)>426l

2
€
=1 l

< A D+ +e x672(d+1)1og(k(HéTg(?”T))

< S+ 1)+ + 28224(d + 1) log <k(1 +47))(2 +£T))) (24)

Amin )
O
ST SICERTIED 3 LTINS UEL
tERecovery l=12€X TEX
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We use the following lemma to bound the number of phases necessary to eliminate the sub-optimal

group.

Lemma 16. On the event F defined in Equation (I0), for | > 1 such that €, < Z and Explore (L =

True, o I+1 = Zg=.

Letian, = [—log(Ax/8)/log(2)] be such that
<8z
8

Lemmaimplies that on F, L9 < Ia,.

)

(25)

To bound the remaining terms, we consider two cases, corresponding to Recovery= () and Recovery##

0.

Case 1: Recovery= (). Our case assumption implies that

Z (G xt)TA/* =0.
tERecovery
Lemma [T3]implies that
L© L4
0 0 ©) 0
DD @A+ D pite @A < ST S (@)
I=lzeX zeX I=1 zeX

Moreover, L(®) < In, Alp,soon F

LOq (lA?ﬁ Ner)+1
30T UEE RIS S I
=1 zeX =1 TeEX
Using Lemma[14} we find that on 7
(lA¢/\ZT)+1 (ZA¢/\ZT)+1 ~
2k (Al I(l+1

o S uPwal< Y EQ )log( ( 5 )> +2(d+ 1)(fr + 1)
=1  z€Xx 1=1 !

~

€

(26)

ZA¢+1 .
< 2log (W) ZZ:; ad )+2(d+1)(€T+1)-

~n

Using Lemmawith T = A;ﬁ and , we have on F

Ia_+1 —~ Ia_+1
S “(Al) - -2 -1
Z & <513k(AV AL) Z (6% +¢ ' /AL)
=1 =1
< 218/4,(A V A;ﬁ)
We obtain on F
L 41
> YA, < 20 (EUEEI) HELRA o e+ )
=1 zeX #+
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Combining Equations (24), (23), (26), and (27}  we find that on F, when Recovery= (), there exsists
an absolute constant ¢ > O such that for o=T7",

JASEN] LO©
* * * 0
S Y @)y Y @)y Y)Y V@A, @8)
ze{—1,41} I>1 teExp(z) tERecovery I=1zeX
—|—]1{Exp10re(L()0)+1 = False} Z max (z* —z)"y*
eexCD  UxD
tEExp(O()O) (0 4290 (0) 4o

d AV A d
§c<d2+ (A - \/H( = ;«é)>log(T)+A : log(k:)).
min ;é min

Case 2: Recovery# ). In this case, the algorithm enters Recovery at phase L9, so

Explore(L()o) ., =False and Exp(LO()o) 41 ="0.and
]l{Explore(L<)0)+1 False } Z max (z* —z)Ty* =0. (29)

T wexCD uxGD

tEEXpL(O) L) 427" L(0) 4o

Using Lemma|[I3] we see that

Z (2" — ) Ty < 21T€p0) 4.

tERecovery

~ 1/3
On the other hand, in the Recovery phase, €7,0),; < (m(AL(O)“) log(T)/T)) . Thus,

XN LO)
S Ty < 2688 os(r)

2
tERecovery LO)41
Now, Lemma|[14| show that
L(O) L(O) o~
Al
S5 WO@)A, < alog@r@5 )Y 5D 4 4gr0)
I=lzeX = G

Combining these results, and using LO < {1, we see that

L LO g -~
Al
S @ —a) Ty LY i (@) Ay < 4dL© + (4log(20r67) v 21log(T)) D ”(2 ).
tERecovery l=1zeX =1 €
(30)

Using Lemma|15|with 7 = €0, we see that

LO4y1 ~ JAQES] JAQES]
Al AV k(A V
S 2) < 513 ) HAVeLo) 6“”’ 1513 Z KAVeLo)
= € I=1 Lo
AV
< 10260 ‘f““’)

Now, the algorithm enters the Recovery phase before finding the best group, so we must have
Lo < lA?i. This implies that

LO 41
f BA) AV o)

2 — 2
= € A#
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Finally, note that L > Ly,s0€p0) <€r, =er,and

LO®Oy1 ~
E : 62 — A2 .
l o

=1

Combining Equations (24), (29), (30), and (31)), we find that on F, when Recovery# 0, there exists
an absolute constant ¢ > 0 such that for § = 771,

L& 41 L©
oY Y e+ YL @ e+ Y @A, (62
ze{—1,+1} I>1 tEExpl(z) tERecovery l=1lzeX
(0) _ * T %
+]l{Exp10reL(0)+1 = False } Z zex(ilr)nax . (z" —x)'y
teExpiO()o)_*_l L) 427" L(0) 42
d K(AVer) dlog(k)
<cld? v log(T) + ————= .
<<( *(Amm az )R

Conclusion We conclude the proof of Theorem [2|by combining Equations (22)), and (32).

C.4 Proof of Theorem[3|

Consider the actions A defined in the following lemma.

Lemma 17. Let the action set be given by A = {( *1 ) yeees ( Fd+1 )}, where ( 1 ) =e1 + edt1,
1

Zzq Zrgyq Zx
(Z:) =e; —eqp1 fori € {2,...,d}, and (Z'T:I) = - (1 - ﬁ) €1 — eq41. It holds that
+
x 2\
. T
min < e vy €dt1 p = K-
TEPA it (“:)ZEA ’ <zr> (zr) +

By Lemma A€ A, 4. We will introduce two bandit problems characterized by two parameters
95,11 ) and 0512 ). assuming that the noise ; is Gaussian and i.i.d. - and we prove that for any algorithm,
the regret for one of those two problems must be of larger order than ./ >T2/3,

We also consider the following two alternative problems. For a small 1/4 > pr > 0 where
pr = 71 3&1/ 3 (satisfied since T' > 43k,), the two alternative action parameters are defined as:

@  I+pr 1—pr pT ,
YT = B e + 9 €y — ? Z €;
3<j<d
(2) 17'DT6 +1+pT6 erl Zev
T Ty AT Ty T _
3<j<d
On top of this, two bias parameters are defined as w(Tl ) = —£L and w(T2 ) = £L. Through this, we
)
define the two bandit problems of the sketch of proof of Lemma E|characterized by 95,11 ) = (7(% )
W

2)
and 9(T2 ) = <7{2) > - and where the distribution of the noise ; is supposed to be Gaussian and i.i.d.
W
(1)

We refer to these two problems respectively as Problem 1 and Problem 2. We write R;.”, P and
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(2) P(2) and E®) for the regret, probability and expectation for the first bandit

EM (respectively Ry
problem, when the parameter is 0(T1 ) (respectively the second bandit problem with 95? )). We also
write P{") for the distribution of a sample received in Problem i when sampling action x; at any
given time ¢ - note that by definition of the bandit problems, this distribution does not depend on ¢
and on the past samples given that action x; is sampled.

The three following facts hold on these two bandit problems:

Fact 1 The parameters fy(Tl ) and 75,? ) are chosen so that 21 is the unique best action for Problem 1,

and x5 is the unique best action for Problem 2. Choosing any sub-optimal action induces an
instantaneous regret of at least pr, and choosing the very sub-optimal action x4 induces
an instantaneous regret of at least 1/2.

Fact 2 Because of the chosen bias parameters, the distributions of the evaluations of all actions but

xq441 are exactly the same under the two bandit problems characterized by (1) and 9512 ).
i.e. exactly the same data is observed under the two alternative bandit problems defined by
the two alternative parameters for all actions but z41. More precisely, for i € {1,2}, in
Problem i and at any time ¢, when sampling action x; where ¢ < 2, we observe a sample

distributed according to N'(1/2,1) - i.e. }P’y) is A(1/2,1) - and when sampling action z;
where 2 < i > d + 1, we observe a sample distributed according to N'(0, 1) - i.e. IP’S-i) is
N(0,1).

Fact 3 The distributions of the outcomes of the evaluation of action x4 differs in the two bandit
problems. Set o = 2/(,/k+ + 1). In Problem 1, ]P’(l)1 is V(—2=2527% 1). In Problem 2,

P((12421 is N (_17&#’ 1). So that the difference between the means of the evaluations of

action 441 in the two bandit problems is A=pra= \/?{%11 < \2/‘;1*.

For i < d + 1, we write N;(T") for the number of times that action x; has been selected before time
T'. In Problem 1, choosing the action x4 leads to an instantaneous regret larger than 1 5 (Fact 1), so
that
1
B > EM [N:;dﬂ (1]

/3,17
If ED [Ngy1(T)] > T 32”1 3, then Theoremllfollows immediately; we therefore consider from

now on the case when
2 1/3
T /3%3*/

EW [Ngs1(T)] < 5

(33)

Now, let us define the event
T
F= {Nl(T) > 2;@1/3}.

Note that action x; is optimal for Problem 1 and that action x is optimal for Problem 2 (Fact 1).
Since choosing an action that is sub-optimal leads to an instantaneous regret larger than p (Fact 1),
we also have

Y > TR0 (F)

and

2y _ IT'pr
Ry > =R (F).

