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Appendix: The Symmetric Generalized
Eigenvalue Problem as a Nash Equilibrium
A PRELIMINARIES: GENERALIZED EIGENVALUE PROBLEM

The following known properties of the SGEP are useful for our analysis and broadening the scope
of SGEP applications.
Lemma 3 (B-orthogonality). v

>

i Bvj = v
>

j Bvi = 0 for any distinct pair of generalized eigenvec-
tors of Av = �Bv where A is symmetric and B is symmetric positive definite.

Proof. Consider the eigenvalue problem B
�

1
2AB

�
1
2w = �w. Let v be a generalized eigenvector

of the generalized eigenvalue problem Av = �
0
Bv. Then the former eigenvalue problem is solved

by w = B
1
2 v. By inspection, B�

1
2AB

�
1
2w = B

�
1
2AB

�
1
2B

1
2 v = B

�
1
2Av = �

0
B

�
1
2Bv =

�
0
B

1
2 v = �

0
w. Direct computation of the Rayleigh quotients for both problems reveals � = �

0.
Note that B is positive definite, i.e., full-rank, establishing a bijection between v and w: v = B

�
1
2w.

Also, note that B�
1
2AB

�
1
2 is symmetric because A and B are symmetric, therefore, w may be

chosen such that W>
W = I which implies w

>

i wj = �ij = v
>

i B
1
2B

1
2 vj = v

>

i Bvj , i.e., the
generalized eignvectors are B-orthogonal.

Proposition 2 (Similar Matrices). Given symmetric matrices A and B � 0, consider the gen-
eralized eigenvalue problem Av = �

0
Bv with �

0 and v its corresponding generalized eigenval-
ues and eigenvectors. Then the eigenvectors and eigenvalues of the related eigenvalue problem
B

�
1
2AB

�
1
2w = �w are w = B

1
2 v and � = �

0.

Proof. The relationship between the eigenvectors of the two problems is proven in Lemma 3. The
relationship between the eigenvalues can be proven by inspection after calculating the Rayleigh
quotients for both problems:

�
0 =

v
>
Av

v>Bv
(8)

� =
w

>
B

�
1
2AB

�
1
2w

w>w
(9)

=
v
>
B

1
2B

�
1
2AB

�
1
2B

1
2 v

v>Bv
(10)

=
v
>
Av

v>Bv
(11)

= �
0
. (12)

A.1 COMPUTING SUBSPACE ERROR FOR SGEP

Lemma 3 states that the generalized eigenvectors are B-orthogonal rather than orthogonal under
the standard Euclidean basis. Therefore, we cannot compute subspace error in the same way as is
typically done for e.g., singular value decomposition. However, we can exploit Lemma 2 to compute
subspace error for the related eigenvalue problem B

�
1
2AB

�
1
2w = �w which does have orthogonal

eigenvectors due to its symmetry.

Formally, let v be a solution to the SGEP, Av = �
0
Bv. Then by Lemma 2, w = B

1/2
v is a solution

to B
�1/2

AB
�1/2

w = �w, with eigenvalue � = �
0. Leveraging this equivalence, we can measure

subspace error of the SGEP solution by first mapping it to the normalized case and computing
subspace error there where W contains the top-k eigenvectors of B�1/2

AB
�1/2. Also let Ŵ =

B
1/2

V̂ where V̂ contains our top-k approximations. Given the top-k ground truth eigenvectors W
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and approximations W , normalized subspace error can then be computed as 1� 1
k tr(U

⇤
P ) 2 [0, 1]

where U
⇤ = WW

† and P = ŴŴ
† (Gemp et al., 2021; Tang, 2019).

A.2 COURANT-FISCHER MIN-MAX PRINCIPLE

The Courant-Fischer Min-Max principle states that the ith largest generalized eigenvalue is given by
the minimum possible Rayleigh quotient within the i-dimensional subspace S that captures maximal
trace (Avron, 2008; Parlett, 1998):

vi = argmin
vi2S

max
dim(S)=i

v
>

i Avi

v
>

i Bvi
. (13)

Note this defines each eigenvalue of the SGEP as the value (at Nash equilibrium) of a min-max
(two-player, zero-sum) game rather than the entire set of top-k eigenvectors/eigenvalues as the Nash
equilibrium / utility-at-Nash of a k-player, general-sum game.

B �-EIGENGAME IS WELL-POSED

First, we prove �-EigenGame suitably captures the top-k SGEP.

Lemma 1 (Well-posed Utilities). Given exact parents and assuming the top-k eigenvalues of B�1
A

are distinct and positive, the maximizer of player i’s utility is the unique generalized eigenvector vi
(up to sign, i.e., �vi is also valid).

Proof. Approach: We will represent each v̂i as a linear combination of the true eigenvectors, vp for
p 2 {1, d}. We will then show that maximizing the utility for each player with exact parents is
equivalent to solving a linear program. This resulting problem has a unique solution, which is the
true eigenvector vi.

Assume the parents have been learned exactly and let v̂i =
P

p wpvp with ||v̂i|| = 1 and where
wp are the weights of the linear combination. Expand and simplify the following expressions that
appear in the utility definition with the knowledge that the generalized eigenvectors are guaranteed
to be B-orthogonal, i.e., v>i Bvj = 0 for all i 6= j (see Lemma 3 in appendix):

hv̂i, Bv̂ii = (
X

p

wpvp)
>
B(

X

l

wlvl) =
X

p

X

l

wpwlv
>

p Bvl =
X

p

w
2
phvp, Bvpi (14)

hv̂i, Av̂ii = (
X

p

wpvp)
>
A(

X

l

wlvl) =
X

p

X

l

�lwpwlv
>

p Bvl =
X

p

�pw
2
phvp, Bvpi (15)

hv̂i, Bvji = (
X

p

wpvp)
>
Bvj = wjhvj , Bvji (16)

hv̂i, Avji = (
X

p

wpvp)
>
Avj = �jwjhvj , Bvji. (17)
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Plugging these in to the utility function, we find

ui(v̂i|vj<i) =
hv̂i, Av̂ii

hv̂i, Bv̂ii
�

X

j<i

hvj , Avjihv̂i, Bvji
2

hvj , Bvji
2hv̂i, Bv̂ii

(18)

=
hv̂i, Av̂ii

hv̂i, Bv̂ii
�

X

j<i

�jhv̂i, Bvji
2

hvj , Bvjihv̂i, Bv̂ii
hvj , Avji ! hvj ,�jBvji (19)

=
hv̂i, Av̂ii

hv̂i, Bv̂ii
�

X

j<i

hv̂i, Avjihv̂i, Bvji

hvj , Bvjihv̂i, Bv̂ii
hv̂i,�jBvji ! hv̂i, Avji (20)

=
1P

p w
2
phvp, Bvpi

hX

l

�lw
2
l hvl, Bvli �

X

j<i

(�jwjhvj , Bvji)(wj⇠⇠⇠⇠⇠
hvj , Bvji)

⇠⇠⇠⇠⇠
hvj , Bvji

i
(21)

=
X

l

�lzl �

X

j<i

�jzj =
X

j�i

�jzj . (22)

where

zj =
w

2
j hvj , BvjiP

p w
2
phvp, Bvpi

=
w

2
j b

2
jP

p w
2
pb

2
p

=
q
2
jP
p q

2
p

(23)

and z 2 �d�1.

