
Appendix

The Appendix is organized as follows. In Section A, we further discuss the geometry of bias
estimation, and provide additional results on the constants ⇤ and (�). Then, we provide in Section
B a detailed version of the FAIR PHASED ELIMINATION algorithm 3. In Section C, we prove the
main results of this paper. Finally, in Section D, we discuss the extension of the biaised linear bandits
to more than 2 groups.

A On the geometry of bias estimation

We begin in Section A.1 by highlighting the relationship of the constant ⇤ with the problem of ed+1-
optimal design. Then, in Section A.2, we show that the geometrical constant ⇤ can be expressed
in terms of separation of the two groups. In Section A.3 and Section A.4, we relate ⇤ to classical
geometrical measures of the difficulty of a set of actions such as the condition.ing number and the
worst-case alignment constant of [20]. In Section A.5, we show that ⇤ is equivalent to the variance
of the optimal design for estimation the bias against the worst parameter ✓⇤. In Section A.6, we
provide further results on (�), the �-optimal regret for estimation the bias with variance 1 when
the gap vector is �. Finally, in Section A.7, we propose guidance for computing the G-optimal and
�-optimal designs.

A.1 Bias estimation as a ed+1-optimal design problem

Recall that ⇤ is the minimal variance of the bias estimator related to the problem of ed+1-optimal
design.

ed+1-optimal design Optimal design theory addresses the following problem: a scientist must
design a set of n experiments {x1, ..., xn} 2 Xn so as to estimate at best a parameter of interest,
where each experiment x 2 X corresponds to a point ax 2 Rd+1. The aim of the scientist is to
choose a design, i.e. a function µ : X 7! N indicating the budget µ(x) to be allocated to each
experiment x 2 X . Each experiment x is then repeated exactly µ(x) times, and the corresponding
observations yx,1, ..., yx,µ(x) are collected for each x 2 X . The law of the observations corresponding
to experiment x at point ax is given by

yx,i = a
>
x ✓

⇤ + ⇠x,i,

where ⇠x,i ⇠ N (0, 1) are independent noise terms, and ✓
⇤ 2 Rd+1 is an unknown parameter. The

aim of the scientist is to choose the design µ so as to best estimate (some features of) the parameter
✓
⇤, under a constraint on the total number of experiments

P
x2X µ(x)  n for some n 2 N.

Different criteria can be used to characterize the optimality of a design µ. For example, one may need
to estimate the full parameter ✓⇤, in order to predict the outcomes of the experiments x 2 X with a
small uniform error: this leads to the G-optimal design problem (2). Alternatively, for c a vector in
Rd+1, one may aim at finding the best design µ 2 NX for estimating the scalar product c>✓⇤ under
a budget constraint

P
x2X

µ(x)  n, where NX = {µ : X ! N}. This problem is known as c-optimal

design. Unbiased linear estimation of c>✓⇤ is possible only when c belongs to the image of V (µ),
and in this case the best linear unbiased estimator of the scalar product c>✓⇤ is given by c

>b✓, where
b✓ is the least-square estimator defined as

b✓ = V (µ)+
X

x2X
ax

0

@
X

iµ(x)

yx,i

1

A for V (µ) =
X

x2X
µ(x)axa

>
x . (5)

The variance of the estimator c>b✓ is then equal to c
>
V (µ)+c.

Exact c-optimal design aims at choosing the allocation µ 2 NX minimizing the variance of c>b✓
for a given budget

P
x µ(x)  n, under the constraint that c 2 Range(V (µ)). Let us define the

normalized design ⇡ : x 2 X 7! µ(x)/n, and let us underline that ⇡ defines a probability on X . The
variance of c>b✓ is then equal to n

�1
c
>
V (⇡)+c. In the limit n! +1, the problem is equivalent to
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the problem of approximate c-optimal design (sometimes simply referred to as c-optimal design),
that aims at finding a probability measure ⇡ 2 PX

c := {⇡ 2 PX : c 2 Range(V (⇡))} solution to
the following problem

min
⇡2PX

c

c
>
V (⇡)+c . (c-optimal design)

Note that when {ax : x 2 X} spans Rd+1, for any c 2 Rd+1, there exists a design ⇡ such that
c 2 Range(V (⇡)), and hence the c-optimal design problem admits a solution.

Computation of the ed+1-optimal design Finding an exact optimal allocation µ 2 NX under the
constraint that

P
x2X µ(x)  n is unfortunately NP-complete. However, finding an approximate

optimal design ⇡ 2 PX
c can be done in polynomial time [41]. Several algorithms, including

multiplicative algorithms [13] and a simplex method of linear programming [17], have been proposed
to iteratively approximate the optimal design. More recently, [32] suggested using screening tests to
remove inessential points to accelerate optimization algorithms.

Classical results from ed+1-optimal design show that there exists a c-optimal design supported by at
most d+ 1 points (see, e.g., [30, 17] for a proof of this result). The following Lemma indicates how
to obtain an exact design by rounding an approximate design supported by at most d+ 1 points.

Lemma 3. For any ⇡ 2MX
ed+1

and any m > 0, the estimator e>d+1
b✓µ computed from the design µ :

x 7! dm⇡(x)e is an unbiased estimator of e>d+1✓ and it has a variance at most m�1
e
>
d+1V (⇡)+ed+1.

Obviously, similar results also hold for G-optimal design.
Lemma 4. Let ⇡ be a solution of the G-optimal design problem (2). Then, for any m > 0 and any
x 2 X , the estimator a>x b✓µ computed from the design µ : x 7! dm⇡(x)e is an unbiased estimator of
the evaluation a

>
x ✓, and it has a variance

a
>
x V (µ)+ax  m

�1(d+ 1).

A.2 Interpretation of ⇤ in terms of separation of the groups

Next theorem, due to Elfving, characterizes solutions to the c-optimal design problem.
Theorem 5 ([10]). Let S = convex hull {+ax,�ax : x 2 X} be the Elfving’s set of {ax : x 2 X} ⇢
Rd+1, and let @S denote the boundary of S . A design ⇡ 2 PX

c is c-optimal for c 2 Rd+1 if and only
if there exists ⇣ 2 {�1,+1}X and t > 0 such that

tc =
X

x2X
⇡(x)⇣xax 2 @S.

Moreover, t�2 = c
> (V (⇡))+ c is value of the c-optimal design problem.

Elfving’s characterization of the ed+1-optimal design allows us to derive the following equivalent
characterization of ⇤.

Lemma 5. ⇤ = max
u2Rd

1

maxx2X (x>u+ zx)
2 .

Lemma 1 follows from the characterization in Lemma 5. When ⇤ > 1, the vector ũ defined as

ũ = argmaxu2Rd
1

maxx2X (x>u+zx)
2 is a normal vector of the separating hyperplane H in Figure 1.

Moreover, as shown in the proof of Lemma 1, the margin is in this case equal to 1� 
�1/2
⇤ , while the

maximum distance of all points to the hyperplane is 1 + 
�1/2
⇤ .

Application to the action set A of Lemma 10 To provide the reader with intuition on ⇤,
we analyze here the set of actions used to derive the lower bound in Theorem 3. Let A =n⇣

x1

zx1

⌘
, ...,

⇣
xd+1

zxd+1

⌘o
, where

⇣
xi

zxi

⌘
= ei + ed+1, for i 2 {2, ..., bd/2c},

⇣
xi

zxi

⌘
= ei � ed+1

for i 2 {bd/2c+ 1, ..., d}, and
⇣

xd+1

zxd+1

⌘
= �

⇣
1� 2p

⇤+1

⌘
e1 � ed+1. We show in Lemma 10 that

the minimal variance for estimating the bias on A is indeed ⇤.
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Figure 2: Illustration of Lemma 1 on the action set A described above for d = 2.

The set of actions A spans Rd+1, however it is easy to see that only x1 and xd+1 can be used to
estimate the bias. On the one hand, when  = 1,

⇣
xd+1

zxd+1

⌘
=
⇣

0
�1

⌘
, so the bias can be evaluated

just by sampling xd+1. In the other hand, in the limit where ⇤ !1, the problems becomes more
difficult as

⇣
xd+1

zxd+1

⌘
tends to �

⇣
x1

zx1

⌘
. In the limit ⇤ =1, it is impossible to distinguish between

the contribution of �>
e1 and ! in the evaluations of actions 1 and d+ 1: the problem becomes not

identifiable. We represent this setting for an intermediate value of ⇤ in Figure 2. We also represent
the separating hyperplane, margin m and distance M of Lemma 1.

A.3 Comparison to the conditioning number

By contrast to classical complexity measures such as conditioning numbers that give equal weight to
all observations, optimal design gives flexibility to choose d+ 1 best actions to estimate the bias, and
therefore allows for sharper bounds.

Indeed, by definition of ⇤,
⇤  ed+1V (⇡u)+ed+1,

where ⇡
u is the uniform measure giving the same weight 1/k to all actions. Now, V (⇡u) is the

classical covariance matrix associated with the design points ax 2 A, so the condition number CN

of this design is given by

CN =
�max(V (⇡u))

�min(V (⇡u))
.

We see that ed+1V (⇡u)+ed+1  �min(V (⇡u))�1. When the actions ax are bounded (for example
kaxk M), this implies that ⇤  CN/M .

We provide an example showing that ⇤ can be much smaller than the conditioning number. Consider
the following example in dimension d = 2 with k � 4 actions, where x1 = (1, 0) and x2 = (�1, 0)
belong to group 1, and x3, ..., xk are identical, equal to (0, 1), and in group �1. Then, Lemma 1
shows that the minimal variance for estimating the bias is indeed 1, and that the optimal design puts
equal mass on x1 and x2. On the other hand, straightforward computations show that the conditioning

number of the covariance matrix is 1+(k�2)�1+
p

1+(k�2)�2

1+(k�2)�1�
p

1+(k�2)�2
. Thus, on this example, CN/⇤ is of

order k.

A.4 Comparison to the worst-case alignment constant

Lemma 5 also allows us to compare the bound in Theorem 1 with previous results on linear bandit
with partial monitoring, expressed in terms of the worst-case alignment constant.
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Previous work on linear bandit with partial linear monitoring measures the difficulty of the bandit
game using the worst-case alignment constant ↵, defined as

↵ = max
u2Rd

maxx,x02X ((x� x
0)>u)2

maxx2X (zxx>u+ 1)2
.

The following Lemma shows that this constant is essentially equivalent to the minimal variance of
the bias estimator ⇤.
Lemma 6. ⇤

3  ↵  16⇤.

On the one hand, Lemma 6 shows that ⇤ and ↵ are essentially equivalent. In particular, Theorem 3
implies that the large T regret is of order ↵1/3 log(T )1/3T 2/3. This improves over previous known
rates, obtained in [20], by a factor d1/2 log(T )1/6(log(kT )/ log(T ))1/2.

On the other hand, as underlined, the constant ⇤ appears when considering the well-studied problem
of c-optimal design. Therefore, classical results and algorithms for optimal design can be used to
characterize and compute this constant.

A.5 Optimal bias estimation against the worst parameter

The constant ⇤ also appears naturally when considering the related problem of optimal bias estima-
tion against the worst parameter.

Regret of ed+1-optimal design Recall that ⇤ denotes the minimal variance of the bias estimator,
i.e. the value of the solution of the ed+1-optimal design problem

⇤ = min
⇡2PX

ed+1

e
>
d+1 (V (⇡))+ ed+1 ,

The ed+1-optimal design can be equivalently defined as the solution of the problem

minimize
X

x2X
µ(x) such that µ 2MX

ed+1
and e

>
d+1V (µ)+ed+1  ⇤. (6)

The characterization given in Equation (6) underlines that the ed+1-optimal design provides (up to
discretization issues) the minimal number of samples required for estimating !

⇤ with a variance ⇤.
Let us denote by µ

⇤ the optimal design for estimating !
⇤ with a variance 1, defined as

µ
⇤ = argmin

µ

X

x2X
µ(x) such that µ 2MX

ed+1
and e

>
d+1V (µ)+ed+1  1.

Note that from the definition of ⇤, we have
P

x µ
⇤(x) = ⇤.

A first (naive) approach to obtain an estimate of the bias parameter !⇤ with precision level ✏ > 0
would consist in sampling actions according to ✏

�2
µ
⇤, rounded according to the procedure defined in

Lemma 3. Let us denote by �x the gap �x = maxx02X (x0 � x)>�⇤ between the (non-observed)
reward of the best action and the reward of the action x. The regret corresponding to this estimation
phase would then be

✏
�2
X

x2X
µ
⇤(x)�x,

which can be as large as ⇤✏
�2 maxx �x. Interestingly, we show that the regret corresponding to the

ed+1-optimal design is equivalent (up to a small multiplicative constant) to the minimax regret.

Optimal worst-case estimation The minimax regret corresponds to the regret of the best sampling
scheme against the worst admissible parameter �. Note that, for a given design µ, this worst-case
regret is given by

max
x02X ,�2C(X )

X

x

µ(x)(x0 � x)>�,

where we recall that C(X ) =
�
� 2 Rd : 8x 2 X , |x>

�|  1
 

is the set of admissible parameters. To
achieve the lowest regret against the worst parameter, we must use the minimax optimal design eµ
solution to the problem

eµ = argmin
µ

max
x02X ,�2C(X )

X

x2X
µ(x)(x0 � x)>� such that µ 2MX

ed+1
and e

>
d+1V (µ)+ed+1  1.
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Lemma 2 underlines that the regret corresponding to the ed+1-optimal design is no larger than twice
the minimax regret.

A.6 Additionnal results the �-optimal design

Recall that for a vector of gaps � = (�x)x2X , µ� denotes the �-optimal design, defined as the
solution of the following problem

µ
� = argmin

µ

X

x2X
µ(x)�x such that µ 2MX

ed+1
and e

>
d+1V (µ)+ed+1  1. (�-optimal design)

If we knew the gaps �x, we could sample the actions according to the �-optimal design µ
�, and pay

the regret ✏�2
(�) (up to rounding error) for estimating !

⇤ with an error smaller than ✏, where

(�) =
X

x2X
µ
�(x)�x.

Lemma 7. If �⇤ 2 C(X ), then (�)  2⇤

Proof. Be definition of C(X ), for all �⇤ 2 C(X), all x, x0 2 X , we have

(x� x
0)>�⇤  |x>

�
⇤|+ |x0>

�
⇤|  2.

Then,

(�)  2min
µ

X

x2X
µ(x) such that µ 2MX

ed+1
and e

>
d+1V (µ)+ed+1  1.

Let µ⇤ be the solution of the ed+1-optimal design problem

minimize
µ

e
>
d+1V (µ)+ed+1 such that µ 2 PX

ed+1
.

By definition of ⇤, we see that e>d+1V (µ⇤)+ed+1 = ⇤. This implies that the measure ⇤ ⇥ µ⇤
verifies the constraints e>d+1V (⇤ ⇥ µ⇤)+ed+1  1 and ⇤µ⇤ 2MX

ed+1
. Thus,

(�)  2
X

x2X
⇤µ⇤(x) = 2⇤.

On the regret (�) The function  verifies the following properties.
Lemma 8. For two vectors of gaps �, �0, denote by �^�0 (respectively �_�0) the vector of gaps
given by (� ^�0)x = �x ^ �0

x (respectively (� _�0)x = �x _ �0
x) for all x 2 X . Moreover,

denote �  �0 if �x  �0
x for all x 2 X . Then, the following properties hold :

i) for all c > 0, (c�) = c(�);

ii) if �  �0, then (�)  (�0);

iii) (� _�0) � (�) _ (�0);

iv) the function ✏ 7! (� _ ✏) is continuous at 0.

A.7 Computation of G- and �-optimal design

Computing the optimal design is a convex problem, for which many algorithms have been proposed.
The first method to compute G-optimal design is due to [12] and [44]; later, [39] proposed a
multiplicative weight update algorithm. More recently, [40] suggested to use a Semi-Definite
Programming approach to solve the G-optimal design problem. Linear programming was used in
[17] to compute c-optimal design, while [34] studied a SDP formulation of this problem. Reducing
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the G-optimal problem to a Mixed-Integer, Second Order Cone Programming, [37] proposed a new
algorithm based on interior point methods. We refer the interested reader to the review in [36].

In practice, one can rely on the R package OptimalDesign or the Python Package PICOS [38] to
compute G- and c-optimal design.

The following Lemma allows us to reduce the problem of finding a �-optimal design to that of a
c-optimal design for some rescaled features.