Then, Bretagnolle-Huber inequality (see, e.g., Theorem 14.2 in [24]]) implies that
T
RY + RO > T/IT exp (—KL (P(l),IP’<2)>) .
For the choice py = T~/ 3&}/ 3, this implies that

T2/3H1/3

RY + R > T

exp (—KL (IP<1>, 1P<2>)) . (34)
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Now, the Kullback-Leibler divergence between P and P? can be rewritten as follows (see, e.g.,
Lemma 15.1 in [24]) :

1
KLEW,PD) = = % EO V(1) KLEY, BP).
j<d+1

By Fact 2, we have that for any 5 < d, Pgl) = IP’§.2). So that

1
KLEMP?) = B0 [Ny (1) KLY, BE)).

A1 P&i}l in Fact 3, and recalling that the Kullback-Leibler divergence
between two normalized Gaussian distributions is given by the squared distance between their means,
we find that

By the characterization of p

1 -
KL(PW PRy = 51E<1> [Ng1(T)] A%
Thus, by the definition of A in Fact 3 and by Equation

TQ/BI{i/S y 4,0%
4 K

=1

1 2 2
KL (Pu)’p@)) — 5]Eu) [Nt (T)] ( PT ) < , (35)

Es 1
reminding that pr = T_1/3/-£i/3.
Combining Equations and implies that

T2/3 1/3
} 2 (1),

max {Rg} ) , Rg? )
which concludes the proof of Theorem 3]

C.5 Proof of Theoremsd]

Theorems [] follows directly from the next Theorem.

Theorem 6. For all k. > 1 and all d > 4, there exists an action set A € A, 4, such that for all
bandit algorithms, for all (Amin, A2) € (0, 1/8)2 with Apmin < A, and for all budget T' > 2, there
exists a problem characterized by 0 € @ﬁmim A such that the regret of the algorithm on the problem
satisfies

8d log(T) 1 8k log(T)
d log( Az, ) ki + 1 og( Al
o > I ™1l1-—2 * I ™nil1-———= 7
By = | {ga—los(T) log (T) 1A2 og (T) log (T)
Ko TA;*é
\Y, 4A§e 1 A log ( 8 . (36)

Moreover, on this problem, k(A) € [5+/8, 2K,].

Remark 1. Note that Theorem|[6|allows us to recover a lower bound similar to that of Theorem 3] by

choosing A and Ay of the order Iii/ 3T=1/3, however this bound only holds for d larger than 4.

We prove Theorem (6 for the following set of actions A: A = {( o1 ) Jeens ( Fd+1 )}, where

Zaq Frgyi

(””i ) = e; + eqy1, fori € {2,...,1d/2]}, (i) =¢; —eqy1 fori € {|d/2] +1,...,d}, and

E

( Tt ) - _ (1 — ﬁ) e1 — eq+1. Then, by Lemma@, for this choice of action set, we have

Frgiq

Ae Aﬁ*vd.
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We consider the following set of bandit problems fori € {1, ..., [d/2|+1} Problemi is characterized
by the parameter 89, where §(9) = ( ) ) is defined as:

1+ A _Amin 1-A _Amin
fy(l) = —7&2 Z €; + —¢2 Z €; + Aminel + ArrlirleLd/QjJrl
1<j<|d/2] ld/2|+1<j<d
’Y(l) = ’}/(1) + 2Amin€i + 2Amin6\_d/2j+i Vi € {2, ceny Ld/ZJ}
1-A _Amin 1+A _Amin
A2+ — —762 Z e | + —7&2 Z ej | + Amine1 + Amin€|a/2)+1,
1<5<d/2] ld/2]+1<j<d
and the bias parameters are defined as w(*) = —A—; Vi€ {1,...,|d/2]}, and otherwise w(L#/2]+1) =

%. We write E(), P() Rg) for resp. the probability, expectation, and regret, in Problem i. Note
that this choice of parameters ensures that Vi € {1, ..., [d/2] + 1}, 0% € Gﬁm;n,A;ﬁ'

Set A = {(Z;l) s (zi‘f;ll)} where (;) = e, + eqq1, fori € {2,...,|d/2]}, (Z) =

T4

e; —eqq1 fori € {|d/2] +1,...,d}, and ( Fd+1 ) =— (1 - i) e1 — eq+1. Then, Lemma
Zagy g VE«+1

shows that A € A, 4.

The following facts hold:

Fact1 Forany i € {1,...,|d/2] + 1}, action z; is the unique optimal action in Problem i. Since
1/2 > A4 > Apin, sampling any other (sub-optimal) action leads to an instantaneous regret
of at least A ;. Moreover, choosing an action in the group —z; leads to an instantaneous
regret of at least A .

Fact 2 In Problem i for any i € {1, ..., |d/2| + 1}, action d 4 1 is very sub-optimal and sampling
it leads to an instantaneous regret higher than (1 — 2/(y/kx + 1)) (1 — Az + Apin) + (1 +
Ay + Anin)/2>1/2,since £, > 1and 1/2 > Ay > Apin.

Fact 3 InProblemi, fori € {1, ..., [d/2]| + 1}, when sampling action x; at time, ¢ the distribution
of the observation does not depend on ¢ or on the past (except through the choice of x;) and
is PEZ). It is characterized as:
Vi€ {1, [d/2) + 11, P0 P, L are N((1+ Amin)/2,1)
Vi€ {1, ..., /2] +1},Y5 € {2, ..., d}\ {[d/2) + 1,0, |d/2] + i}, P is N((1— Amin)/2,1),
Vi€ {2,[d/2]}, P is N((1+38min)/2,1) Py is N((143A8min)/2,1)
Vi€ {1,1d/2)},BS), is N(=(1—a)(1+Ayg + Awin)/2+ Az /2,1),
PLIED s M (—(1 = a)(1 = Ay + Apin)/2 — A/2,1) where o = 2/(y/r, + 1).
So that:

Fact 3.1 Forany i € {2, ..., |d/2]}, between Problem 1 and Problem i, the only actions that
provide different evaluations when sampled are action ¢ and action |d/2] + i, and the
mean gaps in both cases is 2A ;-

Fact 3.2 Between Problem 1 and Problem |d/2]| + 1, the only action that provide different
evaluation when sampled is action d + 1, and the mean gap in this case is A .

For j < d+ 1, we write N;(T") for the total number of times action x; has been selected before
time 7. Then, for j € {1, ..., [d/2]},let EU) = {N;(T) < T/2}. Note that for i € {1,..., |d/2]},
in Problem i the action z; is the optimal action. Therefore, for any efficient algorithm, for all 7 €
{1,...,|d/2]} the event E() should have a low probability under P(*), Indeed, fori € {1, ..., [d/2]},
the regret of the algorithm under Problem i can be lower-bounded as follows - see Facts 1 and 2:

RY > Y EIN@Amt Y EOW@)a,+ M@y,

i<ld/z), j#i ld/2]+1<j<d
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Since ), E® [N;(T)] = T and Ay < Ay < 3, this implies together with Facts 1:
RY = (T —ED [N(T)]) Auin
Using the definition of E(*), we find that
0~ TBminpe) (po)
Ry > —=mnp (E ) . (38)

In particular for Problem 1, for any i € {1, ..., |d/2]},

since V) > F),

i<|d/2]
1 contains the optimal action, and so for any efficient algorithm, the event I’ should have a low
probability under P(")., Indeed, Equation also implies

Similarly, let us also define the event F' = { > N;(T)>T/2 ;. Then, in Problem 1, the group

TA —
RY > |T-EV| N NT)| | Az > T#P(l) (F). (40)
i<|d/2]
On the other hand, for any efficient algorithm, the event F' should have high probability under

P(L4/2]+1) Indeed,under problem Problem |d/2] + 1, the regret can be lower-bounded as follows -
see Facts 1 and 2:

(La/2)+1)
RUFD > S gAY AL+ Y E(Ld/QJ—&-l)[Nj(T)]Amin_'_E [Na ()]

Jj<ld/2] ld/2|4+2<j<d 2

which implies that

TA
R(TLd/2J+1) > Z E(L4/214D) [N,(T)] Ay > T#p(td/ZHl) (F). 41)
j<ld/2]

Now, Bretagnolle-Huber inequality (see, e.g., Theorem 14.2 in [24]) implies that for all ¢ &

{2,...,1d/2]},
%exp (—KL (]P’(l),IF’(i))) < P (E“)) +p (W) 42)
and that
%exp (&L (B, U/AD)) < pU/A (7)1 B (F) 43)
On the one hand, Equation @2) implies that for any i € {2, ..., [d/2]},
KL (IP’“),IP’(“) > _log (2190') (E@)) + 2P (W))

> log (T) — log (QTP”) (E(”) +2TP® (W)) . (44)
Combining Equations (38), (39), and (44)), we find that
| ARD 1+ gD
KL (19(1),11»(1)) > log (T) — log <(TA+T) . (45)

On the other hand, Equation implies that
KL (P(1)7P(Ld/2j+1)> > _log (2P(Ld/2J+1> (F) + 2P0 (F))

> log (T) — log (2TP<W2J+1> (F) + 2TPM (F)). (46)
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Combining Equations (38), (39), and (46)), we find that

(Ld/2041) | p(D)
+RY ))
. (47)

KL(P(I),p(Ld/2J+1)) > log (T) — log <4(RT -
#

Also, note that for all i € {2, ..., |d/2] + 1}, the Kullback-Leibler divergence between P(*) and P(?)
can be decomposed as follows (see, e.g., Lemma 15.1 in [24])) :
i 1)
KLE® POy = N EO (N1 KLEY,PY). (48)
j<d+1

Lower bound in dA_! logT. By design, fori € {2,...,|d/2]}, all actions but z; and T|d)|4i

have the same distribution under P(") and P(*) - see Fact 3.1. Then, Equation becomes from
Fact 3.1 and from the expression of KL divergence between standard Gaussian distributions:

o g0) v, (7)) + 2200 E D [N, (7).
So that, summing over ¢ € {2, ..., |d/2]}, and by Fact 1:
S° KLEW,PY) < 2ARY.
i€{2,...,d/2)}
So that by Equation (summing over i € {2,...,|d/2]}):

KL(IP’(I), ]p(i))

(i) (1)
4
2Amin RS > > log (T) — log (W)]
i€{2,...,[d/2]} i
A4(RY 4+ R
= (ld/2] = 1)log (T) — Z log <(TAT) .
i€{2,...,[d/2]} mm
Let us assume that our algorithm satisfies max;<|q/2 R(Ti) < %ff) - otherwise the bound immedi-
ately follows for this algorithm. Then
(1) 1 1 8dlog T
BY > a2l Dioe() - g — Y o (O5
i€{2,...,[d/2]} min
1 8dlog (T)
> ga— (472 = 1) log (1)~ log (“E )] )

Sine d > 4, we note that |d/2| — 1 > d/5. This concludes the proof for this part of the bound.