This is a linear optimization problem over the simplex. Given that the eigenvalues are distinct and
positive, we have that the unique solution is z = ei, the onehot vector with a 1 at index i.

In order to prove uniqueness of w (up to sign), we apply Lemma 4, which proves a bijection (up to
sign) between z and w, completing the proof.

Lemma 4. Let z 2 �d�1 such that zj =
w2

j hvj ,BvjiP
p w2

phvp,Bvpi
where w parameterizes the approximation

v̂i =
P

p wpvp 2 S
d�1. There exists a unique bijection (up to sign of wj) between zj and wj , i.e.,

wj = ±g(z)j .

Proof. Let bj = hvj , Bvji and qj = wjbj so that wj = qj/bj . Then v̂i =
P

p
qp
bp
vp. Also,

q
2
j = czj where c =

P
p q

2
p so that q2j is uniquely defined up to a scalar multiple, i.e., its direction

is immediately unique by this formula but not its magnitude. Recall hvi, Bvji = 0 for all i 6= j

which implies V
>
BV is diagonal. Therefore, the constraint ||v̂i|| = ||w||

2
V >V = 1 translates to

||
q
b ||

2
V >V = q

>(V >
BV )�1/2(V >

V )(V >
BV )�1/2

q = q
>
D

�1
q = 1. In other words, whereas an

approximate eigenvector for the standard eigenvalue problem can be modeled as choosing a vector
on the unit-sphere, an approximate eigenvector for the generalized eigenvalue problem is modeled
as choosing a vector on an ellipsoid (D is positive definite because V

>
V is symmetric positive

definite assuming distinct eigenvalues, and we are given B is symmetric positive definite). This
result uniquely defines a magnitude for q, therefore, combining it with the previous result uniquely
defines w2

j from q
2
j completing the bijection. The only degree of freedom that remains is the sign of

wj which is expected as both vi and �vi are valid eigenvectors.

Although player i’s utility ui appears abstruse, it actually has a simple explanation and structure.
Proposition 1 (Utility Shape). Each player’s utility is periodic in the angular deviation (✓) along
the sphere. Its shape is sinusoidal, but with its angular axis (✓) smoothly deformed as a function of
B. Most importantly, every local maximum is a global maximum (see Figure 1 for an example).

Proof. Lemma 1 proves each utility function can be represented as a linear function over a simplex
z 2 �d�1. Lemma 4 then proves this simplex can be parameterized by a variable q constrained to an
ellipsoid with curvature D = diag(. . . , hvi, Bvii, . . .). This matches the analysis of EigenGame
exactly, except that D = I in that previous work. The implication is that each utility function as
defined in equation (48) is also a cosine, but with its angular axis deformed according to D.
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As an example consider setting

A =

"
0.77759061 0.26842584

0.26842584 0.87788983

#
B =

"
0.2325605 0.06042127

0.06042127 0.03241424

#
(24)

and observe the utilities in Figure 1.

Our proposed utilities tie nicely back to previous work (Gemp et al. (2022), Appx. J.2) via their
gradients and our derived update directions.
Lemma 5 (�-EigenGame Gradient). The gradient of player i’s utility with respect to v̂i is

2⇥
h (v̂>i Bv̂i)Av̂i � (v̂>i Av̂i)Bv̂i

hv̂i, Bv̂ii
2

�

X

j<i

�̂j

hv̂j , Bv̂ji
(v̂>i Bv̂j)

⇥
hv̂i, Bv̂iiBv̂j � hv̂i, Bv̂jiBv̂i

⇤

hv̂i, Bv̂ii
2

i
.

(25)

Proof. Recall player i’s utility function:

ui(v̂i|v̂j<i) = �̂i|{z}
reward

�

X

j<i

�̂jhŷi, Bŷji
2

| {z }
penalty

where ŷi =
v̂i

||v̂i||B
, (26)

�̂i =
hv̂i,Av̂ii
hv̂i,Bv̂ii

, and ||z||B =
p
hz,Bzi.

We will address the gradient of each term in the chain rule in sequence. First consider �̂i:

rv̂i �̂i = rv̂i

n
hv̂i, Av̂ii

hv̂i, Bv̂ii

o
= rv̂i

n
hv̂i, Av̂iihv̂i, Bv̂ii

�1
o

(27)

=
2(v̂>i Bv̂i)Av̂i � 2(v̂>i Av̂i)Bv̂i

hv̂i, Bv̂ii
2

. (28)

The next term that depends on v̂i is hŷi, Bŷji
2 through ŷi:

rv̂ihŷi, Bŷji
2 = rv̂i

n
hv̂i, Bŷji

2
hv̂i, Bv̂ii

�1
o

(29)

= 2hv̂i, BŷjiBŷjhv̂i, Bv̂ii
�1
� hv̂i, Bŷji

2
hv̂i, Bv̂ii

�2(2Bv̂i) (30)

=
2hv̂i, Bŷji

�
hv̂i, Bv̂iiBŷj � hv̂i, BŷjiBv̂i

�

hv̂i, Bv̂ii
2

(31)

=
2hv̂i, Bv̂ji

�
hv̂i, Bv̂iiBv̂j � hv̂i, Bv̂jiBv̂i

�

hv̂i, Bv̂jihv̂i, Bv̂ii
2

(32)

where we have replaced all ŷj terms with v̂j
hv̂j ,Bv̂ji1/2

terms and consolidated the denominators.

Combining these intermediate results, we find

rv̂iui = 2
h (v̂>i Bv̂i)Av̂i � (v̂>i Av̂i)Bv̂i

hv̂i, Bv̂ii
2

�

X

j<i

�̂j

hv̂j , Bv̂ji
(v̂>i Bv̂j)

⇥
hv̂i, Bv̂iiBv̂j � hv̂i, Bv̂jiBv̂i

⇤

hv̂i, Bv̂ii
2

i
.

(33)

Proposition 3 (Equivalence to EigenGame Unloaded). The generalized EigenGame pseudogradient
in equation (12) is equivalent to the Riemannian gradient in (Gemp et al., 2021) when B = I .

Proof. In order to compute the Riemannian update direction, we project player i’s direction onto the
tangent space of the unit-sphere by left-multiplying with (I � v̂iv̂

>

i ). Starting with equation (12),
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we find

r̃i =

rewardz }| {
(v̂>i Bv̂i)Av̂i � (v̂>i Av̂i)Bv̂i�

X

j<i

penaltyz }| {
(v̂>i Aŷj)

⇥
hv̂i, Bv̂iiBŷj � hv̂i, BŷjiBv̂i

⇤
(34)

= Av̂i � (v̂>i Av̂i)v̂i �
X

j<i

(v̂>i Av̂j)
⇥
v̂j � hv̂i, v̂jiv̂i

⇤
(35)

= (I � v̂iv̂
>

i )[Av̂i �

X

j<i

(v̂>i Av̂j)v̂j ] = (I � v̂iv̂
>

i )r̃
µ�EG
i . (36)

Proposition 4 (�-EigenGame Utilities as Deflated Rayleigh Quotients). The generalized
EigenGame utilities defined in equation (48) can also be derived from the perspective of maximizing
the Rayleigh quotients of a deflated matrix assuming exact parents.