Lemma 9. For any vector � 2 (0,+1)X , let ⇡� be the ed+1-optimal design relative to the set
A� =

n
��1/2

x

⇣
x
zx

⌘
: x 2 X

o
and let � = e

>
d+1V (⇡�)+ed+1 be the ed+1-optimal variance

relative to A�. Then, the �-optimal design µ
� is given by µ

�(x) = 
�
⇡
�(x)��1

x for all x 2 X .
In addition, the support of µ� can be chosen to be of cardinnality at most d+ 1.

Thus, Lemma 9 shows that to compute the �-optimal design, one should follow these steps :

1. Compute the rescaled features A�;

2. Compute the ed+1-optimal design ⇡
� on A�, as well as the variance term 

� =

e
>
d+1

⇣P
x2X

⇡�(x)
�x

axa
>
x

⌘+
ed+1;

3. Compute the �-optimal design µ
� given by µ

�(x) = 
�
⇡
�(x)��1

x for all x 2 X .

B Detailed Fair Phased Elimination algorithm

We present the notations used in Algorithm 4. The phases are indexed by l 2 N⇤. The sets X (z)
l

for z 2 {�1,+1} corresponds to actions in group z that are considered as potentially optimal in
phase l. The variable bz⇤l encodes the group determined as optimal: it is 0 as long as this group has
not been determined. The subscript (z) refer to the group z when z 2 {�1,+1}, and otherwise
to the estimation of the bias !

⇤: for example, the probability ⇡
(z)
l for z 2 {�1,+1} and l > 1

corresponds to the approximate G-optimal design on X (z)
l . Then, for z 2 {�1,+1}, allocations

µ
(z) (resp. µ(0)) correspond to allocation of samples in the exploration phase Exp(z)

l (resp. Exp(0)
l ).

Similarly, V (z)
l (resp V

(0)
l ) denotes the variance matrix of the estimator

✓
b�(z)

l

b!(z)

l

◆
(resp. b!(0)

l ) obtained

from observations made during phase Exp(z)
l (resp. Exp(0)

l ). Finally, Explore(z)l (resp. Explore(0)l )
is a Boolean variable indicating whether the exploration at phase l for group z (resp. for the bias
parameter) has been performed. It is used in the proofs to ensure that the corresponding estimators
are well defined.
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Algorithm 4 Fair Phased Elimination (detailed version)

1: Input: �, T , k = |X |
2: Initialize: Recovery ;, t 0, l 1 bz⇤1  0,
3: X (+1)

1  {x : zx = 1}, X (�1)
1  {x : zx = �1}, b�1

x  2 for x 2 X
4: while t < T do
5: Initialize: ✏l  22�l, bz⇤l+1  bz⇤l, b�l+1  b�l, Explore(z)l  False for z 2 {�1, 0,+1}
6: for z 2 {�1,+1} such that z 6= � bz⇤l do . G-optimal Exploration and Elimination

7: ⇡
(z)
l  argmin

⇡

(
max

x2X (z)
l

a
>
x V (⇡)+ax : ⇡ 2 PX (z)

l

X (z)
l

, | supp(⇡)|  (d+1)(d+2)
2

)

8: µ
(z)
l (x) 

⇠
2(d+1)⇡(z)

l (x)
✏2l

log
⇣

kl(l+1)
�

⌘⇡
for all x 2 X (z)

l

9: n
(z)
l  

P

x2X (z)
l

µ
(z)
l (x), Exp(z)l  

n
t+ 1, ..., T ^ (t+ n

(z)
l )
o

10: if t+ n
(z)
l  T then

11: Explore(z)l  True, choose each action x 2 X (z)
l exactly µ

(z)
l (x) times

12: V
(z)
l  

P
t2Exp(z)l

axta
>
xt

, b✓
(z)

l  
⇣
V

(z)
l

⌘+P
t2Exp(z)l

ytaxt

13: X (z)
l+1  

⇢
x 2 X (z)

l : max
x02X (z)

l
(ax0 � ax)

> b✓
(z)

l  3✏l

�

14: else for t 2 Exp(z)
l , sample empirical best action in X (z)

l

15: t t+ n
(z)
l

16: if bz⇤l = 0 then
17: compute the b�l-optimal design bµl and the corresponding regret (b�l)

18: if ✏l 
⇣
(b�l) log(T )/T

⌘1/3
then . Recovery phase

19: Recovery {t, ..., T}
20: sample empirical best action in X (�1)

l+1 [ X (1)
l+1 until the end of the budget, t T

21: else . b�l-optimal Exploration and Elimination
22: µ

(0)
l (x) 

l
2µ̂l(x)

✏2l
log
⇣

l(l+1)
�

⌘m
for all x 2 X

23: n
(0)
l  

P
x2X

µ
(0)
l (x), Exp(0)l  

n
t, ..., T ^ (t+ n

(0)
l )
o

24: if t+ n
(0)
l  T then

25: Explore(0)l  True, choose each action x 2 X exactly µ
(0)
l (x) times

26: V
(0)
l  

P
t2Exp(0)l

axta
>
xt

, b!(0)
l  e

>
d+1

⇣
V

(0)
l

⌘+P
t2Exp(0)l

ytaxt

27: for x 2 X (�1)
l+1 [ X (1)

l+1 do

28: bml,x  a
>
x
b✓
(zx)

l � zxb!(0)
l

29: b�l+1
x  

⇣
max

x02X (�1)
l+1 [X (1)

l+1
bml,x0 � bml,x + 4✏l

⌘
^ 2

30: for z 2 {�1,+1} do
31: if max

x2X (z)
l+1

bml,x � 2✏l � max
x2X (�z)

l+1

bml,x + 2✏l then bz⇤l+1  z

32: else sample empirical best action in X (�1)
l+1 [X

(1)
l+1 until the end of the budget, t T

33: t t+ n
(0)
l

34: l l + 1
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C Proofs

Before proving the main results our this paper, we begin by outlining in Section C.1 the main ideas
used to obtain upper and lower bounds on the regret. Then, Theorem 1 is proved in Section C.2,
Theorem 2 is proved in Section C.3, Theorem 3 is proved in Section C.4, and Theorem 4 is proved
in Section C.5. Extension of Theorem 4 to d = 2 and d = 3 is discussed in Section C.6. Finally,
auxiliary lemmas are proved in Appendix C.7.

For an event F such that P (F) > 0, we denote by E|F (resp. P|F ) the expectation (resp. the
probability) conditionally on F .

C.1 Outline of the proofs

C.1.1 Outline of the proof of Theorem 1

The proof of Theorem 1 can be found in Appendix C.2. We outline here the keys ingredients to this
proofs. We begin by introducing some notations.
Notations We denote by LT the largest integer l such that ✏l � 

1/3
⇤ T

�1/3 log(T )1/3. We denote by
L
(0) the last phase where b�l-optimal Exploration and Elimination happens. We denote by Exp(z)

l

the time indices where G-exploration is performed on X (z)
l and by Exp(0)l the time indices where

�-exploration is performed at phase l. We also denote by Recovery the time indices subsequent to
the stopping criterion, this set being empty when the stopping criterion is not activated.

We define a "good" event F such that the errors
���a>x

⇣
✓
⇤ � b✓l

⌘��� and |!⇤ � b!(0)
l | are smaller than ✏l

for all l such that these quantities are defined, and all x 2 X (�1)
l and X (+1)

l . In the following, we use
c, c

0 to denote positive absolute constants, which may vary from line to line. With these notations, we
decompose the regret as follows :

RT  2TP (F) + E|F

"
X

lLT

X

z2{�1,+1}

X

t2Exp(z)l

(x⇤ � xt)
>
�
⇤

| {z }
R

G
T

#
+ E|F

"
X

lL(0)

X

t2Exp(0)l

(x⇤ � xt)
>
�
⇤

| {z }
R

�
T

#

+E|F

"
X

l�LT+1

X

z2{�1,+1}

X

t2Exp(z)l

(x⇤ � xt)
>
�
⇤ +

X

t2Recovery

(x⇤ � xt)
>
�
⇤

| {z }
R

Rec
T

#
.

Bound on TP (F). Using arguments based on concentration of Gaussian variables, we show that
P (F)  2T�1.

Bound on R
G
T . We show that on F , only actions with gaps smaller than c✏l remain in the sets

X (�1)
l and X (+1)

l . The length of each G-optimal Exploration and Elimination phase is of the order
d log(klT )/✏2l , so the regret of each phase is of the order d log(klT )/✏l. Summing over the different
phases, we find that

R
G
T  cd log(kLTT )/✏LT . (7)

Using the definition of LT , we find that RG
T  cd log(kLTT )

�1/3
⇤ log(T )�1/3

T
1/3.

Bound on R
�
T . We show that on F , b�l � � for all l � 1. Then, our choice of design µ

(0)
l ensures

that for l  L
(0), on F ,

X

t2Exp(0)l

(x⇤ � xt)
>
�
⇤  c

✓
log(l(l + 1)T )

✏2l

(b�l) + d+ 1

◆
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for some constant c > 0. Summing over the different phases, we find that

R
�
T  c(b�L(0)

) log(L(0)
T )/✏2L(0) . (8)

Now, the algorithm does not enter the Recovery phase before phase L
(0) + 1, so we must have

✏
�2
L(0)  T

2/3 log(T )�2/3
(b�L(0)

)�2/3. This implies that R�
T  c(b�L(0)

)1/3 log(T )1/3T 2/3.
Since (b�l)  2⇤, we find that R�

T  c
0

1/3
⇤ log(T )1/3T 2/3.

Bound on RRec
T . On the one hand, the actions selected during the Phases Exp(�1)

l and Exp(+1)
l for

l � LT +1 are sub-optimal by a gap at most c✏LT on the event F . On the other hand, if the algorithm
enters the Recovery phase at a phase l, then

✏l  (b�L(0)

)1/3T�1/3 log(T )1/3  
1/3
⇤ T

�1/3 log(T )1/3,

so we must have l = L
(0) + 1 � LT + 1. Therefore, all actions selected during the Recovery phase

are sub-optimal by a gap at most c✏LT . Then, RRec
T can be bounded as RRec

T  c✏LT T . This implies
in particular that RRec

T  c
0

1/3
⇤ log(T )1/3T 2/3.

When T � T⇤,d,k for some T,d,k large enough, we find that RT  c
0

1/3
⇤ log(T )1/3T 2/3.

C.1.2 Outline of the Proof of Theorem 2

The proof of Theorem 2 is close to that of Theorem 1, and we adopt the same notations as in the
proof sketch above.

Notations We denote by L
(0) the last phase where b�l-optimal Exploration and Elimination happens.

We denote F some "good" event such that the errors |a>x (✓⇤� b✓
(zx)
l )| and |!⇤� b!(0)

l | are smaller than
✏l for all l such that these quantities are defined, and all x 2 X (�1)

l [ X (+1)
l . We denote by Exp(z)

l

the time indices where G-exploration is performed on X (z)
l and by Exp(0)l the time indices where

�-exploration is performed at phase l. We also denote by Recovery the time indices subsequent
to the stopping criterion, this set being empty when the stopping criterion is not activated. In the
following, we use c, c

0 to denote positive absolute constants, which may vary from line to line.

Fact 1 Let l�min be the largest integer such that ✏l�min
� C�min for some well-chosen absolute

constant C > 0. We show that on the good event F , no more than l�min G-optimal Exploration and
Elimination phases are needed to find the best action. For all phases l � l�min , the algorithm always
chooses x⇤, and suffers no regret.

Fact 2 We show that on the good event F , for each phase l, b�l  c (� _ ✏l) for some constant c.
Lemma 8 then implies that for all l  L

(0) and all ⌧ > 0, (b�l)  c(�_ ✏l)  c(1+ ✏l⌧
�1)(�_

⌧).

Fact 3 Let l� 6= be the largest integer such that ✏l� 6=
� C� 6= for some well-chosen absolute constant

C > 0. On the good event F , if the algorithm enters the b�l-optimal Exploration and Elimination
phase at round l � l� 6= , we show that the algorithm finds the best group at this phase. This implies
that L(0)  l� 6= .

Fact 4 We denote by LT the largest integer l such that ✏l � (⇤ log(T )/T )
1/3. Since ⇤ � (b�l)

for all l � 1, we see that if the algorithm enters the Recovery phase, we must have LT  L
(0), and

✏L(0)  ✏LT ⇡ "T .
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Using Fact 1, we find that the regret can be written as

RT  2TP (F) + E|F

"
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ll�min
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Bound on RG
T . We rely on arguments similar to those used in Equation (7) to show that

R
G
T  c(d+ 1) log(kl�minT )✏

�1
l�min

. Since ✏l�min
� C�min, this implies that

R
G
T 

c(d+ 1) log(kl�minT )

�min
 c

0
d log(T )

�min

if T � k.

Bound on R�
T +RRec

T . We begin by bounding R
�
T . Recall that Equation (8) states that R�

T 
c(b�L(0)

) log(lL(0)T )✏�2
L(0) . Using Fact 2, we find that for any ⌧ > 0,

R
�
T  c(� _ ⌧) log(lL(0)T )

�
✏
�2
L(0) + ✏

�1
L(0)⌧

�1
�
. (9)

Let us now consider two cases, corresponding to Recovery= ; and Recovery6= ;.

Case 1: Recovery= ;. On the one hand, our case assumption implies that

R
Rec
T = 0.

On the other hand, by Fact 3, we know that on F , L(0)  l� 6= . Then, using the definition of l� 6= and
Equation (9) with ⌧ = � 6=, we find that

R
�
T  c(� _� 6=) log(L

(0)
T )��2

6= .

Case 2: Recovery6= ;. All actions selected during the Recovery phase belong to X (�1)
L(0)+1

[ X (+1)
L(0)+1

,
so on F these actions are sub-optimal by a gap at most c✏L(0)+1, so R

Rec
T  cT ✏L(0)+1. Now, since

the algorithm enters the Recovery phase, we must have ✏L(0)+1  ((�L(0)+1) log(T )/T )1/3, which
implies that

R
Rec
T  c(b�L(0)+1) log(T )

✏2
L(0)+1

.

Using Fact 2 with ⌧ = ✏L(0) together with Equation (9), we find that

R
�
T +R

Rec
T  c(� _ ✏L(0)) log(T )

✏2
L(0)

.

On the one hand, Fact 3 guarantees that, since we entered the Recovery phase before finding the best
group, we must have ✏L(0) � ✏l� 6=

. On the other hand, Fact 4 ensures that ✏L(0)  "T . Thus,

R
Rec
T  c(� _ "T ) log(T )

�2
6=

.

Conclusion Combining these results, we find that

RT  c

 
d

�min
_ (� _� 6=)

�2
6=

_ (� _ "T )

�2
6=

!
log(T )

when T � k. Using Lemma 8, we get that (� _� 6=) _ (� _ "T )  (� _� 6= _ "T ), which
concludes the proof of the results.
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C.1.3 Outline of the Proof of Theorem 4

We outline the main ingredients used to prove Theorem 4. Theorem 3 relies on similar arguments.

To prove the lower bounds, we need to construct two close problem instances with optimal actions
belonging to different groups - to obtain the part of the lower bound involving � 6= - and in addition
we must also create confusing instances with different optimal actions belonging to a same group - to
obtain the part of the lower bound involving �min. This is done by considering the following set of
actions and of problems.

Lemma 10. Set A =
n⇣

x1

zx1

⌘
, ...,

⇣
xd+1

zxd+1

⌘o
, where

⇣
xi

zxi

⌘
= ei + ed+1, for i 2 {2, ..., bd/2c},

⇣
xi

zxi

⌘
= ei � ed+1 for i 2 {bd/2c+ 1, ..., d}, and

⇣
xd+1

zxd+1

⌘
= �

⇣
1� 2p

⇤+1

⌘
e1 � ed+1. It holds

that

min
⇡2PA

ed+1

8
><

>:
e
>
d+1

0

B@
X

( x
z )2A

⇡(x)

✓
x

zx

◆✓
x

zx

◆>
1

CA

+

ed+1

9
>=

>;
= ⇤.

We also define the following parameters:

�
(1) =

1 +� 6= ��min

2

0

@
X

1jbd/2c

ej

1

A+
1�� 6= ��min

2

0

@
X

bd/2c+1jd

ej

1

A

+�mine1 +�minebd/2c+1

�
(i) = �

(1) + 2�minei + 2�minebd/2c+i 8i 2 {2, ..., bd/2c}

�
(bd/2c+1) =

1�� 6= ��min

2

0

@
X

1jbd/2c

ej

1

A+
1 +� 6= ��min

2

0

@
X

bd/2c+1jd

ej

1

A

+�mine1 +�minebd/2c+1.