Lower bound in K*A;Q logT. By design, all actions but z44; have the same evaluation under

Problem 1 and Problem |d/2| + 1 - see Fact 3.2. Then, by Fact 3.2 and the expression between the
KL divergence of standard Gaussians, Equation becomes

KL@W, 24Dy = g0 [y (T)]MZEED (Nyor (7] (282 i
’ i 2 2 i NCESVA

Combined with equation (7)), this implies that

1 oA, \2 A(RLA/21+D) L p()
FEW [Naga (1)) (¢> > log(T>—log< . T s

N A

Let us assume that our algorithm satisfies max;<|q/2/+1 Rg) < %%q) - otherwise the bound

immediately follows for this algorithm. We then have
1 2A ? 8k log (T')
350 W) (2221 ) 2 tog(r) —log ( 220,
2 VEs+1 A‘;’é

Using Equation (37), we find that

Ky + 1
= 2
4A3‘é

R{Y (51)

8k« log (T
log (T') — log (é”)

38



Lower bound in K*A;Z. Let us assume that our algorithm satisfies max;<|4/2|+1 Rgpi) < B -

A2
>
otherwise the bound immediately follows for this algorithm. Then, Equation implies
1 28\ 8k
3B Wan(0) (222) 2 tow(r)—1og 35 ).
2 Ex Ai
Using again Equation (37), we find that
+1 TA?
RY > [T z ). 52
Y T (52)

We conclude the proof of Theorem [6]by combining Equations (49), and (52).

Bounds on x(A) Finally, Lemma|l1 allows us to express x(A) as a function of .. On the one
hand, since k. > 1, we see that k., < (1 + /k»)? < 4k,. On the other hand, 1/2 < Ay < 2, so
Kk(A) € [%, 25*].

C.6 Extension of the gap-dependent lower bounds to d = 2, 3

Theorem E can be extended to d € {2,3} by considering separately the cases —AdA > x> and
min #
Axdnin < Aﬁi

Casel: AL_ > A% Let us consider the set of actions defined by A = {( 1 ) s ( Td+1 )},
min #

2z ey

i — ; _ 2 :
where (:T) =e; +eqq fori € {1,...,d}, and (Zﬂi:l) = — (1 — W) e1 — eqy1. Using the
same proof as in Lemma|[I7} we see that

+
x 2\
: T
min { e Ty €dil p = K.
TePA il Z * <Zw> <z$> +

Then, we consider the following problems : for i < d, Problem i is characterized by the parameter
0 where 09 = (7(1) ) is defined as:

w(®)
1- Amin
’y(l) = 72 Z@i + Aminel
i<d
i 1-—- Amin .
’Y(Z) = fzez + Arninel + Aminei fori>1
i<d

and the bias parameters are defined as w® =0 fori < d. The following facts hold:
Fact 1 For any i € {1, ...,d}, action ; is the unique optimal action in Problem i. Sampling any
other (sub-optimal) action leads to an instantaneous regret of at least A ;.
Fact 2 In Problem i, for i € {1, ..., d}, when sampling action z; at time, ¢ the distribution of the

observation does not depend on ¢ or on the past (except through the choice of x;) and is ]P’;i).
It is characterized as:

Vie{l,...,dLPY is N((1+ Amm)/2,1)

vie {1,.,d},PY, s N(—(1 Y1+ Amin)/2,1)

2
VR
Vie{2,...,d}L P is N((1+3Amm)/2,1)
Vi, j e {2, ,dyi# PV is N((1— Apin)/2,1)

So that for any ¢ € {2,...,d}, between Problem 1 and Problem i, the only action that
provides different evaluations when sampled is action 7 , and the mean gap is 2A ,i,.
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Since A < 1 , this choice of parameters ensures that Vi € {1,...,d}, () € G)Amm N . Adapting

the proof of Lemma [ we note that the minimal variance of bias estimation is at least .. This
proves that A € @R Ammin, Az i, - NOW, the lower bound

dA_miln |:]og (T) — log <8di(32g(T)>}

min

Ry >

follows directly using arguments from the proof of Theorem [6]

Case2: x°— > 3% Let the action set be given by A = {(;1 ) s (Zacd+1 )},where (;1 ) =
Ammin z - vas1 -
€1+ eq+1, (i) =e; —eqqq fori € {2,...,d}, and ( Z:i) = — (1 - ﬁ) — e4+1- By

Lemma. .A € A, 4. We consider two bandit problems characterized by two parameters 6 and
6, defined as:

1+ A 1-A A
'Y(l) = +2 7&61 + 5 7z ey — 7#6
1-A 1+A A
~® Zey+ Zes+ —Les
2 2
On top of this, two bias parameters are defined as w(!) = f% and w® = %.

The following facts hold:
Fact 1 For any ¢ € {1, 2}, action x; is the unique optimal action in Problem i. Since 1/2 > A,
sampling any other (sub-optimal) action leads to an instantaneous regret of at least A.
Fact 2 In Problem i, for i € {1, ..., d}, when sampling action x; at time, ¢ the distribution of the

observation does not depend on ¢ or on the past (except through the choice of ;) and is ]P’( 2

It is characterized as:
Vie {1,2},vj € {1,2},P{" is A(1/2,1)
vie{1,2},P{Y is N(0,1)

(1) . _ 2 1+ A, Ay
Fap is N<(1 \/a+1>< > )Tt
@ 2 1-Az\ Ay
(102 (52

So that, between Problem 1 and Problem 2, the only action that provides different evalua-
tions when sampled is action 1, and the mean gaps in both cases is

rﬂ

Note that the minimum gap for these parameters is A > A,. Thus, this choice of parameters
ensures that Vi € {1,...,d}, 6 ¢ @ﬁ . Adapting the proof of Lemma E, we note that

min Ao, Ko
the minimal variance of bias estimation is at least «..This proves that A € @Z‘mim A, Then, the
lower bound
Ky +1 8k log (T')
Ry > 4A2 log (T') — log <A§é

follows directly using arguments from the proof of Theorem [6]

C.7 Auxiliary Lemmas
C.7.1 Proof of Lemmal[ll

Lemma [T follows from the characterization of . given in Lemma [5. We begin by proving
the first statement. Assume that s, > 1 (otherwise the first statement is void). Note that

for all u € RY, /\lim (maxzex (z7 (Au) + ,230)2)_1 = 0, so the minimum over u € R? of
—+o00

2,1 . . . . o
(maxgex (z7 (M) + 2,)7) "' is attained for some vector & € R?. Since k. > 1, @ is not null.
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Moreover, maxex (1 + 2,2 )2 < 1, s0 maxgex 2,2 @ < 0. Thus, forallz € X, 2@ and z,
are of opposite sign, and x "% # 0. This implies that the hyperplane containing 0 with normal vector
4 contains no action, and separates the two groups. Moreover,

Ky /% = max |zpx 0+ 1].
reX
We denote ) € argmax,cy 2.2 "%, and z(?) € argmin,cyz.z @ Let us show that
oM a+1) = — (14 2,02® @), ie that z,002M @ + 2,2@ 4 = —2. Indeed
( (1) z(2) s (1) 2 (2) s
note that
_ T T
Ky /P = (g a+1)V -1+ z,22? a).

=2 — 1, we see that

Then, for v’ =
(zm(l)m“)Jrzm(g)m(?)) a

T T
zowe® W +1=— (1 + zyma® u’) = max |zpz U/ + 1.
xT€

.. T. T.
By contradiction, let us first assume that zx(mx(l) U+ Z5(2) 23§ < —2. Then,

T T _
max |z T 4+ 1] = 2,02 W +1 < 2,02V G411 =k 1/2
TE

which contradicts the definition of x..
. . T. T.
Similarly, if we assume that zxu)x(l) U+ Zx(2)x(2) u > —2, then

T T _
max 202 T + 1] = —(2,02® W +1) < —(z,02@ G+1) =r; /2
zE

which contradicts again the definition of x,. Therefore,
T T _
(zz(l):c(l) u+1)=— (1 + zz@)x@) 11) = K 12,

Then, the hyperplane containing 0 with normal vector @ separates the actions of the two groups.

.. T — . . . . .
Moreover, the margin is —zxu)x(l) u=1— K4 Y 2, while the maximum distance of all points is
T. _ L .. .

