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ABSTRACT

Recently, multi-objective optimization (MOO) problems have received increasing
attention due to their wide range of applications in various fields, such as machine
learning (ML), operations research, and many engineering applications. However,
MOO algorithm design remains in its infancy and many existing MOO methods
suffer from unsatisfactory convergence performance. To address this challenge, in
this paper, we propose an algorithm called STIMULUS (stochastic path-integrated
multi-graident recursive estimator), a new and robust approach for solving MOO
problems. Different from the traditional methods, STIMULUS introduces a sim-
ple yet powerful recursive framework for updating stochastic gradient estimates.
This methodology improves convergence performance by reducing the variance in
multi-gradient estimation, leading to more stable convergence paths. In addition,
we introduce an enhanced version of STIMULUS , termed STIMULUS-M, which
incorporates the momentum term to further expedite convergence. One of the
key contributions of this paper is the theoretical analysis for both STIMULUS and
STIMULUS-M, where we establish an O( 1

T ) convergence rate for both meth-
ods, which implies a state-of-the-art sample complexity of O

(
n+
√
nϵ−1

)
under

non-convexity settings. In the case where the objectives are strongly convex,
we further establish a linear convergence rate of O(exp−µT ) of the proposed
methods, which suggests an even strongerO (n+

√
n ln(µ/ϵ)) sample complexity.

Moreover, to further alleviate the periodic full gradient evaluation requirement in
STIMULUS and STIMULUS-M , we further propose enhanced versions with adap-
tive batching called STIMULUS+ /STIMULUS-M+ and provide their theoretical
analysis. Our extensive experimental results verify the efficacy of our proposed
algorithms and their superiority over existing methods.

1 INTRODUCTION

Since its inception as a discipline, machine learning (ML) has heavily relied on optimization formula-
tions and algorithms. While traditional ML problems generally focus on minimizing a single loss
function, many emergent complex-structured multi-task ML problems require balancing multiple
objectives that are often conflicting (e.g., multi-agent reinforcement learning (Parisi et al., 2014),
multi-task fashion representation learning (Jiao et al., 2022; 2023), multi-task recommendation
system (Chen et al., 2019; Zhou et al., 2023), multi-model learning in video captioning (Pasunuru &
Bansal, 2017), and multi-label learning-to-rank (Mahapatra et al., 2023a;b)). Such ML applications
necessitate solving multi-objective optimization (MOO) problems, which can be expressed as:

min
x∈D

F(x) := [f1(x), · · · , fS(x)], (1)

where x ∈ D ⊆ Rd represents the model parameters, and each fs denotes the objective function of
task s ∈ [S], fs(x) = 1

n

∑n
j=1 fsj(x; ξsj), n denotes the total number of samples, ξsj denotes the

j-th sample for taks s. However, unlike traditional single-objective optimization, there may not exist
a common x-solution in MOO that can simultaneously minimize all objective functions. Instead,
a more relevant optimality criterion in MOO is the notion of Pareto-optimal solutions, where no
objective can be further improved without sacrificing other objectives. Moreover, in settings where
the set of objective functions are non-convex, searching for Pareto-optimal solutions is intractable
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in general. In such scenarios, the goal of MOO is usually weakened to finding a Pareto-stationary
solution, where no improving direction exists for any objective without sacrificing other objectives.

To date, existing MOO algorithms in the literature can be generally categorized as gradient-free
and gradient-based methods. Notably, gradient-based methods have attracted increasing attention
recently due to their stronger empirical performances (see Section 2 for more detailed discussions).
Specifically, following a similar token of (stochastic) gradient descent methods for single-objective
optimization, (stochastic) multi-gradient descent (MGD/SMGD) algorithms have been proposed
in (Fliege et al., 2019; Fernando et al., 2022; Zhou et al., 2022b; Liu & Vicente, 2021). The basic
idea of MGD/SMGD is to iteratively update the x-variable following a common descent direction
for all the objectives through a time-varying convex combination of (stochastic) gradients of all
objective functions. Although MGD-type algorithms enjoy a fast O(1/T ) convergence rate (T
denotes the number of iterations) in finding a Pareto-stationary solution, their O(n) per-iteration
computation complexity in full multi-gradient evaluations becomes prohibitive when the dataset size
n is large. Further, in finding an ϵ-stationary point for non-convex MOO (typical in ML), the high
overall O(nϵ−1) sample complexity of MGD-type methods is not acceptable when n is large. As a
result, SMGD-type algorithms are often more favored in practice thanks to the lower per-iteration
computation complexity in evaluating stochastic multi-gradients. However, due to the noisy stochastic
multi-gradient evaluations, SMGD-type algorithms typically exhibit a slow O(1/

√
T ) convergence

rate, which also induces a high O(ϵ−2) sample complexity. Exacerbating the problem is the fact that,
due to the complex coupling algorithmic structure between multiple objectives, SMGD-type methods
are prone to divergence problems, particularly in scenarios with small batch and high variance (Liu &
Vicente, 2021; Zhou et al., 2022a). In light of these major limitations of SMGD-type algorithms, a
fundamental question naturally emerges:

Is it possible to develop fast-convergent stochastic MOO algorithms in the sense of matching the
convergence rate of deterministic MGD-type methods, while having a low per-iteration computation
complexity as in SMGD-type algorithms, as well as achieving a low overall sample complexity?