The bias parameters are given by !
(i) = �� 6=

2 8i 2 {1, ..., bd/2c}, and !
(bd/2c+1) = � 6=

2 . The

parameters ✓(i) =
⇣

�(i)

!(i)

⌘
characterize bd/2c + 1 problems, with noise distribution i.i.d. N (0, 1).

We write Problem i for the problem characterized by ✓
(i). Note that by construction and for any

i 2 {1, ..., bd/2c+ 1}, we have that ✓(i) 2 ⇥A
�min,� 6=

.

The following facts hold:

• For any i 2 {1, ..., bd/2c+ 1}, action xi is the unique optimal action in Problem i. Since
1/2 � � 6= � �min, sampling any other (sub-optimal) action leads to an instantaneous regret
of at least �min. Moreover, choosing an action in the group �zi leads to an instantaneous
regret of at least � 6=.

• In Problem i for any i 2 {1, ..., bd/2c+ 1}, action d+ 1 is very sub-optimal and sampling
it leads to an instantaneous regret higher than (1� 2/(

p
⇤ + 1))(1�� 6= +�min) + (1 +

� 6= + �min)/2 � 1/2, since ⇤ � 1 and 1/2 � � 6= � �min. This action is the worst
action in all problems.

• Many actions are such that their distributions are the same across problems. More specifi-
cally:

– For any i 2 {2, ..., bd/2c}, between Problem 1 and Problem i, the only actions that
provide different evaluations when sampled are action i and action bd/2c+ i, and the
mean difference between the evaluations in both cases is 2�min.

– Between Problem 1 and Problem bd/2c+ 1, the only actions that provide different
evaluations when sampled is action d+1, and the mean gap in this case is 2p

⇤+1� 6= :=

↵� 6=.

The proof is then divided in two parts, one part for proving the part of the bound depending on �min

and one part for proving the part of the bound depending on � 6=.
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Part of the bound depending on �min. This part of the proof is obtained using classical arguments
for K-armed bandit problems. For i 2 {2, ..., bd/2c, all actions but xi and xbd/2c+i have the same
feedback under Problem 1 and Problem i. On the other hand, the average feedback for actions xi

and xbd/2c+i differs by 2�min, so either action needs to be selected approximately log(T )
�2

min
times in

order to identify the problem at hand with high enough probability. In Problem 1, the simple regret
for choosing xi or xbd/2c+i is larger than �min, so the total regret obtained when doing this is at least
of the order log(T )

�min
. Summing over the different actions i leads to a lower bound of the order d log(T )

�min
.

Part of the bound depending on � 6=. To obtain the second part of the lower bound, we note
that all actions but xd+1 have the same feedback under Problem 1 and Problem bd/2c + 1. The
average feedback for actions xd+1 differs by ↵� 6= under these parameters, so action xd+1 needs to
be selected approximately log(T )

↵2�2
6=

& log(T )⇤
�2

6=
times to identify the problem at hand with high enough

probability. Since selecting action xd+1 leads to an simple regret larger than 1/2 under Problem 1,
this implies that the regret must be at least of the order ⇤ log(T )

�2
6=

.

Bounds on (�) Finally, the following lemma allows to express (�) as a function of ⇤.
Lemma 11. For any i 2 {1, ..., bd/2c+ 1}, the gap vector � verifies

(�) =
(1 +

p
⇤)2�d+1

4
where �d+1 = maxi(xi � xd+1)>�(i)

.

On the one hand, since ⇤ � 1, we see that ⇤  (1 +
p
⇤)2  4⇤. On the other hand,

1/2  �d+1  2, so (�) 2
⇥
⇤
8 , 2⇤

⇤
.

C.2 Proof of Theorem 1

We begin by defining for z 2 {�1, 0,+1}

L
(z) = max

n
l � 1 : Explore(z)l = True

o

the largest integer l such that Explore(z)l = True. Recall that ⇤ is the ed+1-optimal variance. By
definition of the algorithm, for all l  L

(0) + 1, b�l  2, so (b�l)  2⇤. Now, let us also define

LT = max

(
l � 1 : ✏l >

✓
2⇤ log(T )

T

◆1/3
)
.

Then, if Recovery6= ;, we must have L
(0) � LT . Moreover, we see that since ✏LT = 22�LT , we

have LT  2 + log2(T/(2⇤ log(T )))
3  3 log2 (T ) when T > 1.

We define a "bad" event F , such that, on F , our estimators b�(z)
l and b!(z)

l are close to the true
parameters �⇤ and !

⇤ for all rounds l. More precisely, let

F =
[

l�1

Fl, (10)

where for l � 1

Fl =

8
<

:9z 2 {�1, 1} such that Explore(z)l = True, and x 2 X (z)
l such that

������

 
b�(z)
l � �

⇤

b!(z)
l � !⇤

!>✓
x

zx

◆������
� ✏l

9
=

;
[n

Explore(0)l = True and
���b!(0)

l � !
⇤
��� � ✏l

o
.

Then, the regret decomposes as

RT 
X

tT

E|F
⇥
(x⇤ � xt)

>
�
⇤⇤+ 2TP [F ] . (11)

The following lemma relies on concentration of Gaussian variables to bound the probability of the
event F .
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Lemma 12. P (F)  2�.

Now, the first term of (11) can be decomposed as

X

tT

(x⇤ � xt)
>
�
⇤ 

X

z2{�1,0,+1}

L(z)+1X

l=1

X

t2Exp(z)l

(x⇤ � xt)
>
�
⇤ +

X

t2Recovery

(x⇤ � xt)
>
�
⇤
,

where we use as convention that the sum over an empty set is null. Note that for z 2 {�1,+1},
during the phase Exp(z)

l the algorithm only samples actions from X (z)
l . By contrast, during the

phase Exp(0)
l , even actions eliminated from the sets X (z)

l can be sampled. Finally, if the algorithm
stops during phase Exp(0)

L(0)+1
, but does not have enough budget to complete the last b�l-optimal

Exploration and Elimination Phase, it samples the remaining actions in the set X (�1)
L(0)+2

[ X (+1)
L(0)+2

.
Hence, the first term of (11) can be upper-bounded by

X

tT

(x⇤ � xt)
>
�
⇤ 

X

z2{�1,+1}

LTX

l=1

0

B@
X

x2X (z)
l

µ
(z)
l (x)

1

CA max
x2X (z)

l

(x⇤ � x)>�⇤ (12)

+
X

z2{�1,+1}

L(z)+1X

l=LT+1

X

t2Exp(z)l

(x⇤ � xt)
>
�
⇤ +

X

t2Recovery

(x⇤ � xt)
>
�
⇤

+
L(0)X

l=1

X

x2X
µ
(0)
l (x)�x + 1

n
Explore(0)

L(0)+1
= False

o X

t2Exp(0)
L(0)+1

max
x2X (�1)

L(0)+2
[X (+1)

L(0)+2

(x⇤ � x)>�⇤
.

We begin by bounding the sum of the regret corresponding to the Recovery phase and to the phases
Exp(z)

L for z 2 {�1,+1} and l > LT on the event F .

Bound on
X

z2{�1,+1}

L(z)+1X

l=LT+1

X

t2Exp(z)l

(x⇤ � xt)
>
�
⇤ +

X

t2Recovery

(x⇤ � xt)
>
�
⇤.

Lemma 13. Let x⇤ 2 argmaxx2X x
>
�
⇤ be an optimal action. Then, on the event F defined in

Equation (10), for l � 1 such that Explore(zx⇤ )
l = True,

X (zx⇤ )
l+1 ⇢

n
x 2 X (zx⇤ )

1 : (x⇤ � x)>�⇤
< 10✏l+1

o
. (13)

Moreover, for l � 1 such that Explore(�zx⇤ )
l = True,

X (�zx⇤ )
l+1 ⇢

n
x 2 X (�zx⇤ )

1 : (x⇤ � x)>�⇤
< 42✏l+1

o
.

Recall that if Recovery 6= ;, L(0) � LT . Then, all actions sampled during the Recovery phase belong
to X (�1)

l+1 [ X (+1)
l+1 for some l � LT . Lemma 13 shows that, on F , for l � LT , the actions in X (z)

l+1

are sub-optimal by at most 42✏LT+1. Then, we get that on the event F ,

X

z2{�1,+1}

L(z)+1X

l=LT+1

X

t2Exp(z)l

(x⇤ � xt)
>
�
⇤ +

X

t2Recovery

(x⇤ � xt)
>
�
⇤  T ⇥ 42✏LT+1

 531/3
⇤ T

2/3 log(T )1/3.(14)
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Bound on
L(0)P
l=1

P
x2X

µ
(0)
l (x)�x + 1

n
Explore(0)

L(0)+1
= False

o P

t2Exp(0)
L(0)+1

max
x2X (�1)

L(0)+2
[X (+1)

L(0)+2

(x⇤ �

x)>�⇤.
We begin by bounding 1

n
Explore(0)

L(0)+1
= False

o P

t2Exp(0)
L(0)+1

max
x2X (�1)

L(0)+2
[X (+1)

L(0)+2

(x⇤�x)>�⇤
. Recall

that n(0)
L(0)+1

=
P
x2X

µ
(0)
L(0)+1

(x) is the budget that would be necessary to complete the b�l-optimal

Exploration and Elimination phase at phase L
(0) + 1. On the one hand, Lemma 13 implies that on

the event F ,

1
n

Explore(0)
L(0)+1

= False
o X

t2Exp(0)
L(0)+1

max
x2X (�1)

L(0)+2
[X (+1)

L(0)+2

(x⇤ � x)>�⇤  42n(0)
L(0)+1

✏L(0)+2  21n(0)
L(0)+1

✏L(0)+1.

On the other hand, for all l  L
(0) + 1, the definition of b�l implies that b�l

x � ✏l for all x 2 X .
Therefore, 21n(0)

L(0)+1
✏L(0)+1  21n(0)

L(0)+1
minx b�L(0)+1

x . This implies that on F ,

1
n

Explore(0)
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= False
o X
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(x⇤ � x)>�⇤  21
X

x2X
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(x)b�L(0)+1
x . (15)

Next, to bound the remaining terms of Equation (12), we bound the regret
P
x2X

µ
(0)
l (x)�x of explo-

ration phase Exp(0)l using the following lemma.
Lemma 14. For all l > 0, and z 2 {�1,+1}, we have

X
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l (x)  2(d+ 1)
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✓
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.

and on F , we have
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2(b�l)

✏2l

log

✓
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◆
+ 2(d+ 1).

Then, Equation (15) and Lemma 14 imply that on F
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L(0)+1
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x2X (�1)

L(0)+2
[X (+1)

L(0)+2
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X
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µ
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l (x)b�l

x
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L(0)+1X

l=1

(b�l)

✏2l

log

✓
l(l + 1)

�

◆
+ 42(d+ 1)(L(0) + 1)

(16)

We rely on the following Lemma to bound (b�l).

Lemma 15. On F , we have for any l � 1 and any ⌧ > 0

(b�l)  513
⇣
1 +

✏l

⌧

⌘
(� _ ⌧).

and
(b�l) � (� _ ✏l).
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Lemma 14 and Lemma 15 with ⌧ = ✏L(0) imply that on F ,
L(0)+1X
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(b�l)
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1

✏2l

+
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1

✏l✏L(0)

1

A

 513(� _ ✏L(0)) log

✓
6L(0)

�

◆✓
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✏2
L(0)

+
4

✏2
L(0)

◆

 10260 log

✓
6L(0)

�

◆
(b�L(0)

)

✏2
L(0)

(17)

where the last line follows from the second claim of Lemma 15. Now, by definition of L
(0),

✏L(0) �
⇣
(b�L(0)

) log(T )/T
⌘1/3

. Then, Equation (17) implies that

L(0)+1X

l=1

(b�l)

✏2l

log

✓
l(l + 1)

�

◆
 10260 log

✓
6L(0)

�

◆
(b�L(0)

)1/3 log(T )�2/3
T

2/3
. (18)

Moreover, we observe that during each phase l, but the last one, we sample at least

max
z2{�1,1}

X

x2X (z)
l

⌧
(z)
l,x �

2(d+ 1)

�2l

log(kl(l + 1)/�)

actions during the G-optimal explorations, so the number of phases L(0) is never larger than
`T = 1 _ log4(T ).

Using this remark, together with Equations (16) and (18), we find that on F
L(0)X

l=1

X

x2X
µ
(0)
l (x)b�l

x + 1
n

Explore(0)
L(0)+1
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o X
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)T 2/3 log(T )�2/3 + 42`T . (19)

Bound on
P

z2{�1,+1}

LTP
l=1

0

@ P

x2X (z)
l

µ
(z)
l (x)

1

A max
x2X (z)

l

(x⇤ � x)>�⇤. We bound the remaining term in

Equation (12) using the first claim in Lemma 14 and Lemma 13. On F ,

X

z2{�1,+1}

LTX

l=1

0

B@
X

x2X (z)
l

µ
(z)
l (x)

1

CA max
x2X (z)

l

(x⇤ � x)>�⇤  2
LTX
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log

✓
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◆
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log
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kLT (1 + LT )

�

◆
+ 168(d+ 1)(d+ 2)
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◆

+168(d+ 1)(d+ 2). (20)

Combing Equations (11), (12), (14), (19), and (20), and using � = T
�1, (b�L(0)

)  ⇤ and
LT  4T/ log(2), we get for all T � 1

RT  C

⇣

1/3
⇤ T

2/3 log(T )1/3 + (d _ ⇤) log(T ) + d
2 + d

�1/3
⇤ T

1/3 log(kT ) log(T )�1/3
⌘

for some absolute constant C > 0. Finally, for

T �
�
(d _ ⇤)3/2 log(T )

�
_ d

3

p
⇤

_ (d log(kT ))3

(⇤ log(T ))2
,

we get
RT  C

0

1/3
⇤ T

2/3 log(T )1/3.

29



C.3 Proof of Theorem 2

The beginning of the proof of Theorem 2 follows the same lines as the proof of Theorem 1. We begin
by decomposing the regret as

RT 
X

tT

E|F
⇥
(x⇤ � xt)

>
�
⇤⇤+ 2TP [F ] . (21)

where F is defined in Equation (10). On the one hand, Lemma 12 implies TP [F ]  2�T . Then,
Equation (21) implies

RT  4�T + E|F

2

64
X

z2{�1,+1}

L(z)+1X

l�1

X

t2Exp(z)l

(x⇤ � xt)
>
�
⇤

3

75+ E|F

2

4
X

t2Recovery

(x⇤ � xt)
>
�
⇤

3

5 (22)

+E|F

2

4
L(0)X

l=1

X

x2X
µ
(0)
l (x)�x

3

5+ E|F

2

6641
n

Explore(0)
L(0)+1

= False
o X

t2Exp(0)
L(0)+1

max
x2X (�1)

L(0)+2
[X (+1)

L(0)+2

(x⇤ � x)>�⇤

3

775

where F is defined in Equation (10), and where we used the convention that the sum over an empty
set is null.

Bound on 1
n

Explore(0)
L(0)+1

= False
o P

t2Exp(0)
L(0)+1

max
x2X

L(z)+1
(x⇤ � x)>�⇤.

Similarly to the proof of Theorem 1, we use Lemma 13 and Lemma 15 to show that on F

1
n
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Bound on
P
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L(z)+1P
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P

t2Exp(z)l

(x⇤ � xt)>�⇤
.

Lemma 13 shows that for l  L
(z), the actions in X (z)

l+1 are sub-optimal by at most an additional
factor at most 21✏l. Let us set l�min = d� log2(�min/21)e, so that

�min

42
 ✏l�min

 �min

21
.

For l � l�min , we have X (�1)
l+1 [ X (+1)

l+1 = {xz⇤}. Thus, l(�zx⇤ )  l�min , and for l � l�min , the
algorithm selects only x

⇤ during the phase Exp(z⇤)
l . Then, combining Lemmas 14 and 13, and the

fact that L(z) + 1  `T , we find that, on F ,

X
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X
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Bound on
X

t2Recovery

(x⇤ � xt)
>
�
⇤ +

L(0)X
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X

x2X
µ
(0)
l (x)�x +

X

x2X
µ
(0)
L(0)+1

(x)b�L(0)+1
x .
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We use the following lemma to bound the number of phases necessary to eliminate the sub-optimal
group.

Lemma 16. On the event F defined in Equation (10), for l � 1 such that ✏l  � 6=
8 and Explore(0)L =

True, bz⇤l+1 = zx⇤ .

Let l� 6= = d� log(� 6=/8)/ log(2)e be such that

� 6=
16
 ✏l� 6=

 � 6=
8

. (25)

Lemma 16 implies that on F , L(0)  l� 6= .