Proof. Deflating a matrix means to modify the matrix such that the spectrum corresponding to a
certain subspace of the matrix is zero. For example, in the case of the SGEP, the matrix A can be
deflated to produce a matrix Ã = (I �B

vjv
>
j

||vj ||2B
)A such that any vector in the span of eigenvector vj

achieves zero eigenvalue:

Ã(wjvj) = wj(I �B
vjv

>

j

||vj ||
2
B

)Avj (37)

= wjAvj � wjBvj

v
>

j Avj

||vj ||
2
B

(38)

= wj�jBvj � wj�jBvj

v
>

j Bvj

||vj ||
2
B

apply rule Avj = �jBvj (39)

= wj�jBvj(1�
v
>

j Bvj

||vj ||
2
B

) (40)

= 0 (41)

where ||vj ||
2
B = v

>

j Bvj and wj is an arbitrary scalar.

This is useful because it allows us to construct a top-k solver by induction: repeatedly deflate a
matrix to ignore the top-(j < i) eigenvectors and then deploy a top-1 solver on the deflated matrix
to find the ith eigenvector. To that end, we can construct the following deflation matrix:

Ãi = (I �
X

j<i

B
vjv

>

j

||vj ||
2
B

)A. (42)

Note that this definition assumes the parents eigenvectors are exact. If they are approximate, this
may not act as a deflation in the precise sense. For example, consider defining Ã with approximate
v̂j instead of exact vj . Now let v̂j = v1 for all j. If one repeats the analysis above for a vector
in the span of v1, they would find that equation (40) becomes w1�1Bv1(1 � (i � 1) v

>
1 Bv1
||v1||2B

) =

w1�1Bv1(2 � i), i.e., it results in an eigenvalue of (2 � i)�1. This is why the effect of this matrix
is more accurately described via penalties. We will clarif this connection next.
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With the above preliminaries taken care of, we will now show how to derive our utilities via a
deflation perspective. Initially, we will assume exact parents, v̂j<i = vj<i.

ui(v̂i|vj<i) =
hv̂i, Ãiv̂ii

hv̂i, Bv̂ii
(43)

=
hv̂i, (I �

P
j<i B

vjv
>
j

||vj ||2B
)Av̂ii

hv̂i, Bv̂ii
(44)

=
hv̂i, Av̂ii

hv̂i, Bv̂ii
�

X

j<i

hv̂i, Bvjv
>

j Av̂ii

||vj ||
2
Bhv̂i, Bv̂ii

expand sum (45)

=
hv̂i, Av̂ii

hv̂i, Bv̂ii
�

X

j<i

hv̂i, Bvjihv̂i, Avji

hvj , Bvjihv̂i, Bv̂ii
split & transpose inner product (46)

=
hv̂i, Av̂ii

hv̂i, Bv̂ii
�

X

j<i

�jhv̂i, Bvji
2

hvj , Bvjihv̂i, Bv̂ii
apply rule Avj = �jBvj (47)

= �̂i|{z}
reward

�

X

j<i

�jhŷi, Byji
2

| {z }
penalty

where ŷi =
v̂i

||v̂i||B
, (48)

�̂i =
hv̂i,Av̂ii
hv̂i,Bv̂ii

, and ||z||B =
p
hz,Bzi.

If we then relax our assumption and allow vj to be approximate (vj ! v̂j) we recover our utilities
in equation (48).

C SMOOTH AND UNBIASED

In order to prove asymptotic convergence of �-EigenGame in the deterministic setting, we establish
the following lemmas.

Lemma 6. The update r̃i in equation (7) is smooth.

Proof. The reward terms are polynomial in v̂i and therefore smooth (analytic). The numerators
of the penalty terms are also polynomial in v̂i and v̂j , however, the denominator includes a scalar
hv̂j , Bv̂ji. Given B � 0, this term is guaranteed to be greater than the minimum eigenvalue of B
(which is positive), thereby ensuring the penalty terms are non-singular. So these terms are also
smooth.

Instead of proving the following lemmas directly for Algorithm 1 (the deterministic variant), we
prove them for Algorithm 2, which subsumes Algorithm 1 (⇢ = 0, �t = 1, b = n, M = 1).

The following two lemmas are proven in the single proof below. Note Lemma 7 is essentially a
restatement of Lemma 2 from the main body.
Lemma 7. The unique stable fixed point (up to sign of v̂j) of Algorithm 2 run with exact expectations
(e.g., n0 = n where n is the full dataset size) is v̂j = vj for all j 2 {1, . . . , k}, i.e., the top-k
generalized eigenvectors.
Lemma 8. Algorithm 2’s updates are asymptotically unbiased.

Proof. The proof is constructed sequentially by proving each update process has a unique stable
fixed point conditioned on the previous updates’ fixed points defined by the hierarchy imposed on
the players. We explain how we are able to address constructing unbiased estimates of each update
as well, thereby supporting a stochastic, asymptotic convergence proof.

The proof begins by considering the updates of the first player on v̂1. Player 1 is unique in that it
pays no penalties for aligning with other players. Its update consists of the reward terms only, which
comprises an unbiased estimate assuming independent, unbiased estimates for A and B (i.e., these
are constructed with independent minibatches). Player 1’s update simply performs Riemannian
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gradient ascent on its utility function. Proposition 1 proves that every maximum of this function is
a global maximum (in addition, it contains no saddle points). Therefore, the only stable fixed point
for v̂1 is v1.

Next, we consider player 1’s update to [Bv̂]1. Given we just showed v̂1’s stable fixed point is v1,
and this update is simply a running average, its unique stable fixed point is Bv1.

We now consider player 2’s update, which includes penalty terms. Plugging [Bv̂]1’s unique stable
fixed point into these penalty terms, and again assuming independent, unbiased estimates for A and
B, allows us to construct an unbiased estimate of the penalty terms. Similarly to player 1’s analysis,
player 2’s update performs Riemannian gradient ascent on a utility function with a unique stable
fixed point, v̂2 = v2.

The proof then proceeds repeating the same arguments, alternating between proving the unique
stable fixed point of each [Bv̂]j = Bvj and v̂j = vj .

D ERROR PROPAGATION

An error propagation analysis is necessary to rule out the scenario where an arbitrary (unbounded)
level of precision is required by the parents to ensure any progress towards the true solution can
be made by the children. In other words, we show that as the parents near their true solutions, the
children may near theirs as well.

As before in Appx. C, we will perform this analysis for the stochastic version of the algorithm
(Algorithm 2), but note that this subsumes the analysis for the deterministic version (where [Bv̂]j is
replaced by the exact Bvj with zero error).