As in traditional single-objective optimization, a natural idea to achieve both fast convergence and
low sample complexity in MOO is to employ the so-called “variance reduction” (VR) techniques to
tame the noise in stochastic multi-gradients in SMGD-type methods. However, due to the complex
coupling nature of MOO problems, developing VR-assisted algorithms for SMGD-type algorithms is
far more challenging than their single-objective counterparts. First, since SMGD-type methods aim to
identify the Pareto front (i.e., the set of all Pareto-optimal/stationary solutions), it is critical to ensure
that the use of VR techniques does not introduce new bias into the already-noisy SGMD-type search
process, which drives the search process toward certain regions of the Pareto front. Second, how
to maintain solution diversity discovered by VR-assisted SMGD-type search process is challenging
and yet important, particularly for the non-convex MOO problems. Last but the least, conducting
theoretical analysis to prove the convergence performance of some proposed VR-based SMGD-
type techniques also contains multiple challenges, including how to quantify multiple conflicting
objectives, navigating trade-offs between them, handling the non-convexity objective functions, and
managing the computational cost of evaluations. All of these analytical challenges are quite different
from those in single-objective optimization theoretical analysis. To adapt variance reduction methods
in SMGD-type algorithms, specialized proofs and analyses are needed to effectively tackle these
challenges and facilitate efficient exploration of the Pareto optimality/stationarity.

The major contribution of this paper is that we overcome the aforementioned technical challenges and
develop a suite of new VR-assisted SMGD-based MOO algorithms called STIMULUS (stochastic
path-integrated multi-gradient recursive estimator) to achieve both fast convergence and low sample
complexity in MOO. Our main technical results are summarized as follows:

• We propose a path-integrated recursive variance reduction technique in STIMULUS that is carefully
designed for updating stochastic multi-gradient estimates. This technique not only enhances
computational efficiency but also significantly reduces multi-gradient estimation variance, leading
to more stable convergence trajectories and overcoming the divergence problem of SMGD. We
theoretically establish a convergence rate ofO(1/T ) for STIMULUS in non-convex settings (typical
in ML), which further implies a low sample complexity of O

(
n+
√
nϵ−1

)
. In the special setting

where the objectives are strongly convex, we show that STIMULUS has a linear convergence rate
of O(exp(−µT )), which implies an even lower sample complexity of O (n+

√
n ln(µ/ϵ)).
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• To further improve the performance of STIMULUS, we develop an enhanced version called
STIMULUS-M that incorporates momentum information to expedite convergence speed. Also, to
relax the requirement for periodic full multi-gradient evaluations in STIMULUS and STIMULUS-
M, we propose two enhanced variants called STIMULUS+ and STIMULUS-M+ based on adaptive
batching, respectively. We provide theoretical convergence and sample complexity analyses for
all these enhanced variants. These enhanced variants expand the practical utility of STIMULUS,
offering efficient solutions that not only accelerate optimization processes but also alleviate compu-
tational burdens in a wide spectrum of multi-objective optimization applications.

• We conduct extensive numerical experiments on a variety of challenging MOO problems to empiri-
cally verify our theoretical results and illustrate the efficacy of the STIMULUS algorithm family.
All our experimental results demonstrate the efficiency and superiority of the STIMULUS algorithm
family over existing state-of-the-art MOO methods. These results also underscore the robustness,
scalability, and flexibility of our STIMULUS algorithm family in complex MOO applications.

2 PRELIMINARIES AND RELATED WORK

To facilitate subsequent technical discussions, in this section, we first provide a primer on MOO
fundamentals and formally define the notions of Pareto optimality/stationarity, ϵ-stationarity in MOO,
and the associated sample complexity. Then, we will give an overview of the most related work in
the MOO literature, thus putting our work into comparative perspectives.

1) Multi-objective optimization: A primer. As introduced in Section 1, MOO aims to optimize
multiple objectives in Eq. (1) simultaneously. However, since in general there may not exist an
x-solution that minimizes all objectives at the same time in MOO, the more appropriate notion of
optimality in MOO is the so-called Pareto optimality, which is formally defined as follows:
Definition 1 ((Weak) Pareto Optimality). Given two solutions x and y, x is said to dominate y
only if fs(x) ≤ fs(y),∀s ∈ [S] and there exists at least one function, fs, where fs(x) < fs(y). A
solution x is Pareto optimal if no other solution dominates it. A solution x is defined as weakly Pareto
optimal if there is no solution y for which fs(x) > fs(y),∀s ∈ [S].

Finding a Pareto-optimal solution in MOO is as complex as solving single-objective non-convex
optimization problems and is NP-Hard in general. Consequently, practical efforts in MOO often aim
to find a solution that meets the weaker notion called Pareto-stationarity (a necessary condition for
Pareto optimality), which is defined as follows Fliege & Svaiter (2000); Miettinen (2012):
Definition 2 (Pareto Stationarity). A solution x is Pareto-stationary if no common descent direction
d ∈ Rd exists such that∇fs(x)⊤d < 0,∀s ∈ [S].