To bound the remaining terms, we consider two cases, corresponding to Recovery= ; and Recovery6=
;.

Case 1: Recovery= ;. Our case assumption implies that
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�
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Lemma 15 implies that
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Moreover, L(0)  l� 6= ^ `T , so on F
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Using Lemma 14, we find that on F
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Using Lemma 15 with ⌧ = � 6= and (25), we have on F
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We obtain on F
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Combining Equations (24), (23), (26), and (27), we find that on F , when Recovery= ;, there exsists
an absolute constant c > 0 such that for � = T

�1,
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Case 2: Recovery 6= ;. In this case, the algorithm enters Recovery at phase L
(0), so
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L(0)+1

=False and Exp(0)
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= ;, and
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Using Lemma 13, we see that
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(x⇤ � xt)
>
�
⇤  21T ✏L(0)+1.

On the other hand, in the Recovery phase, ✏L(0)+1 
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. Thus,
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Now, Lemma 14 show that
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Combining these results, and using L
(0)  `T , we see that
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Using Lemma 15 with ⌧ = ✏L(0) , we see that
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Now, the algorithm enters the Recovery phase before finding the best group, so we must have
L
(0)  l� 6= . This implies that
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Finally, note that L(0) � LT , so ✏L(0)  ✏LT = "T , and
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(b�l)

✏2l

 218
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Combining Equations (24), (29), (30), and (31), we find that on F , when Recovery 6= ;, there exists
an absolute constant c > 0 such that for � = T

�1,
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Conclusion We conclude the proof of Theorem 2 by combining Equations (22), (28) and (32).

C.4 Proof of Theorem 3

Consider the actions A defined in the following lemma.

Lemma 17. Let the action set be given by A =
n⇣

x1

zx1

⌘
, ...,

⇣
xd+1

zxd+1

⌘o
, where

⇣
x1

zx1

⌘
= e1 + ed+1,

⇣
xi

zxi

⌘
= ei � ed+1 for i 2 {2, ..., d}, and

⇣
xd+1

zxd+1

⌘
= �

⇣
1� 2p

⇤+1

⌘
e1 � ed+1. It holds that
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✓
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x
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9
>=

>;
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By Lemma 17, A 2 A⇤,d. We will introduce two bandit problems characterized by two parameters
✓
(1)
T and ✓

(2)
T - assuming that the noise ⇠t is Gaussian and i.i.d. - and we prove that for any algorithm,

the regret for one of those two problems must be of larger order than 
1/3
⇤ T

2/3.

We also consider the following two alternative problems. For a small 1/4 > ⇢T > 0 where
⇢T = T

�1/3

1/3
⇤ (satisfied since T > 43⇤), the two alternative action parameters are defined as:

�
(1)
T =

1 + ⇢T

2
e1 +

1� ⇢T

2
e2 �

⇢T

2

0

@
X

3jd

ej

1

A

�
(2)
T =

1� ⇢T

2
e1 +

1 + ⇢T

2
e2 +

⇢T

2

0

@
X

3jd

ej

1

A .

On top of this, two bias parameters are defined as !(1)
T = �⇢T

2 and !
(2)
T = ⇢T

2 . Through this, we

define the two bandit problems of the sketch of proof of Lemma 17 characterized by ✓
(1)
T =

✓
�(1)
T

!(1)
T

◆

and ✓
(2)
T =

✓
�(2)
T

!(2)
T

◆
- and where the distribution of the noise ⇠t is supposed to be Gaussian and i.i.d.

We refer to these two problems respectively as Problem 1 and Problem 2. We write R
(1)
T , P(1) and
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E(1) (respectively R
(2)
T , P(2) and E(2)) for the regret, probability and expectation for the first bandit

problem, when the parameter is ✓(1)T (respectively the second bandit problem with ✓
(2)
T ). We also

write P(i)
j for the distribution of a sample received in Problem i when sampling action xj at any

given time t - note that by definition of the bandit problems, this distribution does not depend on t

and on the past samples given that action xj is sampled.

The three following facts hold on these two bandit problems:

Fact 1 The parameters �(1)
T and �

(2)
T are chosen so that x1 is the unique best action for Problem 1,

and x2 is the unique best action for Problem 2. Choosing any sub-optimal action induces an
instantaneous regret of at least ⇢T , and choosing the very sub-optimal action xd+1 induces
an instantaneous regret of at least 1/2.

Fact 2 Because of the chosen bias parameters, the distributions of the evaluations of all actions but
xd+1 are exactly the same under the two bandit problems characterized by ✓

(1) and ✓
(2)
T -

i.e. exactly the same data is observed under the two alternative bandit problems defined by
the two alternative parameters for all actions but xd+1. More precisely, for i 2 {1, 2}, in
Problem i and at any time t, when sampling action xi where i  2, we observe a sample
distributed according to N (1/2, 1) - i.e. P(i)

j is N (1/2, 1) - and when sampling action xi

where 2 < i � d + 1, we observe a sample distributed according to N (0, 1) - i.e. P(i)
j is

N (0, 1).
Fact 3 The distributions of the outcomes of the evaluation of action xd+1 differs in the two bandit

problems. Set ↵ = 2/(
p
⇤ + 1). In Problem 1, P(1)

d+1 is N (� 1�↵�⇢T↵
2 , 1). In Problem 2,

P(2)
d+1 is N (� 1�↵+⇢T↵

2 , 1). So that the difference between the means of the evaluations of
action xd+1 in the two bandit problems is �̄ = ⇢T↵ = 2⇢Tp

⇤+1 
2⇢Tp
⇤

.

For i  d+ 1, we write Ni(T ) for the number of times that action xi has been selected before time
T . In Problem 1, choosing the action xd+1 leads to an instantaneous regret larger than 1

2 (Fact 1), so
that

R
(1)
T �

E(1)
⇥
Nxd+1(T )

⇤

2
.

If E(1) [Nd+1(T )] � T 2/31/3
⇤

2 , then Theorem 1 follows immediately; we therefore consider from
now on the case when

E(1) [Nd+1(T )] 
T

2/3

1/3
⇤

2
. (33)

Now, let us define the event

F =

⇢
N1(T ) �

T

2

1/3
⇤

�
.

Note that action x1 is optimal for Problem 1 and that action x2 is optimal for Problem 2 (Fact 1).
Since choosing an action that is sub-optimal leads to an instantaneous regret larger than ⇢T (Fact 1),
we also have

R
(1)
T � T⇢T

2
P(1)

�
F
�

and
R

(2)
T � T⇢T

2
P(2) (F ) .

Then, Bretagnolle-Huber inequality (see, e.g., Theorem 14.2 in [24]) implies that

R
(1)
T +R
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T � T⇢T

4
exp

⇣
�KL

⇣
P(1)

,P(2)
⌘⌘

.

For the choice ⇢T = T
�1/3


1/3
⇤ , this implies that

R
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T +R
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T � T

2/3

1/3
⇤

4
exp

⇣
�KL

⇣
P(1)

,P(2)
⌘⌘

. (34)
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Now, the Kullback-Leibler divergence between P(1) and P(2) can be rewritten as follows (see, e.g.,
Lemma 15.1 in [24]) :

KL(P(1)
,P(2)) =

1

2

X

jd+1

E(1) [Nj(T )]KL(P(1)
j ,P(2)

j ).

By Fact 2, we have that for any j  d, P(1)
j = P(2)

j . So that

KL(P(1)
,P(2)) =

1

2
E(1) [Nd+1(T )]KL(P(1)

d+1,P
(2)
d+1).

By the characterization of P(1)
d+1,P

(2)
d+1 in Fact 3, and recalling that the Kullback-Leibler divergence

between two normalized Gaussian distributions is given by the squared distance between their means,
we find that

KL(P(1)
,P(2)) =

1

2
E(1) [Nd+1(T )] �̄

2
.

Thus, by the definition of �̄ in Fact 3 and by Equation (33)

KL

⇣
P(1)

,P(2)
⌘
=

1

2
E(1) [Nd+1(T )]

✓
2⇢Tp
⇤ + 1

◆2

 T
2/3


1/3
⇤

4
⇥ 4⇢2T

⇤
= 1, (35)

reminding that ⇢T = T
�1/3


1/3
⇤ .

Combining Equations (34) and (35) implies that

max
n
R

(1)
T , R

(2)
T

o
� T

2/3

1/3

8
exp(�1),

which concludes the proof of Theorem 3.

C.5 Proof of Theorems 4

Theorems 4 follows directly from the next Theorem.

Theorem 6. For all ⇤ � 1 and all d � 4, there exists an action set A 2 A⇤,d, such that for all
bandit algorithms, for all (�min,� 6=) 2 (0, 1/8)2 with �min  � 6=, and for all budget T � 2, there
exists a problem characterized by ✓ 2 ⇥A

�min,� 6=
such that the regret of the algorithm on the problem

satisfies

R
✓
T �

2

4 d

10�min
log (T )

2

41�
log
⇣

8d log(T )
�2

min

⌘

log (T )

3

5

3

5 _

2

64
⇤ + 1

4�2
6=

log (T )

2

641�
log
⇣

8⇤ log(T )
�3

6=

⌘

log (T )

3

75

3

75

_
"

⇤
4�2

6=

"
1 ^ log

 
T�3

6=
8⇤

!##
. (36)

Moreover, on this problem, (�) 2 [⇤/8, 2⇤].

Remark 1. Note that Theorem 6 allows us to recover a lower bound similar to that of Theorem 3 by
choosing � 6= and �min of the order 1/3

⇤ T
�1/3, however this bound only holds for d larger than 4.

We prove Theorem 6 for the following set of actions A: A =
n⇣

x1

zx1

⌘
, ...,

⇣
xd+1

zxd+1

⌘o
, where

⇣
xi

zxi

⌘
= ei + ed+1, for i 2 {2, ..., bd/2c},

⇣
xi

zxi

⌘
= ei � ed+1 for i 2 {bd/2c + 1, ..., d}, and

⇣
xd+1

zxd+1

⌘
= �

⇣
1� 2p

⇤+1

⌘
e1 � ed+1. Then, by Lemma 10, for this choice of action set, we have

A 2 A⇤,d.
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We consider the following set of bandit problems: for i 2 {1, ..., bd/2c+1} Problem i is characterized
by the parameter ✓(i), where ✓

(i) =
⇣

�(i)

!(i)

⌘
is defined as:

�
(1) =

1 +� 6= ��min

2

0

@
X

1jbd/2c

ej

1

A+
1�� 6= ��min

2

0

@
X

bd/2c+1jd

ej

1

A+�mine1 +�minebd/2c+1

�
(i) = �

(1) + 2�minei + 2�minebd/2c+i 8i 2 {2, ..., bd/2c}

�
(bd/2c+1) =

1�� 6= ��min

2

0

@
X

1jbd/2c

ej

1

A+
1 +� 6= ��min

2

0

@
X

bd/2c+1jd

ej

1

A+�mine1 +�minebd/2c+1,

and the bias parameters are defined as !(i) = �� 6=
2 8i 2 {1, ..., bd/2c}, and otherwise !(bd/2c+1) =

� 6=
2 . We write E(i)

,P(i)
, R

(i)
T for resp. the probability, expectation, and regret, in Problem i. Note

that this choice of parameters ensures that 8i 2 {1, ..., bd/2c+ 1}, ✓(i) 2 ⇥A
�min,� 6=

.

Set A =
n⇣

x1

zx1

⌘
, ...,

⇣
xd+1

zxd+1

⌘o
, where

⇣
xi

zxi

⌘
= ei + ed+1, for i 2 {2, ..., bd/2c},

⇣
xi

zxi

⌘
=

ei � ed+1 for i 2 {bd/2c+ 1, ..., d}, and
⇣

xd+1

zxd+1

⌘
= �

⇣
1� 2p

⇤+1

⌘
e1 � ed+1. Then, Lemma 10

shows that A 2 A⇤,d.

The following facts hold:

Fact 1 For any i 2 {1, ..., bd/2c+ 1}, action xi is the unique optimal action in Problem i. Since
1/2 � � 6= � �min, sampling any other (sub-optimal) action leads to an instantaneous regret
of at least �min. Moreover, choosing an action in the group �zi leads to an instantaneous
regret of at least � 6=.

Fact 2 In Problem i for any i 2 {1, ..., bd/2c+ 1}, action d+ 1 is very sub-optimal and sampling
it leads to an instantaneous regret higher than (1� 2/(

p
⇤ + 1))(1�� 6= +�min) + (1 +

� 6= +�min)/2 � 1/2, since ⇤ � 1 and 1/2 � � 6= � �min.
Fact 3 In Problem i, for i 2 {1, ..., bd/2c+1}, when sampling action xj at time, t the distribution

of the observation does not depend on t or on the past (except through the choice of xj) and
is P(i)

j . It is characterized as:

8i 2 {1, ..., bd/2c+ 1},P(i)
1 ,P(i)

bd/2c+1 are N ((1 +�min)/2, 1)

8i 2 {1, ..., bd/2c+ 1}, 8j 2 {2, ..., d} \ {bd/2c+ 1, i, bd/2c+ i},P(i)
j is N ((1��min)/2, 1),

8i 2 {2, bd/2c},P(i)
i is N ((1 + 3�min)/2, 1) P(i)

bd/2c+i is N ((1 + 3�min)/2, 1)

8i 2 {1, bd/2c},P(i)
d+1 is N (�(1� ↵)(1 +� 6= +�min)/2 +� 6=/2, 1),

P(bd/2c+1)
d+1 is N (�(1� ↵)(1�� 6= +�min)/2�� 6=/2, 1) where ↵ = 2/(

p
⇤ + 1).

So that:
Fact 3.1 For any i 2 {2, ..., bd/2c}, between Problem 1 and Problem i, the only actions that

provide different evaluations when sampled are action i and action bd/2c+ i, and the
mean gaps in both cases is 2�min.

Fact 3.2 Between Problem 1 and Problem bd/2c + 1, the only action that provide different
evaluation when sampled is action d+ 1, and the mean gap in this case is ↵� 6=.

For j  d + 1, we write Nj(T ) for the total number of times action xj has been selected before
time T . Then, for j 2 {1, ..., bd/2c}, let E(j) = {Ni(T )  T/2}. Note that for i 2 {1, ..., bd/2c},
in Problem i the action xi is the optimal action. Therefore, for any efficient algorithm, for all i 2
{1, ..., bd/2c} the event E(i) should have a low probability under P(i). Indeed, for i 2 {1, ..., bd/2c},
the regret of the algorithm under Problem i can be lower-bounded as follows - see Facts 1 and 2:

R
(i)
T �

X

jbd/2c, j 6=i

E(i) [Nj(T )]�min +
X

bd/2c+1jd

E(i) [Nj(T )]�6= +
E(i) [Nd+1(T )]

2
.(37)

36



Since
P

j E(i) [Nj(T )] = T and �min  � 6=  1
2 , this implies together with Facts 1:

R
(i)
T �

⇣
T � E(i) [Ni(T )]

⌘
�min

Using the definition of E(i), we find that

R
(i)
T � T�min

2
P(i)

⇣
E

(i)
⌘
. (38)

In particular for Problem 1, for any i 2 {1, ..., bd/2c},

R
(1)
T � T�min

2
P(1)

⇣
E(i)

⌘
. (39)

since E
(1) � E(i).