Player 1’s update of v̂1 is unbiased without any assumptions on the state of any of the other player
vectors v̂j>1 or auxiliary variables [Bv̂]j�1. We would like to understand how transient error in v̂1

propagates through to these other variables. The updates of player 1’s children depend on [Bv̂]1,
so we analyze the effect on it first. Note that the error propagation analysis naturally repeats as we
progress down the hierarchy of players, so we analyze how error in v̂i propagates through to [Bv̂]i
and then onto v̂j>i. Interestingly, step 2 of the following proof suggests the error in the v̂i must fall
below 1

 before any increase in accuracy of the parents helps to improve accuracy in the children.
This result mirrors that of (Gemp et al., 2021) (see their Appendix F).

Theorem 3. An O(✏) angular error in the parent propagates to an O(✏
1
2 ) upper bound on the

angular error of the child’s solution.

Proof. The proof proceeds in three steps:

1. O(✏) angular error of parent vi =) O(✏) Euclidean error of parent vi

2. O(✏) Euclidean error of parent vi =) O(✏) Euclidean error of norm of child vj>i’s
gradient

3. O(✏) Euclidean error of norm child vj>i’s gradient + instability of minima at vk 6=j =)
O(✏) angular error of child vj>i’s solution assuming B = I .

4. O(✏) angular error of child vj>i’s solution assuming B = I =) O(✏
1
2 ) angular error of

child vj>i’s solution for a general B � 0.

1. As in µ-EigenGame, an angular error of ✏ in the parent translates to ✏ Euclidean error. The proof
is exactly the same as in (Gemp et al., 2021), repeated here for convenience. Angular error in the
parent can be converted to Euclidean error by considering the chord length between the mis-specified
parent and the true parent direction. The two vectors plus the chord form an isoceles triangle with
the relation that chord length l = 2 sin(2✏) is O(✏) for ✏⌧ 1.

2. Next, write the mis-specified parents as v̂i = vi + wi where ||wi|| is O(✏i) as we just explained.

Now consider the fixed point of the auxiliary variable’s update: [Bv]i = B(vi +wi) = Bvi +Bwi.
Hence any mis-specification in the parent v̂i appears as a mis-specification of the auxiliary variable’s
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fixed point by Bwi, which is O(�max✏) where �max is the maximum eigenvalue (spectral radius)
of B. Assume the auxiliary variable is mis-specified by an additional error (qi where ||qi|| is O(✏0i))
representing failure to precisely reach the perturbed fixed point B(vi + wi), i.e., [Bv̂]i = B(vi +
wi) + qi.

The auxiliary variable impacts the update of v̂j>i through ŷi and similarly [Bŷ]i:

ŷi =
v̂ip

bhv̂i, [Bv̂]iic⇢
(49)

=
vi + wip

bhv̂i, Bvii+ hv̂i, Bwii+ hv̂i, qiic⇢
(50)

=
vi + wip

bhvi, Bvii+ 2hvi, Bwii+ hwi, Bwii+ hvi, qii+ hwi, qiic⇢

(51)

= cyi +
wip

bhvi, Bvii+ 2hvi, Bwii+ hwi, Bwii+ hvi, qii+ hwi, qiic⇢

(52)

= cyi + ei (53)

In order to bound this term, we make a few mild assumptions.

• Assume ⇢ is less than �min as stated earlier and, in particular, less than the lower bound.

• Assume ✏
0

i is O(✏i) to ease the exposition.

• Also, w.l.o.g., assume �max > 1; if not, we can simply scale the problem such that it is
true.

Let  = �max
�min

be the condition number of B, and note that the error term in the denominator is
bounded by the spectrum of B:

bhv̂i, [Bv̂]iic⇢  hvi, Bvii+ 2�max✏i + �max✏
2
i + ✏

0

i + ✏i✏
0

i (54)
1�maxhvi,Bviiz}|{

 hvi, Bvii(1 + 2✏i + ✏
2
i + ✏

0

i + ✏i✏
0

i) (55)
✏0 is O(✏)
z}|{
 hvi, Bvii(1 + 3✏i + 2✏2i ) (56)

and vice versa for the lower bound, which implies

(57)

bhv̂i, [Bv̂]iic⇢ 2 hvi, [Bv]ii
h�
1� 3✏i � 2✏2i

�
,
�
1 + 3✏i + 2✏2i

�i
. (58)

Then

c 2

h 1p
1 + 3✏i + 2✏2i

,
1p

1� 3✏i � 2✏2i

i
. (59)

Note that if ✏i ⌧ 1
 , then c is O(1). Note this condition also implies ei is O(✏0i). We will use these

facts later.

Now we are prepared to consider the norm of the difference, dj , between the Riemannian4 update
to v̂j with exact parents and auxiliary variables versus the actual inexact Riemannian update. Let
�R

j be defined as in line 12 of Algorithm 2. Define �̄R
j to be the same except with ŷl and [Bŷ]l

terms replaced by their true solution counterparts yl and [By]l. Note that �R
j and �̂R

j already live in
the tangent space of the unit-sphere at v̂j . Then the norm of the difference between the two update

4The Riemannian update projects the vanilla update onto the tangent space of the sphere.
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directions is upper bounded as

||dj || = ||�R
j � �̄R

j || (60)

 ||

X

l<i

h
(v̂>j Aŷl)

⇥
hv̂j , Bv̂ji[Bŷ]l � hv̂j , [Bŷ]liBv̂j

⇤
� . . .

i
|| (61)



X

l<i

||

h
(v̂>j Aŷl)

⇥
hv̂j , Bv̂ji[Bŷ]l � hv̂j , [Bŷ]liBv̂j

⇤
� . . .

i
||. (62)

Recall qi is the error associated with suboptimality of [Bv̂]i and propoagates to [Bŷ]i as defined on
line 9 of Algorithm 2. Let

pi =
qip

bhvi, Bvii+ 2hvi, Bwii+ hwi, Bwii+ hvi, qii+ hwi, qiic⇢

. (63)

By similar arguments used to bound ei, ||pi|| is O(✏0i) if ✏i ⌧ 1
 .

Bounding the summand in equation (62), we find

||(v̂>j Aŷl)
⇥
hv̂j , Bv̂ji[Bŷ]l � hv̂j , [Bŷ]liBv̂j

⇤
� (v̂>j Ayl)

⇥
hv̂j , Bv̂ji[By]l � hv̂j , [By]liBv̂j

⇤
||

(64)

= ||(cv̂>j Ayl + v̂
>

j Ael)
⇥
hv̂j , Bv̂ji(cByl +Bel + pl)� hv̂j , (cByl +Bel + pl)iBv̂j

⇤
� . . . ||

(65)

= ||(c2 � 1)(v̂>j Ayl)
⇥
hv̂j , Bv̂jiByl � hv̂j , ByliBv̂j

⇤
+O(✏)||. (66)

Recall equation (59) and note that

c
2
� 1 2 {

�3✏i � 2✏2i
1 + 3✏i + 2✏2i

,
3✏i + 2✏2i

1� 3✏i � 2✏2i
} (67)

which has norm |c
2
� 1| = O(✏i). Therefore, taking into account the impact of the other A and B

terms, ||dj || is upper bounded by O(i�(A)�2
max✏i) where �(A) is the spectral radius of A.