It is worth noting that, since non-convex MOO problems are intractable in general, the goal in solving
non-convex MOO problems is often to identify Pareto-stationary points that serve as the necessary
condition for Pareto-optimality. Note also that in the special setting with strongly convex objective
functions, Pareto-stationary solutions are Pareto-optimal.

Following directly from Pareto-stationarity in Definition 2, gradient-based MOO algorithms strive to
find a common descent (i.e., improving) direction d ∈ Rd, such that ∇fs(x)⊤d ≤ 0,∀s ∈ [S]. If
such a direction does not exist at x, then x is Pareto-stationary according to Definition 2. Toward
this end, the MGD method (Désidéri, 2012) identifies an optimal weight λ∗ for the multi-gradient
set ∇F(x) ≜ {∇fs(x),∀s ∈ [S]} by solving λ∗(x) ∈ argminλ∈C ∥λ

⊤∇F(x)∥2. Consequently,
the common descent direction can be defined as d = λ⊤∇F(x). Then, MGD follows the iterative
update rule x← x− ηd in the hope that a Pareto-stationary point can be reached, where η signifies a
learning rate. SMGD Liu & Vicente (2021) follows a similar approach, but with full multi-gradients
being replaced by stochastic multi-gradients. For both MGD and SMGD, it has been shown that if
∥λ⊤∇F(x)∥ = 0 for some λ ∈ C, where C ≜ {y ∈ [0, 1]S ,

∑
s∈[S] ys = 1}, then x is a Pareto

stationary solution Fliege et al. (2019); Zhou et al. (2022b).

Next, to define sample complexity in MOO, we first need the following definition of ϵ-stationarity:
Definition 3 (ϵ-stationarity). In MOO, a point is ϵ-stationary if the common descent direction d at x
satisfies the following condition: E∥

∑
s∈[S] λ

s
t∇fs(xt)∥2 ≤ ϵ in non-convex MOO problems and

E[
∑

s∈[S] λ
s
t [fs(xt)− fs(x∗)]] < ϵ in strongly-convex MOO problems.
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Table 1: Convergence comparisons between MOO algorithms, where n is the size of dataset; ϵ is
the convergence error. Our proposed algorithms are marked in a shaded background.

Algorithm Multi-gradient
Non-convex case Strongly-Convex case

Rate Samp. Complex. Rate Samp. Complex.

MGD (Fliege et al., 2019) Deterministic O
(

1
T

)
O

(
nϵ−1

)
O(exp(−µT )) O (n ln(µ/ϵ))

SMGD (Yang et al., 2022) Stochastic O
(

1√
T

)
O

(
ϵ−2

)
O

(
1
T

)
O

(
ϵ−1

)
MoCo (Fernando et al., 2022) Stochastic O

(
1√
T

)
O

(
ϵ−2

)
O

(
1
T

)
O

(
ϵ−1

)
CR-MOGM (Zhou et al., 2022b) Stochastic O

(
1√
T

)
O

(
ϵ−2

)
O

(
1
T

)
O

(
ϵ−1

)
STIMULUS/ STIMULUS-M Stochastic O

(
1
T

)
O

(
n +

√
nϵ−1

)
O(exp(−µT )) O

(
n +

√
n ln(µ/ϵ)

)
STIMULUS+ / STIMULUS-M+ Stochastic O

(
1
T

)
O

(
n +

√
nϵ−1

)
O(exp(−µT )) O

(
n +

√
n ln(µ/ϵ)

)

We note that the quantity ∥d∥2 = ∥λ⊤∇F(x)∥2 can be used as a metric for evaluating the conver-
gence speed of MOO algorithms in the non-convex setting (Fliege et al., 2019; Zhou et al., 2022b;
Fernando et al., 2022). On the other hand, in the context of more manageable strongly convex
MOO problems, the optimality gap

∑
s∈[S] λs [fs(x)− fs(x

∗)] is usually used as the convergence
metric (Liu & Vicente, 2021), where x∗ denotes the Pareto-optimal point.

With the notion of ϵ-stationarity in MOO, we are now in a position to define the concept of sample
complexity in MOO as follows:
Definition 4 (Sample Complexity). The sample complexity in MOO is defined as the total number
of incremental first-order oracle (IFO) calls required by an MOO algorithm to converge to an
ϵ-stationary point, where one IFO call evaluates the multi-gradient∇xfsj(x; ξsj) for all tasks s.