— 2y G =14k, 172, Thus, there exists u such that the hyperplane containing 0 with normal
VEx—1

times the maximum
Ket+1

vector © separates the actions of the two groups, with margin equal to
distance of all points to the hyperplane.

Conversely, assume that there exists £ > k. such that there exists u € R such that the hyperplane
containing 0 with normal vector u separates the actions of the two groups, with margin equal to
\/E—l o 17ﬁ—1/2
VE+L T 14k—1/2
d. Since the hyperplane separates the points, we can assume without loss of generality that for all
x € X, zpw"u < 0. Similarly, up to a renormalization, we can assume without loss of generality

that d = 1 + x—1/2. Then,

times the maximum distance of all points to the hyperplane, denoted hereafter

max|z,x u+1] = (maxzyz u+1)V —(minz,z u+1)
TeEX reEX reX

1—xk1/2 1/2 1/2 1/2 -1/2
= (_MX<1+KJ_/)+1>\/—(1_K/_/ _].)ZK/_/ <l‘<f/*
K

which contradicts the definition of x,. This concludes the proof of the first statement.

To prove the second statement, let us assume that no separating hyperplane containing zero ex-
ists. Then, for all v € R?, there exists z € X such that z,z v > 0. This implies that
min, cra maxmex(zxxTu +1) > 1, s0 kx < 1. Choosing u = 0, we see that k. > 1, which
implies that k., = 1.
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C.7.2 Proof of Lemmalf2l

Since forall ¥ € X and all x € X, |z T~| < 1, it is easy to see that the gaps are bounded by 2, and
that kK < 2k.,.
Let us now show that K > #«/2.

nT

(:E(l), x(2)ﬁ) € argmax (z—ax') '~y
(z,2")eX ,yEC(X)

_— ;ﬂn+x®)
Po= i)
reX
~ 1 -
and = = :Zu(x)x

nmeX

Recall that %, can equivalently be defined as the budget necessary to estimate the bias with a variance

smaller than 1. Therefore, we have
> Ky (53)

Let us define Apax a8 Aoy = () — 23 = ma 2z — ') T~. By definition of %
( )TA = uwm&%am( ) 7. By K

and [,
Rz ) E —2)"y

reX
= AW -3)77.
Using Equation (53), we find that

— 2 @V -2+ @ -7
Amax g ~ ~
= = +@-2)"7. (54)

Now, since 5 € C(X'), we also have —5 € C(X), and therefore
o> ) (® —2)T ()
TEX
= A@E—-)7y
Using again Equation (53), we find that

o> @-0F+E-2®)TF

Rox
~ A11'1 b'd
= 65)
Combining Equations and (55)), we find that
K Amax — T~
L -5

Rox
This implies in particular that & > A“%

To conclude the proof of the Lemma, we show that A,,x > 1. By contradiction, assume that
Amax < 1.

For all non-zero vector u € R, let us denote z,, = argmax, .y | ' u|. Since X’ spans R¢, we
necessarily have |z u| > 0, so we can define the normalized vector @ = u/|x, u| such that @

belongs to the set C(X). Finally, denote al! ), @ e argmax, /¢ y(Tu W 32))—'—11. Note that by

definition of A,,.x, we always have (xy, (0 _ 1(?)) 1 < Apax < 1.
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M’

M we see that zi) @ = 2] @ = 1. Then,

Case 1 : 2 @ > 0 Then, by definition of z, and zd

T T T
(a:q(}) — xq(f))Tﬂ < 1 implies that 1 — xq(f) % < 1, s0 xq(f) % > 0, and in particular x&z) u > 0.
T
Case 2 : qu < 0 Then, by definition of z,, and L(f), we see that x&z) U = qu = —1. Then

T T T
(x&l) — xf))Tﬂ < 1 implies that x&l) u+1<1,s0 335}) @ < 0, and in particular x&l) u < 0.

T T
Putting together Case 1 and Case 2, we see that xq(}) uw and m&z) u are of the same sign and are not

null. By definition of x&l) and x&z) , we conclude that for all z € X, the sign of 2T u is the same,

and that = T u is not 0. Since this is true for all non-zero vector u, this implies in particular that no

hyperplane containing the origin can separate the actions, which contradicts the assumption that X’
d

spans R?.

C.7.3 Proof of Lemmas 3 and @4

We begin by proving Lemma E Recall that 7 is a G-optimal design for the set {a, : © € X'}, and
that y is defined as p(z) = [mw(z)] forall z € X.

We first observe that V(7r) = Al A, where A is the matrix with lines given by [\/7(x)a, |.cx-
Since the supports of y and  are the same, we get that Range( A ) = Range(A;). As a consequence

Range(V (7)) = Range(A]) = Range(A;) = Range(V (1)),
and z € Range(V (1)) for all z € X. This ensures that a0, is an unbiased estimator of a,] §*.

Furthermore V(u) 3= mV(w), so the variance a,; V(u)*a, of a;{@ is upper-bounded by
alV(p)Ta, <m~ta] V(7)*a,. Now, the General Equivalence Theorem of Kiefer and Pukelshein
shows that max,cx a, V(7)Ta, <d+ 1. Thus, a] V(7)Ta, <m~(d+1).

We now prove Lemma E Recall that 7 € MY ., is such that eq11 € RangeV/(m), and that

 is defined as p(z) = [mm(x)] for all z € X. Using similar arguments, we can show that
ed+1 € Range(V/(u)), which ensures that e, 6,, is an unbiased estimator of e, ,6*. The second
part of the Lemma follows directly using that V' (1) = mV ().

C.7.4 Proof of Lemmal[3

Elfving’s set S for estimating the bias in the biased linear bandit problem is given by

S:convea:hull{(x>,<_x> :a:EX},
2z —Zz

S = convex hull {i (Z”ix) 1z € X}.

or equivalently by

Now, TheoremEindicates that k. /2 eq+1 belongs to a supporting hyperplane of S. We first show
that when A spans R%*!, any normal vector w € R4 to this hyperplane is such that w ey, 1 # 0.

By contradiction, let us assume that k. / ®eq441 belongs to some supporting hyperplane H of S

parametrized as H = {a e R qTw = b}, where the normal vector w is of the form w = (g)

Then, 5:1/26(14_1 € H, so n:1/2edT+1w = b, and thus b = 0. Now, # is a supporting hyperplane of
S, soforall a € S we see that a " w < b. In particular, forallz € X, 2 "u < 0and —z"u < 0, so
x"u = 0. This implies that X is supported by an hyperplane in R¢ with normal vector u, which
contradicts our assumption that A spans R?*!. Thus, the supporting hyperplane of S containing
n*_l/ 2€d+1 has a normal vector w € R such that wTed_H 2 0. In particular, we can parameterize
this hyperplane as H,,;, = {a € R4 : a" (1) = b} for some b € R and u € R%.

Now, if H,, 5 is a supporting hyperplane of S, then, by definition, S is contained in the half space
{a e Rt . o7 (11‘) < b}. In particular, for all z € X, one must have zzx u+1 < band
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—zpz'u—1 < b: therefore, for all z € X, |zxxTu + 1| < b. Moreover, Hy,p is a supporting
hyperplane of S, so there exists an extreme point @ € S such that a € H,, ;. Note that S is the convex
hull of {= (*2%) : z € X'}, so the extreme points of S are in {+ (*:) : x € X'}. In particular, this
implies that b = max {|z,@ " u+ 1| : * € X'}. Thus, the supporting hyperplane of S containing

—-1/2 . .
Ko / ed+1 1s necessarily of the form H, yax {22 ut1:cex)-

On the one hand, mfl/ * belongs to the boundary of S and therefore to a supporting hy-
perplane M, max{|z,2Tut1j:wexy Of S. Then, there exists u € R? such that n*_l/Q

max {|z;z u+1]: 2z € X}.

On the other hand, it is easy to verify that for all u € R?, Houmax{|zox T ut1j:zex) 1S @ supporting
hyperplane of S. Now, HII/QedH belongs to S, so /{II/Qe;rl (11‘) < max{|zm:cTu +1]:z€ X}.

These two results imply that

—1/2 .
ky /> = min max |zpx T u + 1|
u€ERd zEX

which proves the Lemma.

C.7.5 Proof of Lemmal6

We prove that 2(y/kx — 1)2V 1 < o < 8(ky + 1). Lemma@follows directly by noticing that o > 1
and k., > 1.

Let us begin by proving that 2(\/k, — 1)? < « for k. > 1 (otherwise this inequality is auto-

. . d . 1 o . .
matically verified). Note that for all u € R, )\ETOO e @ O = 0, so the minimum

over u € RY of L > = 0 is attained for some vector & € R%. Let us also denote

maxgzex (z T utzz)
T € argmax, ¢ y (2,2 % + 1)2, such that

With these notations, we see that for all z € X,
(zpx 0+ 1)2 < (' a+1)2=r' < 1.
This implies that for all x € X,

Zpx 0 < —1+I£*_1/2 < 0.

Now, let us denote (1), 2() € argmax,, .y (z — 2’) " @. By definition of cv, we see that

(M) — x(z)yﬂ)?

a > 5
(Z;;Lf—ra + 1)

= (@ - x<2>)m)2 X K.

Since z,x "4 < 0 for all z € X, and since no group is empty, we can conclude that there exists
x,x’ € X such that 24 >0and 2’4 < 0. In particular, by definition of M and x(g), we see that
(M) Ta > 0and ()74 < 0. Then,

(@(1) _ z<2>)Tﬁ)2 > ((xu))Tﬂ)

This implies that

2 2

+(@)Ta) 220 - k)2

a>2(1- mfl/Z)g X Ky = 2(v/Fa — 1)2.