O(𝝐)

||𝜇∇i
e|| > 
𝝐 

𝛼∇i
e = 𝜇∇i

e

𝜇∇i

(a) (b)

Figure 5: (a) Close in Euclidean distance can imply close in angular distance if the vectors are long
enough (reprinted with permission from (Gemp et al., 2021)). (b) The stable region may consist of
an O(

3
4 ✏

1
2 ) ball around the true optimum as ✏! 0.

3. We can reuse the analysis of (Gemp et al., 2021) to understand how a change in the norm of the
vector field relates to a change in the location of the fixed point. This is because the Riemmanian
update direction of our proposed method with exact parents and B = I is equivalent to the Rieman-
nian update direction in (Gemp et al., 2021) (simply left-multiply their equation (4) by (I � v̂iv̂

>

i )
to compute their Riemannian update). Therefore, as in this prior work, an error in the gradient norm
translates to the same order of error in angular distance to the true fixed point (inflated by a finite
scaling dependent on the spectrum of B—accounted for in Step 4 next).
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Also, the region around any generalized eigenvector vl 6=j is unstable and this is because the Riem-
manian Hessian at that point is positive (this implies instability because we are maximimizing). We
can reason that the Riemmanian Hessian is positive by appealing to the fact that the Riemmanian
Hessian of our generalized EVP utilities is related to the Hessian of prior work by a warping defined
by the positive definite matrix B (for a visual, see Figure 1; for math, see Lemmas 1 and 4).

In contrast to this prior work, the generalized eigenvectors are more generally, B-orthogonal (see
Lemma 3). By Lemma 9, the angular distance between generalized eigenvectors is finite and de-
pends on the condition number of B. Therefore, there exists a small enough ✏ such that an ✏-ball
around any unstable region and an ✏-ball around the stable region no longer overlap.

4. Lastly, Lemma 10 proves that an ✏i < 1 angular error assuming B = I can be increased to at most


3
4 ✏

1
2
i if B is relaxed to be any symmetric positive definite matrix with condition number .

Lemma 9. The angle between a pair of orthonormal vectors when instead measured under a general
positive definite matrix C is lower bounded by 1

8 (1 + )�
5
4 where  is the condition number of C,

i.e., if hvi, vji = 0, then |✓| = arccos
⇣

|hC
1
2 vi,C

1
2 vji|

||C
1
2 vi||||C

1
2 vj ||

⌘
>

1
8 (1 + )�

5
4 radians.

Proof. The angle between two vectors is a function of their relation to each other in the two-
dimensional plane defined by their pair. Therefore, without loss of generality, consider two vectors
u =

h
1 0

i
and v =

h
0 1

i
and consider the effect of an arbitrary positive definite matrix Ĉ on

their angle. For ease of exposition, denote ⌧ = 
1
2 the condition number of C 1

2 .

Let Ĉ 1
2 =

"
a c

c b

#
be the unique positive definite square root of Ĉ where a and b are positive and

the determinant ab� c
2
> � > 0. We aim to show that the magnitude of the angle between u and v

under the generalized inner product h·, ·iC is lower bounded by a finite, positive quantity dependent
on the properties of C.

Consider

Ĉ
1
2u =

"
a

c

#
, Ĉ

1
2 v =

"
c

b

#
, (68)

||Ĉ
1
2u|| =

p
a2 + c2, ||Ĉ

1
2 v|| =

p
c2 + b2, (69)

hĈ
1
2u, Ĉ

1
2 vi = c(a+ b). (70)

Then

hĈ
1
2u, Ĉ

1
2 vi

||C
1
2u||||C

1
2 v||

=
c(a+ b)p

(a2 + c2)(c2 + b2)
(71)

ratio is inc. in c for ab > c2z}|{
<

p
ab� �(a+ b)p

(a2 + ab� �)(ab+ b2 � �)
(72)

div. num. & den. by 1
a2z}|{

=

q
b
a �

�
a2 (1 +

b
a )q

(1 + b
a �

�
a2 )(

b
a + ( ba )

2 �
�
a2 )

(73)

ratio is inc. in b
az}|{



p
⌧ �

�
a2 (1 + ⌧)

p
(1 + ⌧ �

�
a2 )(⌧ + ⌧2 �

�
a2 )

(74)

ratio is inc. in ⌧ �
�

a2z}|{
<

p
⌧ �

�
tr2 (1 + ⌧)

p
(1 + ⌧ �

�
tr2 )(⌧ + ⌧2 �

�
tr2 )

. (75)
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Note that b
a is a lower bound on the condition number of Ĉ; b

a is equal to the condition number of
Ĉ

1
2 when c = 0 (assuming b > a, otherwise, b

a <
a
b clearly), and the condition number can only

increase as c deviates from 0. Lastly, note that the condition number of Ĉ 1
2 is upper bounded by ⌧ ,

the condition number of C 1
2 . Recall, by replacing b

a with a larger number ⌧ and �
a2 with a strictly

smaller number �
tr2 , b

a �
�
a2 implies that ⌧ >

�
tr2 .

Now consider
⇣
hC

1
2u,C

1
2 vi

||C
1
2u||||C

1
2 v||

⌘2
<

(⌧ � �
tr2 )(1 + ⌧)2

(1 + ⌧ �
�
tr2 )(⌧ + ⌧2 �

�
tr2 )

(76)

=
(⌧ � �

tr2 )(1 + ⌧)2

(⌧ � �
tr2 )(1 + ⌧)2 + ( �

tr2 )
2

(77)

= 1�
( �
tr2 )

2

(⌧ � �
tr2 )(1 + ⌧)2 + ( �

tr2 )
2

(78)

 1�
( �
tr2 )

2

(⌧)(1 + ⌧)2 + (1 + ⌧)2
(79)

= 1�
( �
tr2 )

2

(1 + ⌧)3
. (80)

We can also simplify the fraction �
tr2 . � is a lower bound on the determinant, which is equal to the

product of eigenvalues of Ĉ 1
2 . This is lower bounded by �

2
min for any two-dimensional subspace,

therefore, �2
min < �. Furthermore, the trace of the matrix is equal to the sum of its eigenvalues. This

is upper bounded by 2�max for any two-dimensional subspace, therefore �
tr2 >

�2
min

4�2
max

= 1
4⌧2 >

1
4(⌧+1)2 .

Note that |✓| � | sin(✓)|. Therefore,

|✓| � | sin(✓)| =
p
1� cos2(✓) (81)

>

s
( �
tr2 )

2

(1 + ⌧)3
(82)

>
1

2

p
(1 + ⌧)�5 (83)

=
1

2
(1 + ⌧)�

5
2 . (84)

Clearly this bound is loose as it implies ✓ is only greater than 2�
7
2 for C = I (⌧ = 1) whereas we

know in that case that ✓ = ⇡
2 . However, this bound serves its purpose of establishing a finite impact

of C on the orthogonality of the original two vectors, i.e., if u and v are orthogonal, their angle as
measured under a generalized inner product by C � 0 cannot be 0.