2) Overview of MOO Algorithms: As mentioned in Section 1, MOO algorithms can be classified
into two primary categories. The first category is usually referred to as gradient-free methods. Typical
gradient-free methods include evolutionary MOO algorithms and Bayesian MOO algorithms (Zhang
& Li, 2007; Deb et al., 2002; Belakaria et al., 2020; Laumanns & Ocenasek, 2002). These techniques
are suitable for small-scale problems but inefficient in solving high-dimensional MOO models (e.g.,
deep neural networks). In contrast, the second class is gradient-based MOO methods (Fliege & Svaiter,
2000; Désidéri, 2012; Fliege et al., 2019; Peitz & Dellnitz, 2018; Liu & Vicente, 2021), which have
shown to be more effective in solving high-dimensional MOO problems. As discussed in Section 1,
the most notable gradient-based MOO algorithms include multi-gradient descent (MGD) (Fliege
et al., 2019) and stochastic multi-gradient descent (SMGD) (Liu & Vicente, 2021), which achieves
O(1/T ) and O(1

√
T ) convergence rates, respectively. Although SMGD is easier to implement in

practice thanks to the use of stochastic multi-gradient, it has been shown that the noisy common
descent direction in SMGD could potentially cause divergence (cf. the example in Sec. 4 in (Zhou
et al., 2022b)). There also have been recent works on using momentum-based methods for bias
mitigation in MOO, and these methods are further applied within the context of bi-level optimization
problems. (Zhou et al., 2022b; Fernando et al., 2022). Note, however, that theO(1/

√
T ) convergence

rates of (Zhou et al., 2022b; Fernando et al., 2022) remain unsatisfactory compared to the O(1/T )
convergence rate of our STIMULUS algorithm family. For easier comparisons, we summarize the
state-of-the-art gradient-based MOO algorithms and their convergence rate results under non-convex
and strongly convex settings in Table 1.

3 THE STIMULUS ALGORITHM FAMILY

In this section, we first present the basic version of the STIMULUS algorithm in Section 3.1, which
is followed by the momentum and adaptive-batching variants in Sections 3.2 and 3.3, respectively.

3.1 THE STIMULUS ALGORITHM

Our STIMULUS algorithm is presented in Algorithm 1, where we propose a new variance-reduced
(VR) multi-gradient estimator. It can be seen from Algorithm 1 that our proposed VR approach has
a double-loop structure, where the inner loop is of length q > 0. More specifically, different from
MGD where a full multi-gradient direction us

t = ∇fs(xt), ∀s ∈ [S] is evaluated in all iterations, our
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STIMULUS algorithm only evaluates a full multi-gradient every q iterations (i.e., mod(t, q) = 0).
For other iterations t with mod(t, q) ̸= 0, our STIMULUS algorithm uses a stochastic multi-gradient
estimator us

t based on a mini-batch A with a recursive correction term as follows:

us
t = us

t−1 +
1

|A|
∑
j∈A

(∇fsj(xt; ξsj)−∇fsj(xt−1; ξsj)) , for all s ∈ [S]. (2)

Algorithm 1 STIMULUS algorithm and its variants.
Require: Initial point x0, parameters T , q.
1: Initialize: Choose x0.
2: for t = 0, 1, . . . , T do
3: if mod(t, q) = 0 then
4: if STIMULUS or STIMULUS-M then
5: Compute: us

t = 1
n

∑n
j=1 ∇fsj(xt; ξsj), ∀s ∈

[S]
6: end if
7: if STIMULUS+ or STIMULUS-M+ then
8: Compute: us

t as in Eq. (6).
9: end if

10: else
11: Compute us

t as in Eqs. (2).
12: end if
13: Optimize:minλs

t≥0∥
∑

s∈[S]λ
s
tu

s
t∥2,s.t.,

∑
s∈[S] λ

s
t=1.

14: Compute: dt =
∑

s∈[S] λ
s
tu

s
t .

15: if STIMULUS or STIMULUS+ then
16: Update: xt+1 = xt − ηdt.
17: end if
18: if STIMULUS-M or STIMULUS-M+ then
19: Update: xt+1 = xt + α(xt − xt−1)− ηdt.
20: end if
21: end for

Eq. (2) shows that the estimator is con-
structed iteratively based on information
from xt−1 and us

t−1, both of which are ob-
tained from the previous update. We will
show later in Section 4 that, thanks to the q-
periodic full multi-gradients and the recur-
sive correction terms, STIMULUS is able
to achieve a convergence rate of O(1/T ).
Moreover, due to the stochastic subsam-
pling in mini-batch A, STIMULUS has a
lower sample complexity than MGD. In
STIMULUS, the update rule for parame-
ters in x is written as:

xt+1 = xt − ηdt, (3)

where η is the learning rate. Here, dt

is the update direction defined as dt =∑
s∈[S] λ

s
tu

s
t , where the λs

t -values are ob-
tained by solving the following quadratic
optimization problem:

min
λs
t≥0

∥∥∥ ∑
s∈[S]

λs
tu

s
t

∥∥∥2, s.t.
∑
s∈[S]

λs
t = 1.(4)

The combined iterative update in Eqs. (3) and (4) follows the same token as in the MGDA algorithm
in (Mukai, 1980; Sener & Koltun, 2018; Lin et al., 2019; Fliege et al., 2019).

3.2 THE MOMENTUM-BASED STIMULUS-M ALGORITHM

Although it can be shown that STIMULUS achieves a theoretical O(1/T ) convergence rate, it could
be sensitive to the choice of learning rate and suffer from similar oscillation issues in practice
as gradient-descent-type methods do in single-objective optimization when some objectives are
ill-conditioned.