Similarly, let us also define the event F =

(
P

ibd/2c
Ni(T ) � T/2

)
. Then, in Problem 1, the group

1 contains the optimal action, and so for any efficient algorithm, the event F should have a low
probability under P(1). Indeed, Equation (37) also implies

R
(1)
T �

0

@T � E(1)

2

4
X

ibd/2c

Ni(T )

3

5

1

A� 6= �
T� 6=
2

P(1)
�
F
�
. (40)

On the other hand, for any efficient algorithm, the event F should have high probability under
P(bd/2c+1). Indeed,under problem Problem bd/2c+ 1, the regret can be lower-bounded as follows -
see Facts 1 and 2:

R
(bd/2c+1)
T �

X

jbd/2c

E(bd/2c+1) [Nj(T )]�6= +
X

bd/2c+2jd

E(bd/2c+1) [Nj(T )]�min +
E(bd/2c+1) [Nd+1(T )]

2
.

which implies that

R
(bd/2c+1)
T �

X

jbd/2c

E(bd/2c+1) [Nj(T )]�6= �
T� 6=
2

P(bd/2c+1) (F ) . (41)

Now, Bretagnolle-Huber inequality (see, e.g., Theorem 14.2 in [24]) implies that for all i 2
{2, ..., bd/2c},

1

2
exp

⇣
�KL

⇣
P(1)

,P(i)
⌘⌘

 P(i)
⇣
E

(i)
⌘
+ P(1)

⇣
E(i)

⌘
(42)

and that
1

2
exp

⇣
�KL

⇣
P(1)

,P(bd/2c+1)
⌘⌘

 P(bd/2c+1) (F ) + P(1)
�
F
�
. (43)

On the one hand, Equation (42) implies that for any i 2 {2, ..., bd/2c},

KL

⇣
P(1)

,P(i)
⌘
� � log

⇣
2P(i)

⇣
E

(i)
⌘
+ 2P(1)

⇣
E(i)

⌘⌘

� log (T )� log
⇣
2TP(i)

⇣
E

(i)
⌘
+ 2TP(1)

⇣
E(i)

⌘⌘
. (44)

Combining Equations (38), (39), and (44), we find that

KL

⇣
P(1)

,P(i)
⌘
� log (T )� log

 
4(R(i)

T +R
(1)
T )

�min

!
. (45)

On the other hand, Equation (43) implies that

KL

⇣
P(1)

,P(bd/2c+1)
⌘
� � log

⇣
2P(bd/2c+1) (F ) + 2P(1)

�
F
�⌘

� log (T )� log
⇣
2TP(bd/2c+1) (F ) + 2TP(1)

�
F
�⌘

. (46)
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Combining Equations (38), (39), and (46), we find that

KL

⇣
P(1)

,P(bd/2c+1)
⌘
� log (T )� log

 
4(R(bd/2c+1)

T +R
(1)
T )

� 6=

!
. (47)

Also, note that for all i 2 {2, ..., bd/2c+ 1}, the Kullback-Leibler divergence between P(1) and P(i)

can be decomposed as follows (see, e.g., Lemma 15.1 in [24]) :

KL(P(1)
,P(i)) =

X

jd+1

E(1) [Nj(T )]KL(P(1)
j ,P(i)

j ). (48)

Lower bound in d��1
min log T . By design, for i 2 {2, ..., bd/2c}, all actions but xi and xbdc+i

have the same distribution under P(1) and P(i) - see Fact 3.1. Then, Equation (48) becomes from
Fact 3.1 and from the expression of KL divergence between standard Gaussian distributions:

KL(P(1)
,P(i)) =

4�2
min

2
E(1) [Ni(T )] +

4�2
min

2
E(1)

⇥
Nbdc+i(T )

⇤
.

So that, summing over i 2 {2, ..., bd/2c}, and by Fact 1:
X

i2{2,...,bd/2c}

KL(P(1)
,P(i))  2�minR

(1)
T .

So that by Equation (45) (summing over i 2 {2, ..., bd/2c}):

2�minR
(1)
T �

X

i2{2,...,bd/2c}

"
log (T )� log

 
4(R(i)

T +R
(1)
T )

�min

!#

= (bd/2c � 1) log (T )�
X

i2{2,...,bd/2c}

log

 
4(R(i)

T +R
(1)
T )

�min

!
.

Let us assume that our algorithm satisfies maxibd/2c R
(i)
T 

d log(T )
�min

- otherwise the bound immedi-
ately follows for this algorithm. Then

R
(1)
T � 1

2�min
(bd/2c � 1) log (T )� 1

2�min

X

i2{2,...,bd/2c}

log

✓
8d log T

�2
min

◆

� 1

2�min
(bd/2c � 1)


log (T )� log

✓
8d log (T )

�2
min

◆�
. (49)

Sine d � 4, we note that bd/2c � 1 � d/5. This concludes the proof for this part of the bound.

Lower bound in ⇤�
�2
6= log T . By design, all actions but xd+1 have the same evaluation under

Problem 1 and Problem bd/2c+ 1 - see Fact 3.2. Then, by Fact 3.2 and the expression between the
KL divergence of standard Gaussians, Equation (48) becomes

KL(P(1)
,P(bd/2c+1)) = E(1) [Nd+1(T )]

(↵� 6=)
2

2
=

1

2
E(1) [Nd+1(T )]

✓
2� 6=p
⇤ + 1

◆2

.

Combined with equation (47), this implies that

1

2
E(1) [Nd+1(T )]

✓
2� 6=p
⇤ + 1

◆2

� log (T )� log

 
4(R(bd/2c+1)

T +R
(1)
T )

� 6=

!
. (50)

Let us assume that our algorithm satisfies maxibd/2c+1 R
(i)
T  ⇤ log(T )

�2
6=

- otherwise the bound
immediately follows for this algorithm. We then have

1

2
E(1) [Nd+1(T )]

✓
2� 6=p
⇤ + 1

◆2

� log (T )� log

 
8⇤ log (T )

�3
6=

!
.

Using Equation (37), we find that

R
(1)
T � ⇤ + 1

4�2
6=

"
log (T )� log

 
8⇤ log (T )

�3
6=

!#
. (51)
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Lower bound in ⇤�
�2
6= . Let us assume that our algorithm satisfies maxibd/2c+1 R

(i)
T 

⇤
�2

6=
-

otherwise the bound immediately follows for this algorithm. Then, Equation (50) implies

1

2
E(1) [Nd+1(T )]

✓
2� 6=p
⇤

◆2

� log (T )� log

 
8⇤
�3

6=

!
.

Using again Equation (37), we find that

R
(1)
T � ⇤ + 1

4�2
6=

log

 
T�3

6=
8⇤

!
. (52)

We conclude the proof of Theorem 6 by combining Equations (49), (51) and (52).

Bounds on (�) Finally, Lemma 11 allows us to express (�) as a function of ⇤. On the one
hand, since ⇤ � 1, we see that ⇤  (1 +

p
⇤)2  4⇤. On the other hand, 1/2  �d+1  2, so

(�) 2
⇥
⇤
8 , 2⇤

⇤
.

C.6 Extension of the gap-dependent lower bounds to d = 2, 3

Theorem 4 can be extended to d 2 {2, 3} by considering separately the cases d
�min

� 
�2

6=
and

d
�min

<


�2
6=

.

Case 1 : d
�min

� 
�2

6=
Let us consider the set of actions defined by A =

n⇣
x1

zx1

⌘
, ...,

⇣
xd+1

zxd+1

⌘o
,

where
⇣

xi

zxi

⌘
= e1 + ed+1 for i 2 {1, ..., d}, and

⇣
xd+1

zxd+1

⌘
= �

⇣
1� 2p

⇤+1

⌘
e1 � ed+1. Using the

same proof as in Lemma 17, we see that

min
⇡2PA

8
><

>:
e
>
d+1

0

B@
X

( x
z )2A

⇡x

✓
x

zx

◆✓
x

zx

◆>
1

CA

+

ed+1

9
>=

>;
= .

Then, we consider the following problems : for i  d, Problem i is characterized by the parameter
✓
(i), where ✓

(i) =
⇣

�(i)

!(i)

⌘
is defined as:

�
(1) =

1��min

2

X

id

ei +�mine1

�
(i) =

1��min

2

X

id

ei +�mine1 +�minei for i >1

and the bias parameters are defined as !(i) = 0 for i  d. The following facts hold:

Fact 1 For any i 2 {1, ..., d}, action xi is the unique optimal action in Problem i. Sampling any
other (sub-optimal) action leads to an instantaneous regret of at least �min.

Fact 2 In Problem i, for i 2 {1, ..., d}, when sampling action xj at time, t the distribution of the
observation does not depend on t or on the past (except through the choice of xj) and is P(i)

j .
It is characterized as:

8i 2 {1, ..., d},P(i)
1 is N ((1 +�min)/2, 1)

8i 2 {1, ..., d},P(1)
d+1 is N (�(1� 2

p
⇤ + 1

)(1 +�min)/2, 1)

8i 2 {2, ..., d},P(i)
i is N ((1 + 3�min)/2, 1)

8i, j 2 {2, ..., d}, i 6= j : P(i)
j is N ((1��min)/2, 1)

So that for any i 2 {2, ..., d}, between Problem 1 and Problem i, the only action that
provides different evaluations when sampled is action i , and the mean gap is 2�min.
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Since � 6=  1
8 , this choice of parameters ensures that 8i 2 {1, ..., d}, ✓(i) 2 ⇥A

�min,� 6=,⇤
. Adapting

the proof of Lemma 17, we note that the minimal variance of bias estimation is at least ⇤. This
proves that A 2 ⇥A

�min,� 6=,⇤
. Now, the lower bound

RT �
d� 1

2�min


log (T )� log

✓
8d log (T )

�2
min

◆�

follows directly using arguments from the proof of Theorem 6.

Case 2 : d
�min

>


�2
6=

Let the action set be given by A =
n⇣

x1

zx1

⌘
, ...,

⇣
xd+1

zxd+1

⌘o
, where

⇣
x1

zx1

⌘
=

e1 + ed+1,
⇣

xi

zxi

⌘
= ei � ed+1 for i 2 {2, ..., d}, and

⇣
xd+1

zxd+1

⌘
= �

⇣
1� 2p

⇤+1

⌘
e1 � ed+1. By

Lemma 17, A 2 A⇤,d. We consider two bandit problems characterized by two parameters ✓(1) and
✓
(2), defined as:

�
(1) =

1 +� 6=
2

e1 +
1�� 6=

2
e2 �

� 6=
2

e3

�
(2) =

1�� 6=
2

e1 +
1 +� 6=

2
e2 +

� 6=
2

e3.

On top of this, two bias parameters are defined as !(1) = �� 6=
2 and !

(2) = � 6=
2 .

The following facts hold:

Fact 1 For any i 2 {1, 2}, action xi is the unique optimal action in Problem i. Since 1/2 � � 6=,
sampling any other (sub-optimal) action leads to an instantaneous regret of at least � 6=.

Fact 2 In Problem i, for i 2 {1, ..., d}, when sampling action xj at time, t the distribution of the
observation does not depend on t or on the past (except through the choice of xj) and is P(i)

j .
It is characterized as:

8i 2 {1, 2}, 8j 2 {1, 2},P(i)
j is N (1/2, 1)

8i 2 {1, 2},P(1)
3 is N (0, 1)

P(1)
d+1 is N

✓✓
1� 2
p
⇤ + 1

◆✓
1 +� 6=

2

◆
+

� 6=
2

, 1

◆

P(2)
d+1 is N

✓✓
1� 2
p
⇤ + 1

◆✓
1�� 6=

2

◆
� � 6=

2
, 1

◆

So that, between Problem 1 and Problem 2, the only action that provides different evalua-
tions when sampled is action 1, and the mean gaps in both cases is 2� 6=p

⇤+1 .

Note that the minimum gap for these parameters is � 6= � �min. Thus, this choice of parameters
ensures that 8i 2 {1, ..., d}, ✓(i) 2 ⇥A

�min,� 6=,⇤
. Adapting the proof of Lemma 17, we note that

the minimal variance of bias estimation is at least ⇤.This proves that A 2 ⇥A
�min,� 6=,⇤

. Then, the
lower bound

RT �
⇤ + 1

4�2
6=

"
log (T )� log

 
8⇤ log (T )

�3
6=

!#
.

follows directly using arguments from the proof of Theorem 6.

C.7 Auxiliary Lemmas

C.7.1 Proof of Lemma 1

Lemma 1 follows from the characterization of ⇤ given in Lemma 5. We begin by proving
the first statement. Assume that ⇤ > 1 (otherwise the first statement is void). Note that
for all u 2 Rd, lim

�!+1
(maxx2X

�
x
>(�u) + zx

�2
)�1 = 0, so the minimum over u 2 Rd of

(maxx2X
�
x
>(�u) + zx

�2
)�1 is attained for some vector ũ 2 Rd. Since ⇤ > 1, ũ is not null.
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Moreover, maxx2X (1 + zxx
>
ũ)2 < 1, so maxx2X zxx

>
ũ < 0. Thus, for all x 2 X , x>

ũ and zx

are of opposite sign, and x
>
ũ 6= 0. This implies that the hyperplane containing 0 with normal vector

ũ contains no action, and separates the two groups. Moreover,


�1/2
⇤ = max

x2X
|zxx>

ũ+ 1|.

We denote x
(1) 2 argmaxx2X zzx

>
ũ, and x

(2) 2 argminx2X zzx
>
ũ. Let us show that

(zx(1)x
(1)>

ũ + 1) = �
⇣
1 + zx(2)x

(2)>
ũ

⌘
, i.e that zx(1)x

(1)>
ũ + zx(2)x

(2)>
ũ = �2. Indeed,

note that

�1/2
⇤ = (zx(1)x

(1)>
ũ+ 1) _ �(1 + zx(2)x

(2)>
ũ).

Then, for u0 = �2

(zx(1)x(1)+z
x(2)x(2))>ũ

ũ, we see that

zx(1)x
(1)>

u
0 + 1 = �

⇣
1 + zx(2)x

(2)>
u
0
⌘
= max

x2X
|zxx>

u
0 + 1|.

By contradiction, let us first assume that zx(1)x
(1)>

ũ+ zx(2)x
(2)>

ũ < �2. Then,

max
x2X

|zxx>
u
0 + 1| = zx(1)x

(1)>
u
0 + 1 < zx(1)x

(1)>
ũ+ 1 = 

�1/2
⇤

which contradicts the definition of ⇤.

Similarly, if we assume that zx(1)x
(1)>

ũ+ zx(2)x
(2)>

ũ > �2, then

max
x2X

|zxx>
u
0 + 1| = �(zx(2)x

(2)>
u
0 + 1) < �(zx(2)x

(2)>
ũ+ 1) = 

�1/2
⇤

which contradicts again the definition of ⇤. Therefore,

(zx(1)x
(1)>

ũ+ 1) = �
⇣
1 + zx(2)x

(2)>
ũ

⌘
= 

�1/2
⇤ .

Then, the hyperplane containing 0 with normal vector ũ separates the actions of the two groups.
Moreover, the margin is �zx(1)x

(1)>
ũ = 1 � 

�1/2
⇤ , while the maximum distance of all points is

�zx(2)x
(2)>

ũ = 1 + 
�1/2
⇤ . Thus, there exists ũ such that the hyperplane containing 0 with normal

vector ũ separates the actions of the two groups, with margin equal to
p
⇤�1p
⇤+1 times the maximum

distance of all points to the hyperplane.

Conversely, assume that there exists  > ⇤ such that there exists u 2 Rd such that the hyperplane
containing 0 with normal vector u separates the actions of the two groups, with margin equal top

�1p
+1

= 1��1/2

1+�1/2 times the maximum distance of all points to the hyperplane, denoted hereafter
d. Since the hyperplane separates the points, we can assume without loss of generality that for all
x 2 X , zxx>

u < 0. Similarly, up to a renormalization, we can assume without loss of generality
that d = 1 + 

�1/2. Then,

max
x2X

|zxx>
u+ 1| = (max

x2X
zxx

>
u+ 1) _ �(min

x2X
zxx

>
u+ 1)

=

✓
�1� 

�1/2

1 + �1/2
⇥ (1 + 

�1/2) + 1

◆
_ �(1� 

�1/2 � 1) = 
�1/2

< 
�1/2
⇤

which contradicts the definition of ⇤. This concludes the proof of the first statement.

To prove the second statement, let us assume that no separating hyperplane containing zero ex-
ists. Then, for all u 2 Rd, there exists x 2 X such that zxx

>
u � 0. This implies that

minu2Rd maxx2X (zxx>
u + 1) � 1, so ⇤  1. Choosing u = 0, we see that ⇤ � 1, which

implies that ⇤ = 1.
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C.7.2 Proof of Lemma 2

Since for all � 2 X and all x 2 X , |x>
�|  1, it is easy to see that the gaps are bounded by 2, and

that e  2⇤.

Let us now show that e � ⇤/2.
⇣
x
(1)

, x
(2)

, e�
⌘
2 argmax

(x,x0)2X ,�2C(X )
(x� x

0)>�

x =
1

2
(x(1) + x

(2))

en =
X

x2X
eµ(x)

and ex =
1

en
X

x2X
eµ(x)x.

Recall that ⇤ can equivalently be defined as the budget necessary to estimate the bias with a variance
smaller than 1. Therefore, we have

en � ⇤. (53)
Let us define �max as �max = (x(1) � x

(2))>e� = max
(x,x0)2X ,�2C(X )

(x� x
0)>�. By definition of e

and eµ,

e �
X

x2X
eµ(x)(x(1) � x)>e�

= en(x(1) � ex)>e�.