Let us now prove that o > 1. Note that by assumption, X’ spans R¢, and in particular there exists
@ € R%and 2,2’ € X such that max,cy ' @ > 0 and mingey ' @ < 0. Thus, maxy ,ex((@ —
2')T%)? > max,ecx (2 @)% Forany A > 0, choosing v = \i in the definition of  implies that

A2 maxey (" u)?

T maxgex(AzpzTu+1)2°
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Letting A go to infinity, we find that o > 1.
Finally, we prove that a < 8(k, + 1). For all u € R%, we see that

max, zex((x — ') u)? dmax,ex(zpx u)?
maxzex(zz2 T u+1)2 ~ maxgex(zzzTu+1)2
Now, we see that
max ey (2,2 T u)? 2max,ex (zp2 Tu + 1)% + 2 )
maxgex (2,7 u+1)2 = maxgex(zpzTu-+1)2 maxgexy (2z2 T u+ 1)2

This in turn implies that for all v € RY,

maxy . ex((@ — 2') Tu)?

< 8(1 %)
maxgex(zzzTu+1)2 — (1+£.)

which finally implies that o < 8(1 + k).

C.7.6 Proof of Lemmal§|

Proof of Claim IQ The proof of the first claim is immediate by definition of «. Indeed, let M =
e M5d+1 eg V() teasr < 1} be the set of measures ;. admissible for estimating w* with a
precision level 1. Then,

Kk(cA) = nélj\%z wx)eA, =c¢ Héljng‘ A, = cr(A).
n =z n

ProofNOf Claim @The proof of the second claim is also straightforward. If A < A/, then for all
pe M, ux)Ay <3 u(x)AlL. Recall that &' = argmin,, 7 >, () A7 Then,

Zu A'>Z,u T)A, >m1nZu = k(A).

pneM
Proof of Claim iii)| To prove the third claim, note that
kK(AVA') = min Z,u V(A VA,

MEM

\Y \V%
TE L
5 T/~ s
NRRING
= =
& &
> g
8 8
~— <
<
I/ M
= =
5 s
>
g =
s
>
el

HEM T )

v
Fil
b
<
2
>

Proof of Claim [iv)|Recall that

Let us define a sequence (i, )nen € MY such that Y owbn(x)Ay — K(A), and let us denote
n—oo
Kn = Y, Hn(2)As. According to Claimlii)] we have

H(A)Sﬁ(AVe):migZu(x ) (AL Ve) <Zun VA, +eZun
pneEM

It follows that for all n,
k(A) <liminf k(A Ve) < limsupr(AVe) < Ky,

e—0t e—0t

Letting n go to infinity, we get that lim, g+ k(A V €) = k(A).
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C.7.7 Proof of Lemmal9l
Setting 11 - A = (u(x)Ay)zex and

T

Z A < 1/21‘ > ( A;I/Ql‘ )
~1/2,, —1/2 ;

X Zx Az Zx

we observe that Va (p - A) = V(u). Hence,
K(A) = min Z (- A)g.

peMt
zeX
5;+1VA(N'A)+ed+1§1

We observe that ;1 € Range(V (1)) is equivalent to eqy1 € Range(Va (i A)). Hence, ™ - A =
A2 where
PE= argmin Z Az
AERi rEX
ea+1€Range(Va (M)
e:1r+1VA(/\)+5d+1 <1

The conclusion then follows by noticing that by homogeneity, \® = k272,

C.7.8 Proof of Lemma[12
Lemma[I2]follows directly from Lemmas[T8]and[T9]

Lemma 18.
I S
P33 >1,2¢€{-1,1} such thatExplore( 2 = = True, and x € X( ) such that ( l(z) ) ( ) >e | <0
w;” —w* Rz
Lemma 19.
(Ell > 1 such that Explore( ) — = True and ’wl —w*| > el) < 4.
C.7.9 Proof of Lemma[13
To prove Lemma E, we rely on the following key lemma. This lemma proves that on F, i.e. when
the error bounds hold, the algorithm never eliminates the best action or the best group.
Lemma 20. On the event F, for all =* € argmax, c y x"y* and all | such that Explorel('z’*) =
True, x* € Xl(ﬁ *) Moreover, on the event F, for all | such that Explorel(o) = True, there exists

x* € argmax,c y x ' v* such that 1 # —Zge.

Let! > 1 be such that Explore(Z’ ) = Tree. Then, on F, z* € X, (#2+) by Lemma Moreover, for

11
allz € X, l(—il*) by definition of Xz(ﬁ ’, we have that on 7

* ~(2)
() () (B) =
Zyx Zxx (.L)l
Zxx @l(z) — w*

(z* —z) 7" < 5,

which implies that

((:) B (;»T (Z) <3+

Thus, on the event F, for all z € Xl(zf*)

( T ) %(z) 7
Zg* (:\ng) —w* .

which proves Equation (13). To prove the second claim of Lemma @, assume that for all 2’ €
argmax,c y 2T y*, Zy = 2z~ (when this does not hold, the second claim follows from Equation
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(=22*) _ Trye. By Lemma on F, z* € Xl(z””*) and

(13)). Now, let [ > 1 be such that Explore,
z{ = 0. Then, the algorithm is unable to determine the group containing the best set during the phase

so there must exist 2’ € Xl( #r) such that

0
Expl(_)l,
o(227) , ~(=2z%)
0 0 ~
<x ) l(zl*) = < . ) l( 1z*) Jr223@*“’1(8)1 +4eg.
Za Wi —Fa Wi
It follows that
* ol T * * _ ’\(Zm ) / ( Zm*) *
(x x) (7> = (x > B 1l(zlw +< . ) 71( o) )2t
22’;* W Zpx w* — lle —Zyx wlflm — w*
On F, this implies that
.
Tt — CL'/ * R
( 22 > (’y*> < 22”“’@1 + 6611
(56)

© *> + 6€;_1 < 8¢;—1 = 16¢;.

~(0
W) —w
Té\l(_'z“*) < 3¢, so following the same lines as

$0
(2" —a)" 7" < 220
(=**) we have (ag — ag)
< 5¢;. Combining this bound with , we get

Moreover, for all z € A}

for the first claim, we get (33 — )
Ty < 21¢.

max (2" —x)
wEXL(+1 )

This concludes the proof of Lemma T3]

Forz € {—1,+1} and [ > 0,
2(d+ 1)m,

Z W@ <3 >

x

Now, supp( (Z)) < % and ) wl(z)(x) =1,s0
2 2(d+1 El(l+1 d+1)(d+2
S (@) < (62 )10g< (5 )>+( )2( )
i

C.7.10 Proof of Lemma|[14|
(2)
T kl(l+1 »
( )log< ( )>—|—|supp(7rl( ))\

x
which proves the first claim of Lemma|[T4]
To prove the second claim, we bound the regret for bias estimation at stage [ as follows. On F, we

have A, < Al forallz € X and [ > 1 50
> @A, < Y
reX reX
Recall that ji; is the Al-optimal design, and that for all 2 € X, ul(o) (z) = [2“61729) log (@)}
1

Since AL < 2forall z € X, we have
2/ (t+1
S @Al < 3 ‘“ <( 5 ))Al+2|supp( )l
TEX TeEX
and|supp( )|<d+1 sO
2 (i+1)
( ; )Zl )AL 4 2(d 4 1).
TEX

> om @A, < Slo
z f

By definition of fi;(x), we have that
S ()AL = w(A).

It follows that, on F,
2

IUCINE JILBEES T
x l



C.7.11 Proof of Lemmal[13]
For the first claim, we rely on the next lemma.

Lemma 21. Let us set /, = max {l >1l:z € Xl(_l) U Xl(l)}. On F, we have for any | > 1

1. ﬁi < A, + 16¢; forall x € Xl(_l) U Xl(l) (i.e. for all x such thatl < £,);

2. if A, > 2le then l, <1;

3. e, <Ayforallz € X.
Lemmall5|relies on the following remarks : if A, A’ are such that A, < A/ for all z € X, then by
Lemma|8| (i), x(A) < (A’). Let us now prove that forall | > 1 and all z € X, AL <513(AVe).
Case¢; > A,.On F,wehavel < ¢, — 1 according to the third claim of Lemma So, on F,

AL <A, 4166 < 17(A, V €).

Case ¢; < A,. Then, on F, we have 32¢; .5 < A, and so [ + 5 > £, according to the second claim
of Lemma Hence, on F, according to Lemma we have

Al < I%axE)AZ <AL+ 16€p, 5

< A, +512¢,, <513A,.
Thus, foralll > 1landall z € X, R
Al <513(AV¢).