To further improve the empirical performance of STIMULUS, we now propose a momentum-assisted
enhancement for STIMULUS called STIMULUS-M. The rationale behind STIMULUS-M is to take
into account the past trajectories to smooth the update direction. Specifically, in addition to the same
combined iterative update as in Eqs. (3) and (4), the update rule in STIMULUS-M incorporates an
α-parameterized momentum term as follows:

xt+1 = xt − ηdt + α(xt − xt−1)︸ ︷︷ ︸
Momentum

, ∀s ∈ [S], (5)

where α ∈ (0, 1) is the momentum coefficient.

3.3 THE ADAPTIVE-BATCHING-BASED STIMULUS+ /STIMULUS-M+ ALGORITHMS

Note that in both STIMULUS and STIMULUS-M, one still needs to evaluate a full multi-gradient
every q iterations, which remains computationally demanding in the large data regime. Moreover, if
the objectives are in an expectation or “online” form rather than the finite-sum setting, it is infeasible
to compute a full multi-gradient. To address these limitations, we propose two adaptive-batching
enhanced versions for STIMULUS and STIMULUS-M called STIMULUS+ and STIMULUS-M+,

5



Under review as a conference paper at ICLR 2024

respectively. Specifically, rather than using a q-periodic full multi-gradient us
t = ∇fs(xt) =

1
n

∑n
j=1∇fsj(xt; ξsj), ∀s ∈ [S], in iteration t with mod(t, q) = 0, we utilize an adaptive-batching

stochastic multi-gradient as follows:

us
t =

1

|Ns|
∑
j∈Ns

∇fsj(xt; ξsj), ∀s ∈ [S], (6)

where Ns is an ϵ-adaptive batch sampled from the dataset uniformly at random with size:

|Ns| = min
{
cγσ

2γ−1
t , cϵσ

2ϵ−1, n
}
. (7)

We choose constants cγ ≥ 8, cϵ ≥ η in non-convex case and cγ ≥ 8µ
η , cϵ ≥ µ

2 in strongly-convex
case (see detailed discussions in Section 4). The σ2, represents variance bound of stochastic gradient
norms (cf. Assumption. 2). In STIMULUS+ , we choose γt+1 =

∑t
i=(nk−1)q

∥di∥2

q , while in the

momentum based algorithm STIMULUS-M+, we chooseγt+1 =
∑t

i=(nk−1)q ∥α(t−i)di∥2/q. The
term γt+1 offers further refinement to improve convergence.

4 PARETO STATIONARITY CONVERGENCE ANALYSIS

In this section, we will theoretically analyze the Pareto stationarity convergence performance of our
STIMULUS algorithm family under both non-convex and strongly convex settings. Before presenting
our Pareto stationarity convergence results for our STIMULUS algorithms, we first state two needed
assumptions, which are conventional in the optimization literature:
Assumption 1 (L-Lipschitz Smoothness). There exists a constant L > 0 such that ∥∇fs(x) −
∇fs(y)∥ ≤ L∥x− y∥,∀x,y ∈ Rd, ∀s ∈ [S].
Assumption 2 (Bounded Variance of Stochastic Gradient Norms). There exists a constant σ > 0
such that for all x ∈ Rd, ∥∇xfs(x; ξ)−∇xfs(x)∥2 ≤ σ2, ∀s ∈ S.

With the assumptions above, we are now in a position to discuss the Pareto stationary convergence of
the STIMULUS family.

4.1 PARETO-STATIONARITY CONVERGENCE OF STIMULUS

1) STIMULUS: The Non-convex Setting. First, we show that the basic STIMULUS algorithm
achieves an O(1/T ) convergence rate for non-convex MOO problems as follows. Note that this
result matches that of the deterministic MGD method.
Theorem 1 (STIMULUS for Non-convex MOO). Let ηt = η ≤ min{ 1

2L ,
1
2}. Under Assumption 1,

if at least one objective function fs(·), s ∈ [S] is bounded from below by fmin
s , then the sequence

{xt} output by STIMULUS satisfies: 1
T

∑T−1
t=0 E∥

∑
s∈[S] λ

s
t∇fs(xt)∥2 = O(1/T ).

Following from Theorem. 1, we immediately have the following sample complexity for the
STIMULUS algorithm by choosing q = |A| = ⌈

√
n⌉:

Corollary 1 (Sample Complexity of STIMULUS for Non-convex MOO). By choosing η ≤
min{ 1

2L ,
1
2}, q = |A| = ⌈

√
n⌉, the overall sample complexity of STIMULUS for finding an ϵ-

stationary point for non-convex MOO problems is O
(√

nϵ−1 + n
)
.

Several interesting remarks regarding Theorem 1 and Corollary 1 are in order: 1) Our proof of
STIMULUS’s Pareto-stationarity convergence only relies on standard assumptions commonly used in
first-order optimization techniques. This is in stark contrast to prior research, where unconventional
and hard-to-verify assumptions were required (e.g., an assumption on the convergence of x-sequence
is used in Fliege et al. (2019)). 2) While both MGD and our STIMULUS methods share the same
O(1/T ) convergence rate, STIMULUS enjoys a substantially lower sample complexity than MGD.
More specifically, the sample complexity of STIMULUS is reduced by a factor of

√
n when compared

to MGD. This becomes particularly advantageous in the “big data” regime where n is large.