Using Equation (53), we find that

e
⇤

� (x(1) � x)>e� + (x� ex)>e�

=
�max

2
+ (x� ex)>e�. (54)

Now, since e� 2 C(X ), we also have �e� 2 C(X ), and therefore

e �
X

x2X
eµ(x)(x(2) � x)>(�e�)

= en(ex� x
(2))>e�

Using again Equation (53), we find that

e
⇤

� (ex� x)>e� + (x� x
(2))>e�

= (ex� x)>e� +
�max

2
. (55)

Combining Equations (54) and (55), we find that

e
⇤

� �max

2
+ |(x� ex)>e�|.

This implies in particular that e � �max⇤
2 .

To conclude the proof of the Lemma, we show that �max � 1. By contradiction, assume that
�max < 1.

For all non-zero vector u 2 Rd, let us denote xu = argmaxx2X |x>
u|. Since X spans Rd, we

necessarily have |x>
u u| > 0, so we can define the normalized vector ũ = u/|x>

u u| such that ũ
belongs to the set C(X ). Finally, denote x

(1)
u , x

(2)
u 2 argmaxx,x02X (x(1)

u � x
(2)
u )>ũ. Note that by

definition of �max, we always have (x(1)
u � x

(2)
u )>ũ  �max < 1.
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Case 1 : x>
u ũ > 0 Then, by definition of xu and x

(1)
u , we see that x(1)

u
>
ũ = x

>
u ũ = 1. Then,

(x(1)
u � x

(2)
u )>ũ < 1 implies that 1� x

(2)
u

>
ũ < 1, so x

(2)
u

>
ũ > 0, and in particular x(2)

u
>
u > 0.

Case 2 : x>
u u < 0 Then, by definition of xu and x

(2)
u , we see that x(2)

u
>
ũ = x

>
u u = �1. Then

(x(1)
u � x

(2)
u )>ũ < 1 implies that x(1)

u
>
ũ+ 1 < 1, so x

(1)
u

>
ũ < 0, and in particular x(1)

u
>
u < 0.

Putting together Case 1 and Case 2, we see that x(1)
u

>
u and x

(2)
u

>
u are of the same sign and are not

null. By definition of x(1)
u and x

(2)
u , we conclude that for all x 2 X , the sign of x>

u is the same,
and that x>

u is not 0. Since this is true for all non-zero vector u, this implies in particular that no
hyperplane containing the origin can separate the actions, which contradicts the assumption that X
spans Rd.

C.7.3 Proof of Lemmas 3 and 4

We begin by proving Lemma 4. Recall that ⇡ is a G-optimal design for the set {ax : x 2 X}, and
that µ is defined as µ(x) = dm⇡(x)e for all x 2 X .

We first observe that V (⇡) = A
>
⇡A⇡, where A⇡ is the matrix with lines given by [

p
⇡(x)a>x ]x2X .

Since the supports of µ and ⇡ are the same, we get that Range(A>
⇡ ) = Range(A>

µ ). As a consequence

Range(V (⇡)) = Range(A>
⇡ ) = Range(A>

µ ) = Range(V (µ)),

and x 2 Range(V (µ)) for all x 2 X . This ensures that a>x b✓µ is an unbiased estimator of a>x ✓⇤.

Furthermore V (µ) < mV (⇡), so the variance a
>
x V (µ)+ax of a

>
x
b✓µ is upper-bounded by

a
>
x V (µ)+ax  m

�1
a
>
x V (⇡)+ax. Now, the General Equivalence Theorem of Kiefer and Pukelshein

shows that maxx2X a
>
x V (⇡)+ax  d+ 1. Thus, a>x V (⇡)+ax  m

�1(d+ 1).

We now prove Lemma 3. Recall that ⇡ 2 MX
ed+1

is such that ed+1 2 RangeV (⇡), and that
µ is defined as µ(x) = dm⇡(x)e for all x 2 X . Using similar arguments, we can show that
ed+1 2 Range(V (µ)), which ensures that e>d+1

b✓µ is an unbiased estimator of e>d+1✓
⇤. The second

part of the Lemma follows directly using that V (µ) < mV (⇡).

C.7.4 Proof of Lemma 5

Elfving’s set S for estimating the bias in the biased linear bandit problem is given by

S = convex hull

⇢✓
x

zx

◆
,

✓
�x
�zx

◆
: x 2 X

�
,

or equivalently by
S = convex hull

n
±
⇣
zxx

1

⌘
: x 2 X

o
.

Now, Theorem 5 indicates that �1/2
⇤ ed+1 belongs to a supporting hyperplane of S. We first show

that when A spans Rd+1, any normal vector w 2 Rd+1 to this hyperplane is such that w>
ed+1 6= 0.

By contradiction, let us assume that �1/2
⇤ ed+1 belongs to some supporting hyperplane H of S

parametrized as H =
�
a 2 Rd+1 : a>w = b

 
, where the normal vector w is of the form w =

�u
0

�
.

Then, �1/2
⇤ ed+1 2 H, so 

�1/2
⇤ e

>
d+1w = b, and thus b = 0. Now, H is a supporting hyperplane of

S, so for all a 2 S we see that a>w  b. In particular, for all x 2 X , x>
u  0 and �x>

u  0, so
x
>
u = 0. This implies that X is supported by an hyperplane in Rd with normal vector u, which

contradicts our assumption that A spans Rd+1. Thus, the supporting hyperplane of S containing

�1/2
⇤ ed+1 has a normal vector w 2 Rd+1 such that w>

ed+1 6= 0. In particular, we can parameterize
this hyperplane as Hu,b =

�
a 2 Rd+1 : a>

�u
1

�
= b
 

for some b 2 R and u 2 Rd.

Now, if Hu,b is a supporting hyperplane of S, then, by definition, S is contained in the half space�
a 2 Rd+1 : a>

�u
1

�
 b
 

. In particular, for all x 2 X , one must have zxx
>
u + 1  b and
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�zxx>
u � 1  b : therefore, for all x 2 X , |zxx>

u + 1|  b. Moreover, Hu,b is a supporting
hyperplane of S , so there exists an extreme point a 2 S such that a 2 Hu,b. Note that S is the convex
hull of

�
±
� zxx

1

�
: x 2 X

 
, so the extreme points of S are in

�
±
� zxx

1

�
: x 2 X

 
. In particular, this

implies that b = max
�
|zxx>

u+ 1| : x 2 X
 

. Thus, the supporting hyperplane of S containing

�1/2
⇤ ed+1 is necessarily of the form Hu,max{|zxx>u+1|:x2X}.

On the one hand, 
�1/2
⇤ belongs to the boundary of S and therefore to a supporting hy-

perplane Hu,max{|zxx>u+1|:x2X} of S. Then, there exists u 2 Rd such that 
�1/2
⇤ =

max
�
|zxx>

u+ 1| : x 2 X
 

.

On the other hand, it is easy to verify that for all u 2 Rd, Hu,max{|zxx>u+1|:x2X} is a supporting
hyperplane of S . Now, �1/2

⇤ ed+1 belongs to S , so 
�1/2
⇤ e

>
d+1

�u
1

�
 max

�
|zxx>

u+ 1| : x 2 X
 

.

These two results imply that

�1/2
⇤ = min

u2Rd
max
x2X

|zxx>
u+ 1|

which proves the Lemma.

C.7.5 Proof of Lemma 6

We prove that 2(
p
⇤ � 1)2 _ 1  ↵  8(⇤ + 1). Lemma 6 follows directly by noticing that ↵ � 1

and ⇤ � 1.

Let us begin by proving that 2(
p
⇤ � 1)2  ↵ for ⇤ > 1 (otherwise this inequality is auto-

matically verified). Note that for all u 2 Rd, lim
�!+1

1
maxx2X (x>(�u)+zx)

2 = 0, so the minimum

over u 2 Rd of 1
maxx2X (x>u+zx)

2 = 0 is attained for some vector ũ 2 Rd. Let us also denote
x̃ 2 argmaxx2X (zxx>

ũ+ 1)2, such that

⇤ =
1

(zx̃x̃>ũ+ 1)2
.

With these notations, we see that for all x 2 X ,

(zxx
>
ũ+ 1)2  (zx̃x̃

>
ũ+ 1)2 = 

�1
⇤ < 1.

This implies that for all x 2 X ,

zxx
>
ũ  �1 + 

�1/2
⇤ < 0.

Now, let us denote x
(1)

, x
(2) 2 argmaxx,x02X (x� x

0)>ũ. By definition of ↵, we see that

↵ �
�
(x(1) � x

(2))>ũ
�2

(zx̃x̃>ũ+ 1)2
=
⇣
(x(1) � x

(2))>ũ
⌘2
⇥ ⇤.

Since zxx
>
ũ < 0 for all x 2 X , and since no group is empty, we can conclude that there exists

x, x
0 2 X such that x>

ũ > 0 and x
0>
ũ < 0. In particular, by definition of x(1) and x

(2), we see that
(x(1))>ũ > 0 and (x(2))>ũ < 0. Then,

⇣
(x(1) � x

(2))>ũ
⌘2
�
⇣
(x(1))>ũ

⌘2
+
⇣
(x(2))>ũ

⌘2
� 2(1� 

�1/2
⇤ )2.

This implies that
↵ � 2(1� 

�1/2
⇤ )2 ⇥ ⇤ = 2(

p
⇤ � 1)2.

Let us now prove that ↵ � 1. Note that by assumption, X spans Rd, and in particular there exists
ũ 2 Rd and x, x

0 2 X such that maxx2X x
>
ũ > 0 and minx2X x

>
ũ  0. Thus, maxx,x02X ((x�

x
0)>ũ)2 � maxx2X (x>

ũ)2. For any � > 0, choosing u = �ũ in the definition of ↵ implies that

↵ � �
2 maxx2X (x>

u)2

maxx2X (�zxx>u+ 1)2
.

44



Letting � go to infinity, we find that ↵ � 1.

Finally, we prove that ↵  8(⇤ + 1). For all u 2 Rd, we see that

maxx,x02X ((x� x
0)>u)2

maxx2X (zxx>u+ 1)2
 4maxx2X (zxx>

u)2

maxx2X (zxx>u+ 1)2
.

Now, we see that

maxx2X (zxx>
u)2

maxx2X (zxx>u+ 1)2
 2maxx2X (zxx>

u+ 1)2 + 2

maxx2X (zxx>u+ 1)2
 2 +

2

maxx2X (zxx>u+ 1)2
.

This in turn implies that for all u 2 Rd,

maxx,x02X ((x� x
0)>u)2

maxx2X (zxx>u+ 1)2
 8(1 + ⇤),

which finally implies that ↵  8(1 + ⇤).

C.7.6 Proof of Lemma 8

Proof of Claim i) The proof of the first claim is immediate by definition of . Indeed, let fM =n
µ 2MX

ed+1
: e>d+1V (µ)+ed+1  1

o
be the set of measures µ admissible for estimating !

⇤ with a
precision level 1. Then,

(c�) = min
µ2 fM

X

x

µ(x)c�x = c min
µ2 fM

X

x

µ(x)�x = c(�).

Proof of Claim ii) The proof of the second claim is also straightforward. If �  �0, then for all
µ 2 fM,

P
x µ(x)�x 

P
x µ(x)�

0
x. Recall that µ�0

= argminµ2 fM
P

x µ(x)�
0
x. Then,

(�0) =
X

x

µ
�0
(x)�0

x �
X

x

µ
�0
(x)�x � min

µ2 fM

X

x

µ(x)�x = (�).

Proof of Claim iii) To prove the third claim, note that

(� _�0) = min
µ2 fM

X

x

µ(x) (�x _�x)

� min
µ2 fM

 
X

x

µ(x)�x _
X

x

µ(x)�0
x

!

�
 
min
µ2 fM

X

x

µ(x)�x

!
_
 
min
µ2 fM

X

x

µ(x)�0
x

!

� (�) _ (�0).

Proof of Claim iv) Recall that
(�) = min

µ2 fM

X

x

µ(x)�x.

Let us define a sequence (µn)n2N 2 fMN such that
P

x µn(x)�x !
n!1

(�), and let us denote
n =

P
x µn(x)�x. According to Claim ii), we have

(�)  (� _ ✏) = min
µ2 fM

X

x

µ(x) (�x _ ✏) 
X

x

µn(x)�x + ✏

X

x

µn(x).

It follows that for all n,

(�)  lim inf
✏!0+

(� _ ✏)  lim sup
✏!0+

(� _ ✏)  n.

Letting n go to infinity, we get that lim✏!0+ (� _ ✏) = (�).
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C.7.7 Proof of Lemma 9

Setting µ ·� = (µ(x)�x)x2X and

V�(�) =
X

x2X
�x

 
��1/2

x x

��1/2
x zx

! 
��1/2

x x

��1/2
x zx

!>

,

we observe that V�(µ ·�) = V (µ). Hence,

(�) = min
µ2M+

e>d+1V�(µ·�)+ed+11

X

x2X
(µ ·�)x.

We observe that ed+1 2 Range(V (µ)) is equivalent to ed+1 2 Range(V�(µ ·�)). Hence, µ� ·� =
�
� where

�
� 2 argmin

�2RX
+

ed+12Range(V�(�))

e>d+1V�(�)+ed+11

X

x2X
�x.

The conclusion then follows by noticing that by homogeneity, �� = 
�
⇡
�.

C.7.8 Proof of Lemma 12

Lemma 12 follows directly from Lemmas 18 and 19.
Lemma 18.

P

0

@9l � 1, z 2 {�1, 1} such that Explore(z)l = True, and x 2 X (z)
l such that

������

 
b�(z)
l � �

⇤

b!(z)
l � !⇤

!>✓
x

zx

◆������
� ✏l

1

A  �.

Lemma 19.

P
⇣
9l � 1 such that Explore(0)l = True and

���b!(0)
l � !

⇤
��� � ✏l

⌘
 �.

C.7.9 Proof of Lemma 13

To prove Lemma 13, we rely on the following key lemma. This lemma proves that on F , i.e. when
the error bounds hold, the algorithm never eliminates the best action or the best group.

Lemma 20. On the event F , for all x⇤ 2 argmaxx2X x
>
�
⇤ and all l such that Explore(zx⇤ )

l =

True, x⇤ 2 X (zx⇤ )
l+1 . Moreover, on the event F , for all l such that Explore(0)l = True, there exists

x
⇤ 2 argmaxx2X x

>
�
⇤ such that bz⇤l+1 6= �zx⇤ .

Let l � 1 be such that Explore(zx⇤ )
l = True. Then, on F , x⇤ 2 X (zx⇤ )

l+1 by Lemma 20. Moreover, for

all x 2 X (zx⇤ )
l+1 , by definition of X (zx⇤)

l+1 , we have that on F
✓✓

x
⇤

zx⇤

◆
�
✓

x

zx⇤

◆◆>
 
b�(z)
l

b!(z)
l

!
 3✏l.

which implies that
✓✓

x
⇤

zx⇤

◆
�
✓

x

zx⇤

◆◆>✓
�
⇤

!⇤

◆
 3✏l +

�����

✓
x
⇤

zx⇤

◆>
 
b�(z)
l � �

⇤

b!(z)
l � !⇤

!�����+

�����

✓
x

zx⇤

◆>
 
b�(z)
l � �

⇤

b!(z)
l � !⇤

!����� .

Thus, on the event F , for all x 2 X (zx⇤ )
l+1

(x⇤ � x)> �
⇤
< 5✏l ,

which proves Equation (13). To prove the second claim of Lemma 13, assume that for all x0 2
argmaxx2X x

>
�
⇤, zx0 = zx⇤ (when this does not hold, the second claim follows from Equation
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(13)). Now, let l � 1 be such that Explore(�zx⇤ )
l = True. By Lemma 20, on F , x⇤ 2 X (zx⇤ )

l and
bz⇤l = 0. Then, the algorithm is unable to determine the group containing the best set during the phase
Exp(0)

l�1, so there must exist x0 2 X (�zx⇤ )
l such that

✓
x
⇤

zx⇤

◆>
 
b�(zx⇤ )
l�1

b!(zx⇤ )
l�1

!

✓

x
0

�zx⇤

◆>
 
b�(�zx⇤ )
l�1

b!(�zx⇤ )
l�1

!
+ 2zx⇤b!(0)

l�1 + 4✏l�1.