Replacing ⌧ with 
1
2 , we can further simplify the bound to

|✓| >
1

2
(1 + ⌧)�

5
2 (85)

�
1

8
(1 + )�

5
4 . (86)

Lemma 10. The angle between a pair of nearly parallel vectors (|✓| is O(✏) with ✏ ⌧ 1) when
instead measured under a general positive definite matrix C is upper bounded by O(

3
4 ✏

1
2 ).

Proof. Let C 1
2 =

"
a c

c b

#
be the unique positive definite square root of C where a and b are

positive and the determinant ab � c
2
> 0. Consider a vector u =

h
1 0

i
and another vector
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v =
h
p
1� ✏2 ✏

i
that is nearly parallel to u, i.e., ✏⌧ 1 (implies |✓| is O(✏)). We aim to show that

the angle between these two vectors under the generalized inner product h·, ·iC is upper bounded by
a constant multiple of ✏ given a small enough ✏.

Consider

C
1
2u =

"
a

c

#
, C

1
2 v =

"
a
p
1� ✏

2
+ c✏

c
p
1� ✏

2
+ b✏

#
, (87)

||C
1
2u|| =

p
a2 + c2 ||C

1
2 v|| =

p
a2(1� ✏2) + c2✏2 + b2✏2 + c2(1� ✏2) (88)

= a

p
1 + (c/a)2, =

p
a2 + c2 + ✏2(b2 � a2) (89)

= a

p
1 + (c/a)2 + ✏2((b/a)2 � 1), (90)

and

hC
1
2u,C

1
2 vi = a

2
p
1� ✏2 + ac✏+ c

2
p

1� ✏2bc✏ (91)

= (a2 + c
2)
p
1� ✏2 + (a+ b)c✏ (92)

= a
2(1 + (c/a)2)

p
1� ✏2 + a

2(1 + (b/a))(c/a)✏ (93)
|✏|<1
z}|{
� a(1 + (c/a)2)(1� ✏

2) + a
2(1 + (b/a))(c/a)✏. (94)

Then

hC
1
2u,C

1
2 vi

||C
1
2u||||C

1
2 v||
�

(1 + (c/a)2)(1� ✏
2) + (1 + (b/a))(c/a)✏

(1 + (c/a)2)
q

1 + ✏2
(b/a)2�1
(c/a)2+1

(95)

=
1q

1 + ✏2
(b/a)2�1
(c/a)2+1

+
(1 + (b/a))(c/a)✏� (1 + (c/a)2)✏2

(1 + (c/a)2)
q
1 + ✏2

(b/a)2�1
(c/a)2+1

(96)

b/a
z}|{
�

1
p
1 + ✏22

+
(1 + (b/a))(c/a)✏� (1 + (c/a)2)✏2

(1 + (c/a)2)
q
1 + ✏2

(b/a)2�1
(c/a)2+1

(97)

= 1� (1�
1p

1 + ✏22)
) +

(1 + (b/a))(c/a)✏� (1 + (c/a)2)✏2

(1 + (c/a)2)
q
1 + ✏2

(b/a)2�1
(c/a)2+1

(98)

c��
p
abz}|{

� 1� (1�
1p

1 + ✏22)
)�

(1 + (b/a))
p

(b/a)|✏|� (1 + (c/a)2)✏2

(1 + (c/a)2)
q

1 + ✏2
(b/a)2�1
(c/a)2+1

(99)

= 1� (1�
1p

1 + ✏22)
)�

(1 + (b/a))
p
(b/a)|✏|

(1 + (c/a)2)
q
1 + ✏2

(b/a)2�1
(c/a)2+1

�
✏
2

q
1 + ✏2

(b/a)2�1
(c/a)2+1

(100)
b/a
z}|{
� 1� (1�

1
p
1 + ✏22

)�
(1 + )

p
|✏|

p
1� ✏2

�
✏
2

p
1� ✏2

(101)

1� 1p
1+z


z
2 ,✏

2< 1
2

z}|{
� 1�

✏
2

2

2
�

(1 + )
p
|✏|

p
1� ✏2

�
✏
2

p
1� ✏2

(102)

✏< 1
2z}|{
� 1� 2(1 + )

p
|✏|�

✏
2

2
(2
� 1)� 2✏2. (103)
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Note that cos(✓)  1� 1
8✓

2 for |✓|  ⇡. Then

|✓|  2
p
2
p
1� cos(✓)  2

p
2

r
2(1 + )

p
|✏|+ (

2

2
+ 2)✏2 (104)

 4

r
(1 + )

p
|✏|+ (

2

4
+ 1)✏2. (105)

Therefore, for ✏ < min( 1 ,
1
2 ), arccos(

|hC
1
2 u,C

1
2 vi|

||C
1
2 u||||C

1
2 v||

) is upper bounded by O(✏
1
2

3
4 ).

E ASYMPTOTIC CONVERGENCE

We carryout a proof of convergence of Algorithm 1 in the deterministic setting and a partial proof
of Algorithm 2 with further discussion.

E.1 ASYMPTOTIC CONVERGENCE OF DETERMINSTIC UPDATE

We now give the convergence proof of Algorithm 1 using the theoretical results established above.
Theorem 2 (Deterministic / Full-batch Global Convergence). Given a symmetric matrix A and
symmetric positive definite matrix B where the top-k eigengaps of B�1

A are positive along with
a square-summable, not summable step size sequence ⌘t (e.g., 1/t), Algorithm 1 converges to the
top-k eigenvectors asymptotically (limT!1) with probability 1.

Proof. Assume none of the v̂i are initialized to an angle exactly at the minimum of their utility. This
is a set of vectors with Lebesgue measure 0, therefore, the assumption holds w.p.1.

Denote the “update field” H(V̂ ) to match the work of (Shah, 2019). H(V̂ ) is simply the con-
catenation of all players’ Riemannian update rules, i.e., all players updating in parallel using their
Riemannian updates:

H(V̂ ) = [�1, . . . ,�k] : Rkd
! Rkd (106)

where �i is defined in equation (7) and V̂ represents the set of all v̂i.

A Riemannian gradient ascent step (with retractions) is then given by the following update step:

V̂ (t+ 1) V̂ (t) + ⌘tH(V̂ (t)) (107)
v̂i(t+ 1) v̂i(t+ 1)/||v̂i(t+ 1)|| 8i. (108)

By Lemma 7, v1 is the unique fixed point of v̂1’s update. And by Theorem 3, convergence of v1
to within O(✏) of its fixed point contributes to a mis-specification of children v̂j>1’s fixed point by
O(
p
✏). Critically, this mis-specification is shrinking in ✏ so that as v̂1 nears its fixed point, so may

its children. This chain of reasoning applies for all v̂i.