2) STIMULUS: The Strongly Convex Setting. Now, we consider the strongly convex setting, which
is more tractable but still of interest in many learning problems in practice (e.g., multi-objective ridge
regression). In the strongly convex setting, we have the following additional assumption:
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Assumption 3 (µ-Strongly Convex Function). Each objective fs(x), s ∈ [S] is a µ-strongly convex
function, i.e., fs(y) ≥ fs(x) +∇fs(x)(y − x) + µ

2 ∥y − x∥2, ∀x,y, for some µ > 0.

For strongly convex MOO problems, the next result says that STIMULUS achieves a much stronger
expected linear Pareto-optimality convergence performance:
Theorem 2 (STIMULUS for µ-Strongly Convex MOO). Let η ≤ min{ 12 ,

1
2µ ,

1
8L ,

µ
64L2 }, q = |A| =

⌈
√
n⌉. Under Assumptions 1–3, pick xt as the final output of STIMULUS with probability wt =

(1− 3µη
4 )1−t. Then, we have Et[

∑
s∈[S] λ

s
t [fs(xt)− fs(x∗)]] ≤ ∥x0 − x∗∥2µ exp(− 3ηµT

4 ).

Further, Theorem 2 immediately implies following with logarithmic sample complexity (in terms of
ϵ) STIMULUS with a proper choice of learning rate and q = |A| = ⌈

√
n⌉.

Corollary 2 (Sample Complexity of STIMULUS for Solving µ-Strongly Convex MOO). By choosing
η ≤ min{ 12 ,

1
2µ ,

1
8L ,

µ
64L2 }, q = |A| = ⌈

√
n⌉}, the overall sample complexity of STIMULUS for

solving strongly convex MOO is O (n+
√
n ln(µ/ϵ)).

There are also several interesting insights from Theorem 2 and Corollary 2 regarding STIMULUS’s
performance for solving strongly convex MOO problems: 1) STIMULUS achieves an expected linear
convergence rate of O(µ exp(−µT )). Interestingly, this convergence rate matches that of MGD for
strongly convex MOO problems as well as gradient descent for strongly convex single-objective
optimization. 2) Another interesting feature of STIMULUS for strongly convex MOO stems from its
use of randomly selected outputs xt along with associated weights wt from the trajectory of xt, which
is inspired by the similar idea for stochastic gradient descent (SGD) (Ghadimi & Lan, 2013). Note
that, for implementation in practice, one does not need to store all xt-values. Instead, the algorithm
can be implemented by using a random clock for stopping (Ghadimi & Lan, 2013).

4.2 PARETO STATIONARITY CONVERGENCE OF STIMULUS-M

Next, we turn our attention to the Pareto stationarity convergence of the STIMULUS-M algorithm.
Again, we analyze STIMULUS-M for non-convex and strongly convex MOO problems:
Theorem 3 (STIMULUS-M for Non-convex MOO). Let ηt = η ≤ min{ 1

2L ,
1
2}, q = |A| = ⌈

√
n⌉.

Under Assumptions 1, if at least one objective function fs(·), s ∈ [S], is bounded from below by fmin
s ,

then the sequence {xt} output by STIMULUS-M satisfies 1
T

∑T−1
t=0 E∥

∑
s∈[S] λ

s
t∇fs(xt)∥2 =

O( 1
T ).

Similar to the basic STIMULUS algorithm, by choosing the appropriate learning rate and inner loop
length parameters, we immediately have the following sample complexity result for STIMULUS-
M for solving non-convex MOO problems:
Corollary 3 (Sample Complexity of STIMULUS-M for Solving Non-convex MOO). By choosing
ηt = η ≤ min{ 1

2L ,
1
2}, q = |A| = ⌈

√
n⌉. The overall sample complexity of STIMULUS-M under

non-convex objective functions is O
(√

nϵ−1 + n
)
.

The next two results state the Pareto optimality and sample complexity results for STIMULUS-M:
Theorem 4 (STIMULUS-M for µ-Strongly Convex MOO). Let η ≤ min{ 12 ,

1
2µ ,

1
8L ,

µ
64L2 }, q =

|A| = ⌈
√
n⌉. Under Assumptions 1–3, pick xt as the final output of STIMULUS-M with probability

wt = (1− 3µη
4 )1−t. Then, we have Et[

∑
s∈[S] λ

s
t [fs(xt)− fs(x∗)]] ≤ ∥x0 − x∗∥2µ exp(− 3ηµT

4 ).

Corollary 4 (Sample Complexity of STIMULUS-M for Solving Strongly Convex MOO). By choos-
ing η ≤ min{ 12 ,

1
2µ ,

1
8L ,

µ
64L2 }, q = |A| = ⌈

√
n⌉, the overall sample complexity of STIMULUS-

M for solving strongly convex MOO is O (n+
√
n ln(µ/ϵ)).

We remark that the convergence rate upper bound of STIMULUS-M is the same as that in Theorem 2,
which suggests a potentially loose convergence upper bound in Theorem 4 due to the technicality
and intricacies in analyzing momentum-based stochastic multi-gradient algorithms for solving non-
convex MOO problems. Yet, we note that even this potentially loose convergence rate upper bound
in Theorem 4 already suffices to establish a linear convergence rate for STIMULUS-M in solving
strongly convex MOO problems. Moreover, we will show later in Section 5 that this momentum-
assisted method significantly accelerates the empirical convergence speed performance. It is also
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(a) Training loss convergence in terms of iterations.
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(b) Training loss convergence in terms of samples.