It follows that
✓
x
⇤ � x

0

2zx⇤

◆>✓
�
⇤

!⇤

◆

✓

x
⇤

zx⇤

◆>
 
�
⇤ � b�(zx⇤ )

l�1

!⇤ � b!(zx⇤ )
l�1

!
+

✓
x
0

�zx⇤

◆>
 
b�(�zx⇤ )
l�1 � �

⇤

b!(�zx⇤ )
l�1 � !⇤

!
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On F , this implies that ✓
x
⇤ � x

0
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�
⇤
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◆
< 2zx⇤b!(0)
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⇤
⌘
+ 6✏l�1 < 8✏l�1 = 16✏l. (56)

Moreover, for all x 2 X (�zx⇤ )
l+1 we have (ax0 � ax)>b✓(�zx⇤ )

l  3✏l, so following the same lines as
for the first claim, we get (x0 � x)>�⇤

< 5✏l. Combining this bound with (56), we get
max

x2X (�zx⇤ )

l+1

(x⇤ � x)>�⇤
< 21✏l.

This concludes the proof of Lemma 13.

C.7.10 Proof of Lemma 14

For z 2 {�1,+1} and l > 0,
X

x

µ
(z)
l (x) 

X
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which proves the first claim of Lemma 14.

To prove the second claim, we bound the regret for bias estimation at stage l as follows. On F , we
have �x  b�l

x for all x 2 X and l � 1, so
X

x2X
µ
(0)
l (x)�x 

X

x2X
µ
(0)
l (x)b�l

x.

Recall that µ̂l is the b�l-optimal design, and that for all x 2 X , µ(0)
l (x) = d 2µ̂l(x)
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⌘
e.

Since b�l
x  2 for all x 2 X , we have
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By definition of µ̂l(x), we have that
X
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bµl(x)b�l

x = (b�l).

It follows that, on F ,
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◆
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C.7.11 Proof of Lemma 15

For the first claim, we rely on the next lemma.

Lemma 21. Let us set `x = max
n
l � 1 : x 2 X (�1)

l [ X (1)
l

o
. On F , we have for any l � 1

1. b�l
x  �x + 16✏l for all x 2 X (�1)

l [ X (1)
l (i.e. for all x such that l  `x);

2. if �x � 21✏l then `x  l;

3. ✏`x < �x for all x 2 X .

Lemma 15 relies on the following remarks : if �,�0 are such that �x  �0
x for all x 2 X , then by

Lemma 8 (ii)), (�)  (�0). Let us now prove that for all l � 1 and all x 2 X , b�l
x  513(�_ ✏l).

Case ✏l � �x. On F , we have l  `x � 1 according to the third claim of Lemma 21. So, on F ,
b�l
x  �x + 16✏l  17(�x _ ✏l).

Case ✏l < �x. Then, on F , we have 32✏l+5 < �x and so l + 5 � `x according to the second claim
of Lemma 21. Hence, on F , according to Lemma 21, we have

b�l
x  max

k=0,...,5
b�`x�k
x  �x + 16✏`x�5

 �x + 512✏`x  513�x.

Thus, for all l � 1 and all x 2 X ,
b�l
x  513(� _ ✏l).

Now, let fM =
n
µ 2MX

ed+1
: e>d+1V (µ)+ed+1 � 1

o
the measures µ admissible for estimating !

⇤

with a precision level 1. Note that for all a, b, c > 0,
(1 + ab

�1)(c _ b) = (c+ cab
�1) _ (a+ b) � c _ (a+ b) � c _ a. (57)

Using Equation (57) with a = �x, b = ⌧ and c = ✏, we see that

(� _ ✏) = min
µ2 fM

X

x

µ(x)(�x _ ✏)  (1 + ✏/⌧) min
µ2 fM

X

x

µ(x)(�x _ ⌧) = (1 + ✏/⌧)(� _ ⌧).

Using Lemma 8 together with b�l
x  513(� _ ✏l), we find that

(b�l
x)  513(� _ ✏l)  513(1 + ✏l/⌧)(� _ ⌧).

This proves the first claim of Lemma 15.

To prove the second claim, we use Lemma 8 and the fact that for all x, b�l
x � ✏l. Moreover, on F ,

b�l
x � �x for all x 2 X . Then, (b�) � (✏l _�) by Lemma 8 (iii)).

C.7.12 Proof of Lemmas 16

To prove Lemma 16, let us consider l such that ✏l  � 6=
8 . According to Lemma 20, on F we know

that bz⇤l 6= �zx⇤ . When bz⇤l = zx⇤ , then we also have bz⇤l+1 = zx⇤ and the conclusion follows
immediately. Let us consider now the case where bz⇤l = 0. By definition of � 6=, for all x0 2 X (�zx⇤ )

l+1 ,

(x⇤ � x
0)
>
�
⇤ � � 6=.

This implies that
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✓
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On F , it follows that
✓

x
⇤

zx⇤

◆>
 
b�(zx⇤ )
l

b!(zx⇤ )
l

!
� zx⇤b!(0)
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✓
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b�(�zx⇤ )
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b!(�zx⇤ )
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!
+ zx⇤b!(0)

l � 6✏l +� 6=.

When � 6= � 8✏l, this implies that dz⇤l+1 = zx⇤ .

C.7.13 Proof of Lemmas 10 and 17

We prove Lemma 10. The proof of Lemma 17 follows by noticing that the two actions sets are equal
up to a permutation of the direction of some basis vectors. To prove Lemma 17, we rely on Elfving’s
characterization of c-optimal design, given in Theorem 5. Theorem 5 shows that for ⇡ 2 P{1,..,d+1}

to be ed+1-optimal, there must exist t > 0 and ⇣ 2 {�1,+1}d+1 such that

X

1id+1

⇡i = 1

0 = ⇡1⇣1 � (1� 2
p
⇤ + 1

)⇡d+1⇣d+1

8i 2 {2, ..., d}, 0 = ⇡i⇣i

t =
X

1ibd/2c

⇡i⇣i �
X

bd/2c+1id+1

⇡i⇣i.

Solving this system, we find that t�2 = ⇤. Note that the unicity of the solution for the corresponding
probability measure ⇡ guarantees that ted+1 belongs to the boundary of S .

C.7.14 Proof of Lemma 11

For a given parameter �⇤, let us denote by �i the gap corresponding to the action i. To compute (�),
we could want to rely on Lemma 9 to find the �-optimal design, corresponding to the ed+1-optimal
design on the rescaled features ��1/2

x

⇣
x
zx

⌘
. Theorem 5 indeed allows us to compute such a design,

as seen in the proof of Lemma 10. Unfortunately, we cannot rescale the features using the true gaps,
since �x⇤ = 0. To circumvent this problem, we rely on the following reasoning :

1. We use Lemma 9 and Theorem 5 to compute the design µ
�_✏ for ✏ 2 (0,�min); and the

corresponding regret (� _ ✏);
2. We find the value of (�) by noticing that ✏ 7! (� _ ✏) is continuous at 0.

For ✏ 2 (0,�min), define � = � _ ✏, and x = �
�1/2
x x. Let ⇡ denote the ed+1-optimal design for

the rescaled features x, and let ⇤ denote its variance. Then, Lemma 9 ensures that (�) = ⇤.

Now, Theorem 5 shows that there exists ⇣ 2 {�1,+1}d+1 such that
X

1id+1

⇡i = 1

0 = ⇡1⇣1�
�1/2
1 � (1� 2
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i

and ⇤
�1/2

ed+1 belongs to the boundary of S . Solving this system, we find that

(�)�1/2 = ⇤
�1/2 =

⇣
2p
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⌘
�

�1/2
d+1

1 +
⇣
1� 2p
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d+1 �

1/2
1

.

49



As in Lemma 10, the unicity of the solution for the corresponding probability measure ⇡ guarantees
that ⇤

�1/2
ed+1 belongs to the boundary of the Elfving’s set. Now, ✏  �min, so

(�)�1/2 = (� _ ✏)�1/2 =

⇣
2p

⇤+1

⌘
��1/2
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⇣
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⌘
��1/2

d+1 ✏1/2
.

The fourth claim of Lemma 8 ensures that (� _ ✏) !
✏!0

(�). Therefore,

(�) = lim
✏!0

0

@

⇣
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⌘
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1
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�2

=
(
p
⇤ + 1)2�d+1

4
.

C.7.15 Proof of Lemma 18

Recall that ⇠t = yt � x
>
t �

⇤ � zxt!
⇤. For l � 0 and z 2 {�1,+1}, when Explore(z)l = True, the

least square estimator
✓
b�(z)

l

b!(z)

l

◆
is given by
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✓
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,

where
⇣
V

(z)
l

⌘+
is a generalized inverse of V (z)

l . Since V
(z)
l

⇣
V

(z)
l

⌘+
V

(z)
l = V

(z)
l , multiplying the

left and right hand side of the last equation by V
(z)
l , we find that

V
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By Lemma 4, for all x 2 X (z)
l ,

⇣
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⌘
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⌘
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where the first and third lines follow from Equation (59), and the second line follows from Equation
(58). By definition of our algorithm, conditionally on X (z)

l and Explore(z)l = True, the variables
(⇠t)t2Exp(z)l

are independent centered normal gaussian variables. Then,
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Expanding
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using the definition of V (z)
l , we find that
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which in turn implies (using Equation (59))
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Now, using Lemma 4 and the definition of µz
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Finally, for all x 2 X (z)
l ,
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Integrating out the conditioning on the value of X (z)
l and Explore(z)l and using a union bound yields

the desire result.

C.7.16 Proof of Lemma 19

The proof is similar to that of Lemma 18. If Explore(0)l = True, then b!l is defined as
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Since
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spans Rd+1, µ is finite and ed+1 2 Range (V (µ̂l)). Then, according to Lemma 3,
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By definition of our algorithm, conditionally on Explore(0)l = True, the variables (⇠t)t2Exp(0)l
are

independent centered normal gaussian variables. Then,
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Using again V
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⌘+
ed+1 = ed+1 and the definition of V (0)

l , we find that
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Now, Lemma 3 and the definition of µ(0)
l imply that

e
>
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⇣
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Finally, Equation (60) implies that
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Using a union bound over the phases Exp(0)
l yields the result.

C.7.17 Proof of Lemma 20

To prove Lemma 20, we begin by showing that it is enough to prove that for l � 1,
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o
,

thus proving Lemma 20. To prove Equation (61), we show that both F (1)
l and

T
l0l F

(1)
l0
T
F (2)

l
imply Fl.

If F (1)
l is true: then 9x⇤ 2 argmaxx2X : Explore(zx⇤ )

l = True and x
⇤
/2 X (zx⇤ )

l+1 .

Without loss of generality, assume that l > 1 is the smallest integer such that Explore(zx⇤ )
l = True

and x
⇤
/2 X (zx⇤ )

l+1 . Then, necessarily x
⇤ 2 X (zx⇤ )

l (because either l = 1, or Explore(zx⇤ )
l�1 = True).

Now, because x
⇤ 2 X (zx⇤ )

l \ X (zx⇤ )
l+1 , there exists x 2 X (zx⇤ )

l such that

(x� x
⇤)>b�(zx⇤ )

l � 3✏l

and in particular
x
>b�(zx⇤ )

l � ✏l > (x⇤)>b�(zx⇤ )
l + ✏l.

Recall that by definition of x⇤, (�⇤)>(x⇤ � x) � 0. This in turn implies that
✓

x

zx⇤

◆>
 
b�(zx⇤ )
l � �

⇤

b!(zx⇤ )
l � !⇤

!
� ✏l >

✓
x
⇤

zx⇤

◆>
 
b�(zx⇤ )
l � �

⇤

b!(zx⇤ )
l � !⇤

!
+ ✏l.
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The last equation implies that either
⇣

x
zx

⌘>✓ �(z)
l ��⇤

b!(z)

l �!⇤

◆
> ✏l or

⇣
x⇤

zx⇤

⌘>✓ �(z)
l ��⇤

b!(z)

l �!⇤

◆
< �✏l, which

in turn implies Fl.

If
T

l0l F
(1)
l0
T
F (2)

l is true: then Explore(0)l = True and 8x⇤ 2 argmaxx2X x
>
�
⇤
, dz⇤l+1 = �zx⇤ .

Moreover, for all l0  l, Explore(zx⇤ )
l0 = False or x⇤ 2 X (zx⇤ )

l0+1 .
Note that this case can only hold if all optimal actions x⇤ belong to the same group zx⇤ . Without loss
of generality, assume that l > 1 is the smallest integer such that Explore(0)l = True and dz⇤l+1 = �zx⇤ ,
and for all l0  l, Explore(zx⇤ )

l0 = False or x⇤ 2 X (zx⇤ )
l0+1 . Note that because Explore(0)l = True,

necessarily Explore(zx⇤ )
l0 = True for all l0  l, and in particular x⇤ 2 X (zx⇤ )

l+1 .

Then, there exists x 2 X (�zx⇤ )
l+1 such that

✓
x

�zx⇤

◆>
 
b�(�zx⇤ )
l

b!(�zx⇤ )
l

!
�
✓

x
⇤

zx⇤

◆>
 
b�(zx⇤ )
l

b!(zx⇤ )
l

!
+ 2zx⇤b!(0)

l � 4✏l.

Recall that all optimal actions x⇤ are in the same group zx⇤ , so (�⇤)>(x⇤ � x) > 0. This in turn
implies that

✓
x

�zx⇤

◆>
 
b�(�zx⇤ )
l � �

⇤

b!(�zx⇤ )
l � !⇤

!
�
✓

x
⇤

zx⇤

◆>
 
b�(zx⇤ )
l � �

⇤

b!(zx⇤ )
l � !⇤

!
+ 2zx⇤(b!(0)

l � !
⇤) � 4✏l.

The last equation implies that either
⇣

x
�zx⇤

⌘>✓ b�(�zx⇤ )

l ��⇤

b!(�zx⇤ )

l �!⇤

◆
� ✏l, or

⇣
x⇤

zx⇤

⌘>✓ b�(zx⇤ )

l ��⇤

b!(zx⇤ )

l �!⇤

◆


�✏l, or zx⇤(b!(0)
l � !

⇤) � ✏l, which in turn implies Fl.

C.7.18 Proof of Lemma 21

The first claim holds for l = 1. For l � 1, for any x 2 X (�1)
l+1 [ X (1)

l+1, we have b�l+1
x  �x + 8✏l on

F according to the definition of b�l+1 and F . The first claim then follows.

For the second claim, Lemma 13 gives that, on F , �x < 21✏l for any x 2 X (�1)
l+1 [ X (1)

l+1. So
�x � 21✏l implies x /2 X (�1)

l+1 [ X (1)
l+1 and hence l � `x on F .

For the third claim, we notice that

max
x02X (zx)

`x

(ax0 � ax)
>b✓(zx)`x

> 3✏`x ,

since x /2 X`x+1. Since the left-hand side is smaller than �x + 2✏`x on F , we get �x > ✏`x .

D Extension to M groups

Model We extend the biased linear bandit to Z groups, denoted Z = {1, ..., Z}. The evaluations
are given by

yt = x
>
t � + Z

>
xt
! + ⇠t,

where Zx is the zx-th vector of the canonical basis in RZ , and ! = {!1, ...,!Z} 2 RZ is the vector
of biases. Note that for the model to be identifiable, we must assume it does not contain an intercept.
For x 2 X , we denote ax =

⇣
x
Zx

⌘
. To ensure identifiability of the model, we further assume that the

set A = {ax : x 2 X} spans Rd+Z .

Estimation of the biased evaluations Adapting the G-EXP-ELIM routine to the multiple group
framework is rather straightforward. Note that this routine can be used as is to eliminate within-group
sub-optimal actions. The actions of each group span a sub-space of dimension d+1, so the G-optimal
measure is still supported by O(d2) points. Moreover, the variance corresponding to this G-optimal
design is still d+ 1.
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Estimation of the bias By contrast, the bias elimination routine must be modified in order to handle
Z groups. At each phase l, we denote by Zl the set of groups that have not been eliminated yet. If
more than one group remain in Zl, we compute the difference !1 � !z for all group z remaining in
Zl with precision ✏l/2 using a modified �-EXP-ELIM routine, which we call �-MULT-EXP-ELIM,
described in 5. This routine samples action according to the distribution µz , where for any groups
z 6= 1, we defined µz as the solution of the problem

minimize
µ2M

ed+1�ed+z
X

X

x

µ(x)�x such that (ed+1 � ed+z)
>
V (µ)+ (ed+1 � ed+z)  1.(62)

We also define ez(�) as the corresponding regret :

ez(�) =
X

x

µz(x)�x.

Note that the support of the distribution µz is at most of size d+ Z. This two-by-two comparison
allows us to compute, for each z, z

0 2 Zl, the difference of bias !z � !z0 = !1 � !z0 � (!1 � !z)
with precision level ✏l. Then, we can use these bias estimates to eliminate groups that are sub-optimal
by a gap larger than 4✏l. Again, we rely on estimates of the biases and of the biased evaluations
obtained during the previous round to update the estimate of the gap vector b�l+1.