Now, let M = {,u € /\/led+1 e;ir+1V(u)+ed+1 > 1} the measures 1 admissible for estimating w*
with a precision level 1. Note that for all a, b, c > 0,

(1 Jrabfl)(c\/ b)=(c+cab ) V(a+b) >cV(a+b)>cVa. (57)
Using Equation (57) with a = A,, b = 7 and ¢ = €, we see that
K(AVe) = mm ZN (A Ve) < (I+e/r)min Y u(z)(AyVr)=(1+¢/T)a(AVT).
HEM T

Using Lemmaltogether with AL < 513(A V ¢), we find that
k(ALY < 513k(AV ¢) < 513(1+ ¢/T)R(AV 7).
This proves the first claim of Lemma T3]

To prove the second claim, we use Lemmal:and the fact that for all x, N > ¢;. Moreover, on F,
AL > A, forall z € X. Then, k(A) > k(e V A) by Lemmam

C.7.12 Proof of Lemmas[16]

To prove LemmalE let us consider [ such that ¢, < Accordmg to Lemma@ on F we know
that zl # —Zzz+. When o | = zg+, then we also have o 1+1 = Zz+ and the conclusion follows

immediately. Let us consider now the case where zAl* = 0. By definition of A, for all = X (= Zm* ),

(z* — x’)Tfy* > A
This implies that

2\ a(zz*) s \ T 3(—21*)
( ) ,\l(z, N Zm*@l(o) > max < ) ,\l(,z R Z:v*wl(o)
Za W cex! o) \ T Er w

iC* fy\l(zw ) 'Y* . x T ,Y* _ Al_
+ z ’\(z *) * + n’(ll_ri ) _ * -
x* wy —w zeX, " Ra* w* —w

+Ag + 220 (W = (")
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On F, it follows that
s\ T [ 2(zax) T [ a(=2e%)
(2 ) = () () o
Zx* w;’* (—2z4%) \ —Zgp* W x
! TEX |, l

When A > 8¢, this implies that 27, | = z,-.

C.7.13 Proof of Lemmas[10 and

We prove Lemma|[I0] The proof of Lemma [I7]follows by noticing that the two actions sets are equal
up to a permutation of the direction of some basis vectors. To prove Lemma[T7] we rely on Elfving’s
characterization of c-optimal design, given in Theorem Theorem shows that for 7 € Pl d+1}
to be e441-optimal, there must exist £ > 0 and ¢ € {—1,+1}?*! such that

Z’]Ti:].

1<i<d+1
0 = mG-—-(1

Vie{2,..,d}, 0 = m(

t = > oG- > G-

1<i<|d/2] ld/2]+1<i<d+1

2
- W)ﬂ'dJrlCdH

Solving this system, we find that =2 = k... Note that the unicity of the solution for the corresponding
probability measure 7 guarantees that tey41 belongs to the boundary of S.

C.7.14 Proof of Lemma[11]

For a given parameter v*, let us denote by A; the gap corresponding to the action ¢. To compute x(A),
we could want to rely on Lemma|9)to find the A-optimal design, corresponding to the e 1-optimal

1/2 (2

design on the rescaled features A, ;

). Theoremindeed allows us to compute such a design,

as seen in the proof of Lemma|[I0] Unfortunately, we cannot rescale the features using the true gaps,
since A, = 0. To circumvent this problem, we rely on the following reasoning :

1. We use Lemmalgand TheoremEto compute the design uAVf for € € (0, Apin); and the
corresponding regret (A V ¢);
2. We find the value of x(A) by noticing that € — «(A V €) is continuous at 0.

1/2

For € € (0, Apin), define A = A Ve, andZ = A, ' “x. Let 7 denote the eq+1-optimal design for

the rescaled features Z, and let 5, denote its variance. Then, Lemmalgl ensures that k(A) = R;.

Now, Theorem [5|shows that there exists ¢ € {—1, +1}9+1 such that

Zﬁi:l

1<i<d+1
—| 2 _ ——1/2
0 = mGa, " —(1- ﬁ)ﬂd+1<d+lAd+1
Vie{2,...d), 0 = mA,
ﬁ*—l/Q _ Z ﬁZCZZZ—l/Q - Z ﬁZC’LZZ—l/Q
1<i<[d/2) /2] +1<i<d+1

and 7,/ 2e441 belongs to the boundary of S. Solving this system, we find that

2 Z71/2
H(Z),l/Q :?*,1/2 _ (\/K-‘rl) d+1

——1/2—1/2"
1+ (1= 25 ) Bail A
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As in Lemma[I0} the unicity of the solution for the corresponding probability measure 7 guarantees
that 7, ~/?e441 belongs to the boundary of the Elfving’s set. Now, € < Apin, S0

(getm) 2t

— _ ret+1 +

K(A) Y2 = k(AVe)TV2 = ; RS
1+ (1 - W) Agpyel?

The fourth claim of Lemmaensures that k(A Ve) — k(A). Therefore,

e—0
2 A_1/2 —2
k(A) = lim (\/K‘H) d+1 _ (VR +1)?Agp
TN+ (1- g2 Auier 4

C.7.15 Proof of Lemmal[l§

Recall that & = y; — 2/ v* — 2,,w*. Forl > 0 and z € {—1,+1}, when Explorel(z) = True, the
()

least square estimator (al(z) ) is given by

1

A(z) T *
oy Tt Y Tt
(2 ! +&
w( ) Zg w* A
L teExp® ¢ o
1
+

tEExp

[ I
/N /N
< <

O O
N— N—
+
<
s 2
N——
VR
£ 2
* *
N———
+
N
=
O
SN—
J‘r‘,
/\
v

+
where (Vl(z)) is a generalized inverse of V,*). Since V,*) (Vl(z)) V*) = v*) multiplying the
left and right hand side of the last equation by V}(Z), we find that

A(Z) *
z Y - z z
Vlu(@%”—m) - W) 3 §t< ) o

tEExp( #)

By Lemma forall z € XZ(Z)’ (zli) € Range (VI(Z)), SO

e (W(Z))+ (:) _ (:) ' (59)

7 " e B 3 = Tv<z> v (=

Az(z)—w* (%) a @l(z)—w* : (l ) (Z»L)

3 (xt )T (v<z>)*v<z> <V<z>)+ (x ),5
Zx ! ! ! Zx !

teExp!® !

£ (2) () (2)s

2 t
tEExpg )

Then,

where the first and third lines follow from Equation (59), and the second line follows from Equation
(58). By definition of our algorithm, conditionally on Xl(z) and Explorel(z) = True, the variables

(&) reExpls) ATC independent centered normal gaussian variables. Then,
’ 1

~(2)

T 2
p T BIEN > ) (v (2} loe (HUEDY | < s
|XL(Z>,Explorel(z):True @L(Z) w* zz )| = tGExpgz) Za, l 2z 08 0 — Kki(l+1)"
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sman ((2)' (1) (2))" = (2) ()" (2) () () () o

using the definition of Vl(z), we find that

P 39\, > Jof = T v @ (T () 10g (HEDY | « s
|Xl(z),EXplore§z)=True @;Z),w* 2z = 2z l l l 2z 0g 0 — klI(l+1)
which in turn implies (using Equation (59))
P A ! 2\ s [ollf = 2 log (HODY ) < o
|XL(Z),Explorel(Z):True (Dl(z)fw* 2z = Zz (Vl(z))Jr 08 0 — kl(l+1)
Now, using LemmaE|and the definition of 17, we see that for all x € Xl(z),
D IS N () e S
2z ! ze ) — 2log (KlI(14+1)/0)
Finally, for all z € X7,
S\ |
YO x
P . - >
\Xl( ),Explorel( ) =True (C/JZ(Z) _ w*) <Z$> = &
~ b 7 — T(az) . 2H<x>2 | <kl(l+1)> _ 6
. 2 o .
— \XL( ),Exploreg ) =True OA‘)I(Z) —o* Za - 2 (‘/,l(z))+ S J - kl(l + 1)

Integrating out the conditioning on the value of X, l(z) and Explorel(z) and using a union bound yields

the desire result.

C.7.16 Proof of Lemma[19]
The proof is similar to that of Lemma If Explorel(o) = True, then &; is defined as

+ T/
= ) T () () (2):

tEExp;O)

Zx

Since ( v ) , Spans RI*1, 11 is finite and e4,; € Range (V(f;)). Then, according to LemmaE,
e

+
for every round [, we have e4,1 € Range (Vl(o)) , SO Vl(o) (Vl(o)) €d+1 = eq+1. This implies that

~(0 * 0 + Tt
5 —wr = Z Cat1 <Vl( )) (z ) &
teExp'® o

By definition of our algorithm, conditionally on Explorel(o) = True, the variables (&;) teExp(® AT
1

independent centered normal gaussian variables. Then,

O e | |7
1

P |Explore; ' =True

tEExpl(z>

+
Using again VZ(O) (VE(O)) ed+1 = eq+1 and the definition of VZ(O), we find that

+ (1+1 )
> \/2edT+1 (VE(O)> €d+110g< ( ;r )>> < a+1) (60)
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Now, Lemma and the definition of ul(o) imply that
2
€

T (()))Jr
V < —.
Cd+1 ( L) S = 9100 (100 + 1) /0)
Finally, Equation implies that

|Explore(o>7True (‘@l W ) < l(l + ]_) :

Using a union bound over the phases Expl(o) yields the result.

C.7.17 Proof of Lemma 20|

To prove Lemma|20] we begin by showing that it is enough to prove that for [ > 1,

FiD {Elx* € argmaxx ' " :Explorel(z”*) = True and z* ¢ Xlﬁ*)} (61)
zeX

U { N {Hx € argmaxa T y* : Explore!/*") = True and 2* ¢ Xl(,il*)}

I<i TEX

ﬂ {Explorel(o) = True and Vz* € argmaxxTv*,zA*Hl = —ZI*} }
rzeX

Indeed, denoting }"(1) = {Em* € argmax, y z ' v* : Explore;” **) = True and z* ¢ Xl(_i”{*)} and

}-l(z) = {Explore( ) — True and Va* € argmax,cy wT'y*7 zA*lH = — 2" }, we see that Equation
(61) would then be rewritten as

Ao FOU ﬂﬁmfl@)

r<i

which implies

Us > U ]_—l(l)U mﬁﬂ]_—l@) U]_-l(}) 5 U{]:z(l)UJ:z(z)}~

1>1 1>1 r<i r<i >1
Then, Equation would imply that

-UA U UAY) - NI DA

>1 >1

thus proving Lemma [20. To prove Equation (61)), we show that both ]-"l(l) and (), < ]-"l(,l) N ]:1(2)
imply F;.