Figure 1: Training loss convergence comparisons between different MOO algorithms.

worth noting that there are two key differences in the proofs of Theorem 3 and 4 compared to those
of the momentum-based stochastic gradient algorithm for single-objective non-convex optimization:
1) our proof exploits the martingale structure of the us

t . This enables us to tightly bound the mean-
square error term E ∥∇fs (xt)− us

t∥
2 under the momentum scheme. In contrast, in the traditional

analysis of stochastic algorithms with momentum, this error term corresponds to the variance of the
stochastic estimator and is typically assumed to be bounded by a universal constant. 2) Our proof
requires careful manipulation of the bounding strategy to effectively handle the accumulation of the
mean-square error E ∥∇fs (xk)− us

t∥
2 over the entire optimization trajectory in non-convex MOO.

4.3 PARETO STATIONARITY CONVERGENCE OF STIMULUS+ /STIMULUS-M+

Next, we present the Pareto stationarity convergence and the associated sample complexity results of
the STIMULUS+ /STIMULUS-M+ algorithms for non-convex MOO as follows:
Theorem 5 (STIMULUS+ /STIMULUS-M+ for Non-convex MOO). Let η ≤ min{ 1

4L ,
1
2}, q =

|A| = ⌈
√
n⌉. By choosing cγ and cϵ as such that cγ ≥ 8, and cϵ ≥ η, under Assumptions 1 and 2, if

at least one function fs(·), s ∈ [S] is bounded from below by fmin
s , then the sequence {xt} output by

STIMULUS+ /STIMULUS-M+ satisfies: 1
T

∑T−1
t=0 E∥

∑
s∈[S] λ

s
t∇fs(xt)∥2 = O( 1

T ).

Corollary 5 (Sample Complexity of STIMULUS+ /STIMULUS-M+ for Non-convex MOO). By
choosing η ≤ min{ 1

4L ,
1
2}, q = |A| = ⌈

√
n⌉, cγ ≥ 8, and cϵ ≥ η. The overall sample complexity of

STIMULUS+ /STIMULUS-M+ under non-convex objective functions is O
(√

nϵ−1 + n
)
.

Theorem 6 (STIMULUS+ /STIMULUS-M+ for µ-Strongly Convex case.). Let η ≤
min{ 12 ,

1
2µ ,

1
8L ,

µ
64L2 }, cγ ≥ 8µ

η , cϵ ≥ µ
2 , q = |A| = ⌈

√
n⌉. Under Assumptions 1- 3, pick xt

as the final output of the STIMULUS+ /STIMULUS-M+ algorithm with weights wt = (1− 3µη
4 )1−t.

Then, it holds that Et[
∑

s∈[S] λ
s
t [fs(xt)− fs(x∗)]] ≤ ∥x0 − x∗∥2µ exp(− 3ηµT

4 ).

Corollary 6 (Sample Complexity of STIMULUS+ /STIMULUS-M+ for Strongly Convex MOO).
By choosing η ≤ min{ 12 ,

1
2µ ,

1
8L ,

µ
64L2 }, cγ ≥ 8µ

η , cϵ ≥ µ
2 , q = |A| = ⌈

√
n⌉, the overall sample

complexity of STIMULUS+ /STIMULUS-M+ for solving strongly MOO is O (n+
√
n ln(µ/ϵ)).

We note that, although the theoretical sample complexity bounds of STIMULUS+ /STIMULUS-
M+ are the same as those of STIMULUS/STIMULUS-M, respectively, the fact that STIMULUS+ and
STIMULUS-M+ do not need full multi-gradient evaluations implies that STIMULUS/STIMULUS-
M use significantly fewer samples than STIMULUS/STIMULUS-M in the large dataset regime. Our
experimental results in the next section will also empirically confirm this.

5 EXPERIMENTAL RESULTS

In this section, we conduct numerical experiments to verify the efficacy of our STIMULUS algorithm
family. Due to space limitation, we only present experiments for non-convex MOO problems and
relegate experimental results for strongly convex MOO problems in the appendix.

1) Two-Objective Experiments on the MultiMNIST Dataset: First, we test the convergence
performance of our STIMULUS algorithms using the “MultiMNIST” dataset (Sabour et al., 2017),
which is a multi-task learning version of the MNIST dataset (LeCun et al., 1998) from LIBSVM
repository. Specifically, MultiMNIST converts the hand-written classification problem in MNIST
into a two-task problem, where the two tasks are task “L” (to categorize the top-left digit) and
task “R” (to classify the bottom-right digit). The goal is to classify the images of different tasks.