Algorithm 5 �-MULT-EXP-ELIM (X ,Z, (X (z)
, b✓(z))z2Z , b�, n, ✏)

1: for z 2 Z , z 6= 1 do
2: Compute b�-optimal design µ̂z solution of (62) on X , with | supp(µ̂z)|  d+ Z

3: Sample dnµ̂z(x)e times each action ax for x 2 X
4: Compute b!1 � b!z = (ed+1 � ed+z)>b✓, where b✓ is the ordinary least square estimator
5: for z 2 Z and x 2 X (z) do bmx  a

>
x
b✓(z) + (b!1 � b!z)

6: for z 2 Z and x 2 X (z) do b�x  2 ^
⇣
maxz02Z,x02X (z0) bmx0 � bmx + 4✏

⌘

7: for z 2 Z do
8: if max

z02Z
max

x2X (z0)
a
>
x
b✓(z0) + (b!1 � b!z0) � max

x2X (z)
a
>
x
b✓(z) + (b!1 � b!z) + 4✏ then Z  Z \ {z}

9: return Z and b�

Stopping criterion We denote by eZl(b�l) =
P

z2Zl,z 6=1
ez(b�l) the regret for estimating the biases

at phase l. If ✏l 
⇣
eZl(b�l) log(T )/T

⌘1/3
, bias estimation becomes too costly, so we sample the

empirical best action for the remaining time. The FAIR PHASED ELIMINATION FOR MULTIPLE
GROUPS algorithm is presented in 6.

D.1 Worst case regret

Before analyzing the worst case regret of Algorithm 6, we introduce a new quantity, e⇤, defined as

e⇤ =
X

z2Z,z 6=1

min
⇡2PX

ed+1�ed+z

(ed+1 � ed+z)
> (V (⇡))+ (ed+1 � ed+z) .

Note that for all z 2 Z , z 6= 1, and l � 1, we have eZl(b�l)  2e⇤.
Claim 1. For the choice � = T

�1, there exists an absolute constant C > 0 and a constant Te⇤,k,Z,d,k

depending on e⇤, k, Z, d, and k such that the following bound on the regret of the FAIR PHASED
ELIMINATION FOR MULTIPLE GROUPS algorithm 6 holds

RT  CZ (e⇤ log(T ))
1/3

T
2/3 for T � Te⇤,k,Z,d,k

.

Sketch of Proof. We sketch here a proof of Claim 1, highlighting the main differences with the
two-groups setting. We begin by introducing some notations.
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Algorithm 6 FAIR PHASED ELIMINATION FOR MULTIPLE GROUPS

1: input: �, T , X , k = |X |, ✏l = 22�l for l � 1
2: initialize: b�1  (2, ..., 2), l 0, Z1 = Z
3: for z 2 Z1 do X (z)

1  {x : zx = z}
4: while the budget is not spent do l l + 1
5: for z 2 Zl do
6:

⇣
b✓(z),X (z)

l+1

⌘
 G-EXP-ELIM

⇣
X (z)

l ,
2(d+1)

✏2l
log
⇣

kl(l+1)
�

⌘
, ✏l

⌘

7: if |Zl| > 1 then
8: Compute eZl(b�l) =

P
z2Zl,z 6=1

ez(b�l).

9: if ✏l 
⇣
eZl(b�l) log(T )/T

⌘1/3
then . Stop bias estimation

10: Sample best action in [z2ZlX
(z)
l+1 for the remaining time

11: else
12:

⇣
Zl+1,

b�l+1
⌘
 �-MULT-EXP-ELIM

✓
X ,Zl,

⇣
X (z)

l+1,
b✓(z)l

⌘

z2Zl

, b�l
,

8
✏2l

log
⇣

Zl(l+1)
�

⌘
, ✏l

◆

Notations We denote by LT the largest integer l such that ✏l �
⇣
2e1/3

⇤ log(T )/T
⌘1/3

. For z 2 Z ,

we denote by L
� the last phase where b�l-optimal Exploration and Elimination is performed. We

denote by Exp-G(z)
l the time indices where G-exploration is performed on X (z)

l and by Exp-D(z)
l the

time indices where �-exploration is performed at phase l for estimating the difference !1 � !z . We
also denote by Recovery the time indices subsequent to the stopping criterion, this set being empty
when the stopping criterion is not activated.

We define a "good" event F such that for all z, z0 2 Z and all x 2 X (z)
1 , the errors

���a>x
⇣
✓
⇤ � b✓(z)l

⌘���
and |(!⇤

z � !
⇤
z0)� ((b!l)z � (b!l)z0)| are smaller than ✏l for all l such that these quantities are defined.

In the following, we use c, c
0 to denote positive absolute constants, which may vary from line to line.

With these notations, we decompose the regret as follows :

RT  2TP (F) + E|F

"
X

lLT

X

z2Zl

X

t2Exp-G(z)
l

(x⇤ � xt)
>
�
⇤

| {z }
R

G
T

#
+ E|F

"
X

lL�

X

z2Zl,z 6=1

X

t2Exp-D(z)
l

(x⇤ � xt)
>
�
⇤

| {z }
R

�
T

#

+E|F

"
X

l�LT+1

X

z2Zl

X

t2Exp-G(z)
l

(x⇤ � xt)
>
�
⇤ +

X

t2Recovery

(x⇤ � xt)
>
�
⇤

| {z }
R

Rec
T

#
.

Bound on TP (F). Using arguments based on concentration of Gaussian variables, we can show that
P (F)  2T�1.

Bound on R
G
T . The analysis is similar to the two-groups setting. We can show that on F , only

actions with gaps smaller than c✏l remain in the sets X (z)
l for z 2 Zl. The length of each G-optimal

Exploration and Elimination phase for one group is of the order (d+ 1) log(klT )/✏2l , so the regret
corresponding to phase l is of the order Z(d+ 1) log(klT )/✏l. Summing over the different phases,
we find that

R
G
T  c(d+ 1)Z log(kLTT )/✏LT . (63)

Using the definition of LT , we find that RG
T  c(d+ 1)Z log(kLTT )e�1/3

⇤ log(T )�1/3
T

1/3.
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Bound on RRec
T . On the one hand, the actions selected during the Phases Exp-G(z)

l for l � LT + 1
are sub-optimal by a gap at most c✏LT on the event F . On the other hand, if the algorithm enters the
Recovery phase at a phase l, then

✏l  eZL� (b�L�

)1/3T�1/3 log(T )1/3  2e1/3
⇤ T

�1/3 log(T )1/3,

so we must have l = L
� + 1 � LT + 1. Therefore, all actions selected during the Recovery phase

are sub-optimal by a gap at most c✏LT . Then, RRec
T can be bounded as RRec

T  c✏LT T . This implies
in particular that RRec

T  c
0e1/3

⇤ log(T )1/3T 2/3.

Bound on R
�
T . To bound R

�
T , we introduce further notations. Let us denote by l1, ..., lR the phases

at which at least one group is eliminated, by S1i the sets of groups remaining at the beginning of
phase li, and by SR+1 the set of groups that are never eliminated. We also write lR+1 = L

�. We
abuse notations and denote Exp-D(S)

l = [z2S Exp-D(z)
l . Then, we see that

R
�
T 

X

iR+1

X

lli

X

t2Exp-D(Si)
l

(x⇤ � xt)
>
�
⇤
.

The rest of the proof is similar to that in the two-communities setting. We show that on F , b�l � �
for all l � 1. Then, our choice of design bµzl,z at phase l ensures that for i  R+ 1, on F ,

X

t2Exp-D(Si)
l

(x⇤ � xt)
>
�
⇤  c

X

z2Si

✓
log(Zl(l + 1)T )

✏2l

ez(b�l) + d+ 1

◆

for some constant c > 0. Using arguments similar to the two-groups setting, we can sum over the
different phases l  li, and find that

X

lli

X

t2Exp-D(Si)
l

(x⇤ � xt)
>
�
⇤  ceSi(b�li) log(ZliT )/✏

2
li . (64)

By definition of Si we have that eZli
(b�li) = eSi(b�li). Now, the algorithm does not enter the

Recovery phase before phase li + 1, so we must have
✏
�2
li
 T

2/3 log(T )�2/3eZli
(b�li)�2/3. This implies that

X

lli

X

t2Exp-D(Si)
l

(x⇤ � xt)
>
�
⇤  ceZli

(b�li)1/3
⇣
log(T )1/3 + log(Z)

⌘
T

2/3
.

We use that eZli
(b�li)  e⇤ and sum over i  R+ 1 < Z, and we find that

R
�
T  CZe1/3

⇤ log(T )1/3T 2/3 for T large enough.

When T � Te⇤,k,Z,d,k
for some Te⇤,k,Z,d,k

large enough, we find that RT 
c
0
Ze1/3

⇤ log(T )1/3T 2/3.

D.2 Gap-dependent regret

Before stating the bound on the gap-dependent regret, we introduce further notations. For z 2 Z , we
denote � 6=,z = min

x:zx=z
�x, � 6= = min

x:z 6=z⇤
� 6=,z , �min = minx2X\x⇤ �x, and "T = (e⇤ log(T )/T)1/3.

Then, we claim that the following gap-dependent regret bound on the regret of Algorithm 5 holds.
Claim 2. Assume that x⇤ 2 argmaxx2X x

>
�
⇤ is unique. Then, there exists an absolute constant

C > 0 and a constant Te⇤,k,Z,d,k,� 6=,�min
depending on e⇤, k, Z, d, k,�min, and (� 6=,z)z 6=z⇤ such

that the following bound on the regret of the FAIR PHASED ELIMINATION FOR MULTIPLE GROUPS
algorithm 6 holds for T � Te⇤,k,Z,d,k,� 6=,�min

RT  C

0

@ d

�min
_

X

z 6=z⇤,z 6=1

z

�
� _� 6=,z _ "T

�

(� 6=,z)2
+

z⇤
�
� _� 6= _ "T

�

(� 6=)2

1

A log(T ).
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Sketch of Proof. We sketch here a proof of Claim 2. We begin by introducing some notations.
Notations We define a "good" event F such that for all z, z0 2 Z and all x 2 X (z)

1 , the errors���a>x
⇣
✓
⇤ � b✓(z)l

⌘��� and |(!⇤
z � !

⇤
z0) � ((b!l)z � (b!l)z0)| are smaller than ✏l for all l such that these

quantities are defined. For each group z 2 Z , we denote by Exp-G(z)
l the time indices where

G-exploration is performed on X (z)
l . For z 2 Z , z 6= 1, we denote by Exp-D(z)

l the time indices
where �-exploration is performed at phase l to estimate the difference !1 � !z , and by L

(z) the
last phase l such that z 2 Zl and bias exploration is performed at this phase. We denote by L

�

the last phase l where bias estimation is performed. Moreover, we denote by S the sets of groups
eliminated before the stopping criterion is activated, and write S = Z \ S. We abuse notations and
denote Exp-D(S)

l = [z2S Exp-D(z)
l . We also denote by Recovery the time indices subsequent to the

stopping criterion, this set being empty when the stopping criterion is not activated. In the following,
we use c, c

0 to denote positive absolute constants, which may vary from line to line.

Fact 1 Let l�min be the largest integer such that ✏l�min
� C�min for some well-chosen absolute

constant C > 0. Similarly to the two-groups setting, we can show that on the good event F , no more
than l�min G-optimal Exploration and Elimination phases are needed to find the best action. For all
phases l � l�min , the algorithm always chooses x⇤, and suffers no regret.

Fact 2 Similarly to the two-groups setting, we can show that on the good event F , for each phase
l, b�l  c (� _ ✏l) for some constant c. Moreover, for all l  L

�, all groups z 6= 1, and all ⌧ > 0,
ez(b�l)  cez(� _ ✏l)  c(1 + ✏l⌧

�1)ez(� _ ⌧).

Fact 3 For z 2 Z \ {z⇤}, let l� 6=,z be the largest integer such that ✏l� 6=,z
� C� 6=,z for some well-

chosen absolute constant C > 0. On the good event F , if b�l-optimal Exploration and Elimination is
performed at phase l � l� 6=,z , and z 2 Zl, then the algorithm eliminates z at this phase. This implies
that L(z)  l� 6=,z , and that L�  l� 6= .

Fact 4 We denote by LT the largest integer l such that ✏l � (2e⇤ log(T )/T )
1/3. Since 2e⇤ � e(b�l)

for all l � 1 and all z 2 Z , we see that if the algorithm enters the Recovery phase, we must have
LT  L

�, and ✏L�  ✏LT ⇡ "T .

Using Fact 1, we find that the regret can be written as

RT  2TP (F) + E|F

"
X

ll�min

X

z2Zl

X

t2Exp-G(z)
l

(x⇤ � xt)
>
�
⇤

| {z }
R

G
T

#
+ E|F

"
X

z2S

X

lL(z)

X

t2Exp-D(z)
l

(x⇤ � xt)
>
�
⇤

| {z }
R

�,S
T

#

+E|F

"
X

lL�

X

t2Exp-D(S)
l

(x⇤ � xt)
>
�
⇤

| {z }
R

�,S
T

#
+ E|F

"
X

t2Recovery

(x⇤ � xt)
>
�
⇤

| {z }
R

Rec
T

#
.

Bound on RG
T . We rely on arguments similar to those used in Equation (63) to show that

R
G
T  c(d+ 1) log(kl�minT )✏

�1
l�min

. Since ✏l�min
� C�min, this implies that

R
G
T 

c(d+ 1) log(kl�minT )

�min
 c

0
d log(T )

�min

if T � k.

Bound on R�,S
T . Using arguments similar to the two-groups settings, we can show that for all z 6= 1

X

lL(z)

X

t2Exp-D(z)
l

(x⇤ � xt)
>
�
⇤  cez(b�L(z)

) log(lL(z)T )✏�2
L(z) . (65)
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Using Fact 2 with ⌧ = � 6=,z together with Fact 3, we find that

R
�,S
T  c

X

z2S
ez(� _� 6=,z) log(L

(z)
T )(� 6=,z)

�2
.

Bound on R�,S
T +RRec

T . If the algorithm does not enter the Recovery phase, then R
Rec
T = 0 and

S = {z⇤}. Then, the algorithms finds the best group, and the last bias exploration phase is performed
at phase maxz 6=z⇤ L

(z)  maxz 6=z⇤ l� 6=,z = l� 6= . Then, Equation (65) implies that

R
�,S
T  cez⇤(� _� 6=) log(L

(z)
T )(� 6=)

�2
.

If the algorithms enters the Recovery phase, we can use again the same arguments to show that
R

�,S
T  c

P

z2S

ez(b�L�

) log(lL(z)T )✏�2
L(z) . Using Fact 2 and Equation (65), we find that for ⌧ = ✏L� ,

R
�,S
T  c

X

z2S

ez(� _ ✏L�) log(lL�T )✏�2
L� = c

eS(� _ ✏L�) log(lL�T )

✏2L�

.

Since all actions selected during the Recovery phase belong to [z2SX
(z)
l , on F these actions are

sub-optimal by a gap at most c✏L�+1, so R
Rec
T  cT ✏L�+1. Now, since the algorithm enters the

Recovery phase, we must have ✏L�+1  (eS(�
L�+1) log(T )/T )1/3, which implies that

R
Rec
T  ceS(

b�L�+1) log(T )

✏2L�+1

.

Together with Fact 2, this implies that

R
�,S
T +R

Rec
T  ceS(� _ ✏L�) log(T )

✏2L�

.

On the one hand, Fact 3 guarantees that, since we entered the Recovery phase before eliminating any
group in S, we must have L

�  minz2S\{z⇤} l� 6=,z , so ✏L� � cmaxz2S � 6=,z . On the other hand,
Fact 4 ensures that ✏L�  "T . Thus,

R
�
T +R

Rec
T 

X

s2S\{z⇤}

cez(� _ "T ) log(T )

(� 6=,z)2
+

cez⇤(� _ "T ) log(T )

(� 6=)2
.

Conclusion Combining these results, we find that

RT  c

0

@ d

�min
_

X

z 6=z⇤,z 6=1

ez(� _� 6=,z) _ ez(� _ "T )

(� 6=,z)2
+
ez⇤(� _� 6=) _ ez⇤(� _ "T )

(� 6=)2

1

A log(T )

when T � k. Using Lemma 8, we get that ez(� _� 6=) _ ez(� _ "T )  ez(� _� 6= _ "T ), which
concludes the proof of the results.
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