The result is then obtained by applying Theorem 7 of Shah (2019) with the following information:
A0) the unit-sphere is a compact manifold with an injectivity radius of ⇡ which implies the injectivity
radius of the manifold of the game (the product space of k unit-spheres) is also finite, A1) the update
field is smooth (analytic) by Lemma 6, A2) we assume a square-summable, not summable step size,
A3) we assume the full-batch (noiseless) setting so the update “noise” clearly constitutes a bounded
martingale difference sequence, and A4) the iterates remain bounded because they are constrained
to the unit-sphere.

Formally, for any T > 0,

lim
s!1

sup
t2[s,s+T ]

d(V̂ (t), V̂ s(t))! a.s., (109)

where d(·, ·) is the Riemannian distance on the (product space of) sphere and V̂
s(t) denotes the

continuous time trajectory of H(V̂ ) starting from V̂ (s).
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E.2 ASYMPTOTIC CONVERGENCE OF STOCHASTIC UPDATE

There are two primary issues with extending the asymptotic convergence guarantee in Theorem 2 to
Algorithm 2. The first is that the joint parameter space includes v̂i 2 S

d�1 and [Bv̂]i 2 Rd. The
unit-sphere, Sd�1, is a compact Riemmanian manifold. While Rd is a Riemannian manifold, it is
not compact. This violates assumptions A0 and A4 above. The second issue is that the vector field
H(V̂ ; [BV̂ ]) is not smooth due to the clipped denominator terms of yj (see line 8 of Algorithm 2).
We can easily fix this issue with a change of variables, defining hv̂i, Bv̂ii in log-space. This results
in Algorithm 3.

Specifically, define [hv,Bvi]j = e
log(⇢)+(log(⌫)�log(⇢))sigmoid(zj) where zj is a newly introduced

auxiliary variable. The relevant gradient with respect zj is rzj = �(hvj , Bvji � [hv,Bvi]j) ·
[hv,Bvi]j · (log ⌫ � log ⇢) · sigmoid(zj) · (1� sigmoid(zj)).

Regarding the still unresolved first issue, we could constraint [Bv̂]i to a ball with radius �max(B)
centered at the origin, which is a convex set. Note that while a ball in Rd is compact, it is not
a Riemannian manifold anymore. A few works have developed theory for the setting that mixes
convex and Riemannian optimization (Liu et al., 2017; Goyal & Shetty, 2019). Intuitively, we do
not expect issues arising in our setting from the mixture of feasible sets, however, progress towards
theoretic results takes time. We conjecture that Algorithm 3 is provably asymptotically convergent,
although Algorithm 2 defined with clipping is a bit more practical.

Algorithm 3 Smooth Stochastic �-EigenGame
1: Given: paired data streams Xt 2 Rb⇥dx and Yt 2 Rb⇥dy , number of parallel machines M per

player (minibatch size per machine b
0 = b

M ), step size sequence ⌘t, scalar ⇢ lower bounding
�min(B), scalar, ⌫ upper bounding �max(B), and number of iterations T .

2: v̂i ⇠ S
d�1, i.e., v̂i ⇠ N (0d, Id); v̂i  v̂i/||v̂i| for all i

3: [Bv̂]i 2 Rd
 v̂i for all i

4: z
0
i 2 R 0 for all i

5: for t = 1 : T do
6: parfor i = 1 : k do
7: parfor m = 1 : M do
8: Construct Atm and Btm

9: [hv,Bvi]j = e
log(⇢)+(log(⌫)�log(⇢))�(zj)

10: ŷj =
v̂jp

[hv,Bvi]j

11: [Bŷ]j =
[Bv̂]jp
[hv,Bvi]j

12: rewards (v̂>i Btmv̂i)Atmv̂i � (v̂>i Atmv̂i)Btmv̂i

13: penalties 
P

j<i(v̂
>

i Aŷj)
⇥
hv̂i, Btmv̂ii[Bŷ]j � hv̂i, [Bŷ]jiBtmv̂i

⇤

14: r̃im  rewards� penalties
15: r

Bv
im = (Btmv̂i � [Bv̂]i)

16: r
z
im = (hvi, [Bv]ii � [hv,Bvi]i) · [hv,Bvi]i · (log ⌫ � log ⇢) · �(zi) · (1� �(zi))

17: end parfor
18: r̃i  

1
M

P
m[r̃im]

19: v̂
0

i  v̂i + ⌘tr̃i

20: v̂i  
v̂0
i

||v̂0
i||

21: r
Bv
i  

1
M

P
m[rBv

im ]
22: [Bv̂]i  [Bv̂]i + �tr

Bv
i

23: r
z
i  

1
M

P
m[rz

im]
24: zi  zi + �tr

z
i

25: end parfor
26: end for
27: return all v̂i
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F ALTERNATIVE PARALLELIZED IMPLEMENTATION

As mentioned in Section 5, we plan to open source our implementation, specifically the implementa-
tion used to conduct the neural CCA experiments described in Section 5. The specific parallelization
we used was different than that implied by Algorithm 2. Instead, we parallelized the estimation of
the matrix-vector products Av̂i and Bv̂i for all i and then aggregated this information across ma-
chines. Figure 6 provides a diagram illustrating how data and algorithmic operations are distributed.

TPU1

TPU2

TPU3

gather vj to all 
devices to compute 

matrix-vector 
products

average all matrix 
products Av, Bv;
e.g., Av = Ei[Aiv].

Figure 6: Parallelization of �-EigenGame implementation for neural CCA experiments in Section 5.

G ADDITIONAL EXPERIMENTS

G.1 REGULARIZATION EFFECTS OF STOCHASTIC APPROXIMATION

In pursuit of understanding the regularization benefits of our stochastic approximation approach
with a fixed step size, we explore various ways of regularizing the matrices A and B prior to calling
scipy.linalg.eigh(A, B) to see if we can achieve a similar solution. Figure 7 explores
various parameter settings, but none adequately recover the original signals.

We parameterize our regularizations as follows. Let C = Et[xtx
>
t ]. Then

A = Et[hxt, xtixtx
>

t ]� tr(C + ✏)(C + ✏)� 2(C + ✏)2 B = C + ✏
0
. (110)

G.2 PARALLEL VS SEQUENTIAL LEARNING

The parallel approach provides a few advantages over the sequential approach. 1) Intuitively, the
parallel approach is similar to the sequential approach but with “warm starting”. Child eigenvectors
are allowed to learn while their parents are learning, which puts them in a good position to reach
their correct directions once their parents have learned. In contrast, a sequential approach would
randomly initialize the child once the parents have converged, leaving the child to traverse a longer
geodesic to reach its true destination. 2) How do you know when the parents are done learning? You
would need to measure convergence of the eigenvectors and this is difficult in the stochastic setting.
You could use a running mean of the Riemannian gradient norm or of the difference in successive
Rayleigh quotients, but this is approximate. This is an interesting challenge for future research.

In Figure 8, we assume we know the true eigenvalues and use this information to decide when to
deflate. In this experiment, the first two eigenvalues are approximated well enough, but this level
of accuracy is not high enough to allow learning the third eigenvector accurately. This supports
our argument where knowing when to stop learning and deflate is a difficult problem because the
accuracy of parents affects the learning of children in ways that depend on the spectrum (which is
unknown in any practical setting).
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Figure 7: Figure 2 repeated with additional regularized versions of scipy.linalg.eigh.