It 7, (1) is true: then dx* € argmax,cy : Explore(z“c ) = = True and z* ¢ Xl(fj*).
Without loss of generality, assume that [ > 1 is the smallest integer such that Explore,

(z27) (because either [ = 1, or Explorel(Zar ) — = True).

(%) — Trye
and z* ¢ Xl “2*) Then, necessarllyx € 4

Now, because z* € X,*") \Xl 22°). there exists # € X**") such that

(I’ . x*)T;Y\l(Zz*) > 36l

and in particular

.’L‘T’yl(z =) _ € > ( )TA(Z =) + €.

Recall that by definition of z*, ( *YT(2* — x) > 0. This in turn implies that
() > () te
R w; —w* R w; —w*
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1 W

. . . . T ’Y(Z) o L\ T ’Y(Z) y* .
The last equation implies that either (f ) GZ(Z) > € or (: ) OAJQZ) < —e¢;, which
T —w* x*

in turn implies ;.

(< F (1) ﬂ}"(z is true: then Explore( ) = True and Va* € argmax,cy ' v, z/;‘; = —2p.
Moreover, for all I’ < [, Explorel(,z =*) — False or z* € Xl(,il'l* ).

Note that this case can only hold if all optimal actions x* belong to the same group z,-. Without loss
of generality, assume that [ > 1 is the smallest integer such that Explorel(o) = True and z?:l —Zg*,
and for all I’ < I, Explore(z”” *) = Falseor z* € Xl(/jff ). Note that because Explore(o) = True,
necessarily Explorel(’z” *) = True for all I/ < , and in particular z* € Xl(ﬁ ),

Then, there exists z € XI(HZ” ") such that

x al( ZI*) x al(zz*) 0
( ) ~(—zgp%) - ( ) ~(2g%) +2z1*@l( ) > 4€l.
—Zgx wl v Zg* wl

Recall that all optimal actions x* are in the same group z,-, so (y*)T (z* — x) > 0. This in turn
implies that

F(2ax) _ T [ae) _ o«
( . ) sl ‘(m ) T ) 25 @0 - ) > e
— R w; 7w Zopn &%) — wr

T/ A(=2e) Szex)

The last equation implies that either (7; *> (1’(%*) v ) > €, or ( ) (Zﬁz ©) ) <
x W, —w* c* W, —w*

~0)

—€1, O 2+ (0 w*) > €, which in turn implies F;.

C.7.18 Proof of Lemma 21]

The first claim holds for [ = 1. For [ > 1, for any « € XZ( Yy Xl(j)l, we have Al“ < A; + 8¢ 0n

F according to the definition of A1 and F. The first claim then follows.

For the second claim, Lemmalﬁ gives that, on F, A, < 2l¢ for any z € Xl( Vyax®. so

I+1°
A, > 2l¢; implies z ¢ Xl(Hl) U X(l)l and hence [ > ¢, on F.

For the third claim, we notice that

max (ap — aI)Té\EZ’”) > 3¢y,
e ex )

since © ¢ Xy, 1. Since the left-hand side is smaller than A, + 2¢4, on F, we get A, > ey, .

D Extension to M groups

Model We extend the biased linear bandit to Z groups, denoted Z = {1, ..., Z}. The evaluations
are given by
Yt = xt Y +Z w + £t7

where Z, is the z,-th vector of the canonical basis in RZ ,and w = {wy,...,wz} € RZ is the vector
of biases. Note that for the model to be identifiable, we must assume it does not contain an intercept.

For x € X, we denote a, = ( ZI ) To ensure identifiability of the model, we further assume that the
set A = {a, : x € X} spans R4TZ,

Estimation of the biased evaluations Adapting the G-EXP-ELIM routine to the multiple group
framework is rather straightforward. Note that this routine can be used as is to eliminate within-group
sub-optimal actions. The actions of each group span a sub-space of dimension d + 1, so the G-optimal
measure is still supported by O(d?) points. Moreover, the variance corresponding to this G-optimal
design is still d + 1.
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Estimation of the bias By contrast, the bias elimination routine must be modified in order to handle
Z groups. At each phase [, we denote by Z; the set of groups that have not been eliminated yet. If
more than one group remain in Z;, we compute the difference w; — w, for all group 2 remaining in
Z; with precision ¢; /2 using a modified A-ExP-ELIM routine, which we call A-MULT-EXP-ELIM,
described in[5. This routine samples action according to the distribution /.., where for any groups
z # 1, we defined p, as the solution of the problem

minimize Z,u(x)Ax such that  (egq1 — ed+Z)T V()" (eqr1 — earr) < 1(62)

e —e
,LLEMXd+1 d+z

We also define %, (A) as the corresponding regret :

k(A) = Z pz(7) Ag.

Note that the support of the distribution p, is at most of size d + Z. This two-by-two comparison
allows us to compute, for each z, 2’ € Z;, the difference of bias w, — w, = w; — w, — (w1 — w,)
with precision level ¢;. Then, we can use these bias estimates to eliminate groups that are sub-optimal
by a gap larger than 4¢;. Again, we rely on estimates of the biases and of the biased evaluations

obtained during the previous round to update the estimate of the gap vector A+,

Algorithm 5 A-MULT-EXP-ELIM (X, Z, (XY (), 0)).c 2, A, n,€)
1: forz € Z,z#1do

2: Compute A-optimal design /i solution of ti on X, with |supp(fi.)| < d+ Z

3: Sample [nfi,(x)] times each action a, forx € X

4: Compute &1 — @, = (eq11 — €q+~) ' 0, where 6 is the ordinary least square estimator

5: forz € Zand z € X do m, alH(Z) + (01 — @)

6: forz € Zandz € X&) do A, + 2 A (maxz,ez,x/ex(zg My — My + 46)

7: for z € Z do ., .

8: if max max a)0%) + (&) —Q.) > max a) 0%) + (&) — &) + 4ethen Z «— Z\ {2z}
2ZE€Zpex(z)) reX(2)

9: return Z and A

o~

Stopping criterion We denote by %z, (A) = > &, (31) the regret for estimating the biases
2€Z;,2#1

N 1/3
at phase [. If ¢, < (% 2, (A log(T)/ T) , bias estimation becomes too costly, so we sample the

empirical best action for the remaining time. The FAIR PHASED ELIMINATION FOR MULTIPLE
GROUPS algorithm is presented in [6]

D.1 Worst case regret

Before analyzing the worst case regret of Algorithm @ we introduce a new quantity, k., defined as

_ , .
R = Z nin (ear1 —eatrs) (V)T (eas1 — eats) -
2e2 221 " Pear1—eays

Note that for all z € Z, 2z # 1, and [ > 1, we have Egl(ﬁl) < 2R%,.

Claim 1. For the choice 6 = T~1, there exists an absolute constant C' > 0 and a constant TE k. Z-dk
depending on &, k, Z,d, and k such that the following bound on the regret of the FAIR PHASED
ELIMINATION FOR MULTIPLE GROUPS algorithm|[6] holds

Ry < CZ (R log(D) P T%  for T>Tx , , .+
Sketch of Proof. We sketch here a proof of Claim [I, highlighting the main differences with the
two-groups setting. We begin by introducing some notations.
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Algorithm 6 FAIR PHASED ELIMINATION FOR MULTIPLE GROUPS

1: input: 6, T, X, k = |X|, ¢ =227 forl > 1
2: initialize: A < (2,...,2),1+ 0,2, = Z
3: for z € Z; doXl(Z) —{x:z, =2}
4: while the budget is not spentdo [ +— [ + 1
5: for z € Z; do
6: (6(2) Xl(Jr)l) + G-Exp-ELIM (Xl(z), 2(17;2“) log (%) 761)
7 if |Z;| > 1 then
8: Compute iz, (A = > K. (AD).

Z€EZ;,z#1

A 1/3

9: if ¢ < (ng, (A log(T)/T) then > Stop bias estimation
10: Sample best action in U¢ z, Xl(Jr)l for the remaining time
11: else
12: (Zz+1, 3”1) +— A-MULT-EXP-ELIM (X, Z, (Xl(j)lﬁl(z))zea,ﬁl, % log (%) ,q)

1/3
Notations We denote by Ly the largest integer [ such that ¢; > (2%1/ *log(T)/ T) . For z € Z,

we denote by L2 the last phase where ﬁl—optimal Exploration and Elimination is performed. We
denote by Exp-Gl(z) the time indices where G-exploration is performed on Xl(z) and by Exp-Dl(Z) the
time indices where A-exploration is performed at phase [ for estimating the difference w; — w,. We
also denote by Recovery the time indices subsequent to the stopping criterion, this set being empty
when the stopping criterion is not activated.