Figure 8: In contrast to the parallel learning approach we propose in Algorithm 2, here, we explore
a sequential, deflation-inspired approach where each eigenvector completes learning only once its
Rayleigh quotient (eigenvalue) is within 0.1 of the true value (we chose this value of 0.1 because
full batch EigenGame (Figure 2 (left)) reaches at least 0.1 accuracy for all 3 eigenvalues by the
end of training). Once this eigenvector has completed learning, the next eigenvector then begins
learning. This sequential approach fails to learn the third eigenvalue to within the 0.1 threshold in
both minibatch settings.
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H HYPERPARAMETERS AND EXPERIMENT DETAILS

H.1 ICA

Details of the unmixing experiment we run can be found on the scikit-learn website:
../auto examples/decomposition/plot ica blind source separation.html (Pedregosa et al., 2011). We
solve for top-3 SGEP formulation of ICA using n = 2000 samples taken from the time series data.
Minimal hyperparameter tuning was performed. Learning rates were searched over orders of mag-
nitude (e.g., 0.01, 0.1, 1.0, . . .).

H.1.1 COMPARISON

The parameters used for Algorithm 2 (�-EigenGame) in Figure 2 are listed in Table 1. Those for
overfitting �-EigenGame to the data are listed in Table 2.

Algorithm Parameters

batch size b
n
4

M 1

# of iterations (T) 103 · n
b

⌘t 10�2
·
b
n

�t 1 · b
n

Table 1: Algorithm 2 hyperparameters for �-EigenGame in Figure 2.

Algorithm Parameters

batch size b n

M 1

# of iterations (T) 105

⌘t 10�3

�t 1

Table 2: Algorithm 2 hyperparameters for �-EigenGame (overfit) in Figure 2.

H.1.2 UNBIASED

Each of the plots in Figure 3 uses a different minibatch size b; the hyperparameters used for Algo-
rithm 2 are listed in Table 3 as a function of b.

Algorithm Parameters

M 1

# of iterations (T) 103 · n
b

⌘t 10�2
·
b
n

�t 1 · b
n

Table 3: Algorithm 2 hyperparameters for Figure 3.
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H.2 CCA

Details of both CCA experiments can be found below.

H.2.1 COMPARISON

Hyperparameters for the algorithm proposed in (Meng et al., 2021) are the same as in their paper.
Their code is available on github at .../zihangm/riemannian-streaming-cca. We ran experiments
10 times to produce the means and standard deviation shading in Figure 2. We run PCA first on
the data to remove the subspaces in X and Y with zero variance. We then solve the top-4 SGEP
formulation of CCA. Hyperparameters were tuned manually, searching over orders of magnitude
(e.g., 0.01, 0.1, 1.0 and in some cases 0.05, 0.5, 5.0). We set ⇢ = 10�10.

Shared parameters

b 100

M 1

T
n
b

MNIST

⌘t 0.1

�t 1.0

Mediamill

⌘t 50

�t 5

CIFAR-10

⌘t 0.1

�t 0.1

Table 4: Algorithm 2 hyperparameters for Figure 2.

H.2.2 NEURAL NETWORK ANALYSIS

We trained two CNNs for the d > 103 and d > 105 CCA (top-1024 SGEP) experiments in Figure 4.
Details of both architectures are listed in Table 5.

We used the hyperparameters listed in Table 6 for running �-EigenGame.

Adam(b1 = 0.9, b2 = 0.999, ✏ = 10�8) was used for learning v̂i. We pair Adam with a learning
rate schedule that consists of separate warmup and harmonic decay phases. We have a warmup
period for the eigenvectors while the auxiliary variables and mean estimates are learned. During this
period, the learning rate increases linearly until it reaches the base learning rate after the period ends
(iteration tc). This is followed by a decaying learning rate (/ 1

t+�t ) which reaches the final learning
rate at iteration T .

For the purpose of generating the plots, we estimated Rayleigh quotients with a larger batch size
than that used to estimate the eigenvectors themselves; specifically, we used 2048 for evaluation vs
256 for training.

Both experiments were 100% input bound, meaning the bottleneck in speed was computing neu-
ral network activations and passing them in minibatches to our algorithm. Therefore, our current
runtimes are not indicative of the complexity of our proposed update rule. Alternatively, one could
precompute all activations and save them to disk, however, this is memory intensive and we chose
not to do this. For completeness, the d > 103 dimensional experiment ran at 4.7 ms per step on
average, and the 105 experiment at 30.2 ms per step.
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d = 2048 > 103 - Figure 4 (left)

Activations Harvested Last convolutional layer and dense layer

Conv Layer Output Channels [64, 32]

Conv Strides [2, 1]

Dense Layer Sizes [512]

Total Activations dx = dy = 1024

d = 116736 > 105 - Figure 4 (right)

Activations Harvested All convolutional layers and dense layer

Conv Layer Output Channels [128, 256, 512]

Conv Strides [1, 1, 1]

Dense Layer Sizes [1024]

Total Activations dx = dy = 58368

Table 5: CNN architecture parameters for CIFAR-10 Neural CCA experiment.

Algorithm Parameters

b 2048 (256 per device)

M 8 (2⇥ 2 TPU = 4 chips, 2 devices/chip)

T 107

⌘t tc = 105, ⌘0 = 10�4, ⌘T = 10�6

�t 10�3

✏ 10�4

⇢ 10�6

Table 6: Algorithm 2 (with parallelism modifications from Section F) hyperparameters for Figure 4.

We do not have a breakdown of the runtime that separates CIFAR-10 data loading from neural net-
work evaluation (computing activations) from EigenGame update from other processes. However,
we can share that overall, the d > 103 dimensional experiment ran at 4.7 ms per step on average,
and the 105 experiment at 30.2 ms per step.

I RUNTIME COMPLEXITY

Algorithm 2 states under line 1 ”Given” that it expects ”number of parallel machines M per player”.
There are k players, established in Section 2. This means Algorithm 2 expects p = kM proces-
sors. This can also be inferred by noticing the two parallel for-loops (parfor) on lines 5 and 6 of
Algorithm 2. The paragraph on ”Computational Complexity and Parallelization” then goes on to
consider the case where ”each player (model) parallelizes over M = b machines” where b is the
batch size. Again, referring back to Algorithm 2, it is written ”minibatch size per machine b0 = b

M ”,
therefore, b0 = 1. We can now consider the computational cost of each line of Algorithm 2, which
is dominated by the matrix-vector products on lines 8-11. Recall that Atm and Btm are both formed
as outer products, e.g., Btm = X

>
tmXtm in ICA with Xtm 2 Rb0⇥d. Given that we are considering

the case where b
0 = 1, Btm can be rewritten as xtmx

>
tm where xtm 2 Rd to make it clear that the

1⇥ d matrices are vectors. Therefore, all matrix-vector products (and inner products) on lines 8-11
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cost O(d). There is 1 on line 8, 1 on line 9, 4 on line 10 (rewards), and 4k on line 11 (penalties)
making for a total cost of O(dk).
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