We define a "good" event F such that for all z, 2’ € Z and all z € X1( ?). the errors ’a (9* - §;Z)> ‘

and |(w} —w3) — ((@1). — (&;) )| are smaller than ¢; for all I such that these quantities are defined.
In the following, we use ¢, ¢’ to denote positive absolute constants, which may vary from line to line.
With these notations, we decompose the regret as follows :

]
Re < MPA+EZ XY Y @) v [+Ex Y Y Y @ -a 1
l<LTz€Zzt€EXp G; z) ISLAZGZz,z;élteExp_DEZ)
RS R
P TR wREE
lZLTJrlzeZLteEXp_Gl(Z) tERecovery

Rec
Ry

Bound on TP (F). Using arguments based on concentration of Gaussian variables, we can show that
P(F) <271

Bound on R?. The analysis is similar to the two-groups setting. We can show that on F, only

actions with gaps smaller than ce; remain in the sets Xl(z) for z € Z;. The length of each G-optimal
Exploration and Elimination phase for one group is of the order (d + 1) log(kiT)/€?, so the regret
corresponding to phase [ is of the order Z(d 4 1) log(kIT')/¢;. Summing over the different phases,
we find that

R$ < c(d+ 1)Zlog(kLrT) /€L, (63)

Using the definition of Ly, we find that RS < ¢(d + 1) Z log(kLyT)7, /% log(T)~1/3T/3.
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Bound on R%ec. On the one hand, the actions selected during the Phases Exp—Gl(Z) forl > Lt +1
are sub-optimal by a gap at most cez,,. on the event F. On the other hand, if the algorithm enters the
Recovery phase at a phase [, then

@ <Rz, (AP AT 10g(T) 3 < 27,0712 1og (1)1,

so we must have [ = L™ 4+ 1 > Ly + 1. Therefore, all actions selected during the Recovery phase
are sub-optimal by a gap at most cer,,.. Then, RZ¢ can be bounded as RF*¢ < cey,. T This implies

in particular that REec < /%L/3 log(T)'/3T%/3.

Bound on R%. To bound R4, we introduce further notations. Let us denote by [y, ..., [ the phases
at which at least one group is eliminated, by S the sets of groups remaining at the beginning of
phase [;, and by Sg 1 the set of groups that are never eliminated. We also write [g, 1 = L. We

abuse notations and denote Exp—Dl(S) = Uzes Exp-Dl(z). Then, we see that

Ry < Z Z Z (z* —2) "%

iSRSl e p(S)

The rest of the proof is similar to that in the two-communities setting. We show that on ., Al > A
for all [ > 1. Then, our choice of design fi,, , at phase [ ensures that for i < R+ 1, on F,

Y. @ -a)Tyi<e Z(logzz D) (A)+d+1)

tEExp—DiSi) z€5;

for some constant ¢ > 0. Using arguments similar to the two-groups setting, we can sum over the
different phases [ < I;, and find that

Yo Y (@ =)y < ks, (A)log(ZLT) e} . (64)

<L yeprpD!S)

By definition of .S; we have that Kz, (Al') = Kg, (Al). Now, the algorithm does not enter the
Recovery phase before phase [; + 1, 50 we must have
< T?31og(T) %%z, z, (Al)=2/3_ This implies that

>OY @ —w)Ty <z, (B9 (log(1)V? + log(2)) T,
1<l teExp—Dl(Si)

We use that Ezli (ﬁl) < ks and sumoveri < R+ 1 < Z, and we find that
R < CZrY®1og(T)Y/3T2/3 for T large enough.

When T > T/@,kde for some Tm ki Zdk large enough, we find that Ry <
 Z5L3 1og(T)V/3T2/3, O

D.2 Gap-dependent regret

Before stating the bound on the gap-dependent regret, we introduce further notations. For z € Z, we
denote A ., = min Ay, Ay = m;lén A2y Amin = Mingey\ o+ Ay, and ep = (K- 10g(T)/T)1/3.
TiZp=2 TizFEz*

Then, we claim that the following gap-dependent regret bound on the regret of Algorithm [5]holds.

Claim 2. Assume that x* € argmax,c y x " y* is unique. Then, there exists an absolute constant

C > 0 and a constant Tm,k Z.dk A Amin depending on R, k, Z,d, k, Amin, and (A ;) zo45+ such

that the following bound on the regret of the FAIR PHASED ELIMINATION FOR MULTIPLE GROUPS

algonthmﬁ]holdsfor T>T% kzakasna

k(AV AL, Ver) L Fe (AVALVer)
(Az.2)? (Az)?

log(T).
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Sketch of Proof. We sketch here a proof of Claim [2. We begin by introducing some notations.
Notations We define a "good" event F such that for all z,2’ € Z and all z € Xl(z), the errors

‘a; (9* - 03(2))‘ and |(w} — w}) — ((@1)> — (&y) )| are smaller than ¢ for all [ such that these

quantities are defined. For each group z € Z, we denote by Exp—Gl(Z) the time indices where

G-exploration is performed on Xl(z). For z € Z, z # 1, we denote by Exp—Dl(Z) the time indices
where A-exploration is performed at phase / to estimate the difference w; — w., and by L(*) the
last phase [ such that z € Z; and bias exploration is performed at this phase. We denote by L®
the last phase [ where bias estimation is performed. Moreover, we denote by S the sets of groups
eliminated before the stopping criterion is activated, and write S = Z \ S. We abuse notations and
denote Exp-Dl(S) = U,es Exp-Dl(z). We also denote by Recovery the time indices subsequent to the
stopping criterion, this set being empty when the stopping criterion is not activated. In the following,
we use ¢, ¢ to denote positive absolute constants, which may vary from line to line.

Fact 1 Let A _, be the largest integer such that ¢ A 2 CALin for some well-chosen absolute

constant C' > 0. Similarly to the two-groups setting, we can show that on the good event F, no more
than /A, G-optimal Exploration and Elimination phases are needed to find the best action. For all
phases [ > [a_. , the algorithm always chooses z*, and suffers no regret.

min ?

Fact 2 Similarly to the two-groups setting, we can show that on the good event F, for each phase
I, Al < ¢ (A V ¢) for some constant c. Moreover, for all | < LA, all groups z # 1, and all 7 > 0,
R (A < ck.(AVe) <c(1+egr DR (AVT).

Fact 3 For z € Z\ {z"}, letla_ , be the largest integer such that €la,, = CA, , for some well-

chosen absolute constant C' > 0. On the good event F, if ﬁl—optimal Exploration and Elimination is
performed at phase [ > I, ., and z € Z, then the algorithm eliminates 2 at this phase. This implies

that L*) <A _,and that L* < la_.

Fact 4 We denote by L the largest integer [ such that ¢; > (2k, log(T )/T)l/g. Since 27, > R(A!)
foralll > 1 and all z € Z, we see that if the algorithm enters the Recovery phase, we must have
LT < LA, and €ra < €L NET.

Using Fact 1, we find that the regret can be written as

Rr < 2TP(F +E‘f g g E (x*fxt) +E|]_- E E g (z* fxt

IS1a 0 #€ 214 €Exp-G) 2€S 1L tepxp-D)

G A,S

R7 R7
E E - * T _ x
+E = (% —a) " +Ez (" —xy) .
I<LA tGExp—DES) tERecovery
Rec
AT R
R T

T

Bound on RG We rely on arguments similar to those used in Equation (63) to show that

R$ < c(d+ 1) log(kla,, T)e, . Since e, > C'Apip, this implies that
G - (d +1) log(kle T)  ddlog(T)
RT < mln S
Amm Amin
if T > k.

Bound on Rr? S, Using arguments similar to the two-groups settings, we can show that for all z # 1

Z Z x* — xy) ’}/*SC%Z(KL(Z))1Og(lL(z)T)€Z<22). (65)

I<L() tEExp- Dl(z)
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Using Fact 2 with 7 = A_ , together with Fact 3, we find that

Ry <) AV AL log(LIT) (A )2
z€ES

Bound on R$ S + Rfr‘ec. If the algorithm does not enter the Recovery phase, then R?ec = 0and
S = {2*}. Then, the algorithms finds the best group, and the last bias exploration phase is performed
at phase max, £ L® < max...- Ia__ = la_. Then, Equation implies that

RS < e (AV A) log(LAT)(AL) 2.

If the algorithms enters the Recovery phase, we can use again the same arguments to show that

Ry <eX Fo(ALY) log(lp, T)e, 2. Using Fact 2 and Equation (63)), we find that for 7 = epa,
z€8

Eg(A V GLA) IOg(ZLA T)

3 .
eLA

R%’g < CZEZ(A Vepa)log(lpaT)e X =c
z€S
Since all actions selected during the Recovery phase belong to U, g4 l(z), on F these actions are
sub-optimal by a gap at most cepa 1, so RF¢ < ¢Te;a ;. Now, since the algorithm enters the
Recovery phase, we must have epa; < (%g(ALA‘H) log(T)/T)*/3, which implies that
crig(AL 1) log(T)

2

R?ec S
Lot

Together with Fact 2, this implies that

ckg(A Vepa)log(T)

2
ELA

R%’S +R¥ec <

On the one hand, Fact 3 guarantees that, since we entered the Recovery phase before eliminating any
group in .S, we must have 1A < minzeg\{z*} lA#,z’ SO €14 > cmax, g A . On the other hand,
Fact 4 ensures that e;a < ep. Thus,
ckz(AVer)log(T)  cky(AVer)log(T)

(Ax2)? (Az)?

RF +RF< Y
s€S\{z*}

Conclusion Combining these results, we find that

d F(AVAL)VE(AVer) Ea(AVAL)VE~(AVer)
Rr<c v ’ + log(T)
Anin z¢;¢1 (Asﬁ,Z)Q (A;ﬁ)Z
when T > k. Using Lemma we get that K. (AV AL) VE(AVer) <R (AVALVer), which
concludes the proof of the results. O
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