8
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We compare our STIMULUS algorithms with MGD, SMGD, and MOCO. All algorithms use the
same randomly generated initial point. The learning rates are chosen as η = 0.3, α = 0.5, constant
c = 32 and solution accuracy ϵ = 10−3. The batch-size for MOCO and SMGD is 96. The full
batch size for MGD is 1024, and the inner loop batch-size |Ns| for STIMULUS, STIMULUS-M,
STIMULUS+ , STIMULUS-M+is 96. As shown in Fig. 1(a), SMGD exhibits the slowest convergence
speed, while MOCO has a slightly faster convergence. MGD and our STIMULUS algorithms
have comparable performances. The STIMULUS-M /STIMULUS-M+ algorithms converge faster
than MGD, STIMULUS , and STIMULUS+ , primarily due to the use of momentum. Fig. 1(b)
highlights differences in sample complexity. MGD suffers the highest sample complexity, while
STIMULUS+ and STIMULUS-M+ demonstrate a more efficient utilization of samples in comparison
to STIMULUS and STIMULUS-M. These results are consistent with our theoretical analyses as
outlined in Theorems 1, 3, and 5.

Figure 2: Training loss conver-
gence comparison (8-objective).

2) Eight-Objective Experiments on the River Flow Dataset:
We further test our algorithms on an 8-task problem with the
river flow dataset (Nie et al., 2017), which is for flow predic-
tion at eight locations in the Mississippi river network. In
this experiment, we set η = 0.001, α = 0.1, the batch size
for MOCO and SMGD is 8, the full batch size for MGD
is 128, and the inner loop batch size |Ns| for STIMULUS,
STIMULUS-M, STIMULUS+ , STIMULUS-M+is eight. To
better visualize different tasks, we plot the normalized loss
in a radar chart as shown in Fig. 2, where we can see that
our STIMULUS algorithms achieve a much smaller footprint,
which is desirable. Furthermore, we compare the sample com-
plexity results of all algorithms in Table 3 (relegated to the
appendix due to space limitation), which reveals a significant reduction in sample utilization by
STIMULUS+ /STIMULUS-M+ compared to MGD, while achieving better loss compared to SGMD
and MOCO (cf. Fig. 2).
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Figure 3: Training loss conver-
gence comparison (40-task).

3) 40-Objective Experiments with the CelebA Dataset:
Lastly, we conduct large-scale 40-objective experiments with
the CelebA dataset (Liu et al., 2015), which contains 200K
facial images annotated with 40 attributes. Each attribute corre-
sponds to a binary classification task, resulting in a 40-objective
problem. We use a ResNet-18 He et al. (2016) model with-
out the final layer for each attribute, and we attach a linear
layer to each attribute for classification. In this experiment,
we set η = 0.0005, α = 0.01, the full batch size for MGD
is 1024, and the batch size for SMGD and MOCO and the
inner loop batch size |Ns| for STIMULUS, STIMULUS-M,
STIMULUS+ , STIMULUS-M+is 32. As shown in Fig. 3, MGD, STIMULUS, STIMULUS-M,
STIMULUS+ , and STIMULUS-M+significantly outperform SMGD and MOCO in terms of training
loss. Also, we note that STIMULUS+ and STIMULUS-M+ consume fewer sample (approximately
11,000) samples compared to STIMULUS and STIMULUS-M , which consume approximately 13,120
samples, and MGD, which consumes approximately 102,400 samples. These results are consistent
with our theoretical results in Theorems 1, 3, and 5.

6 CONCLUSION
In this paper, we proposed STIMULUS, a new variance-reduction-based stochastic multi-gradient-
based algorithm to achieve fast convergence and low sample complexity multi-objective optimization
(MOO). We theoretically analyzed the Pareto stationarity convergence and sample complexity of
our proposed STIMULUS algorithms under non-convex and strongly convex settings. To further
enhance the empirical Pareto stationarity convergence of STIMULUS, we further proposed an
algorithms called STIMULUS-M , which incorporates momentum information to expedite con-
vergence. To alleviate the periodic full multi-gradient evaluation requirement in STIMULUS and
STIMULUS-M, we further proposed enhanced versions for both algorithms with adaptive batching
called STIMULUS+ /STIMULUS-M+. We provided theoretical performance analysis for all en-
hanced algorithms. Collectively, our proposed STIMULUS algorithm family advances the state of
the art of MOO algorithm design and analysis.
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A PROOF OF CONVERGENCE OF VR-MOO

Table 2: List of key notation.

Notation Definition
n Total number of samples per task
s Objective/task index
S Total number of Objectives/tasks
t Iteration number index
T Total number of iterations
x ∈ Rd Model parameters in Problem (1)
x∗ ∈ Rd A pareto optimal solution of Problem (1)
η The learning rate
α The momentum constant

For clarity of notation, we drop ∗ for λ, that is, we use λs
t to represent the solution of quadratic

problem for task s in the t-th round.
Lemma 1. Let Assumption 1 hold. The gradient estimator us

t satisfies for all (nt − 1)q + 1 ≤ t ≤
ntq − 1:

Et∥∇fs(xt)− us
t∥2 ≤

L2

|A|

t∑
i=(nt−1)q

E∥xi+1 − xi∥2 + Et∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2. (8)

Proof of Lemma. 1.

Proof. From Lemma 1 in Fang et al. (2018), we have

Et∥∇fs(xt)− us
t∥2

(a)
= Et∥∇fs(xt−1)− us

t−1∥2

+Et∥
1

|A|
∑
j∈A

(∇fsj(xt; ξsj)−∇fsj(xt−1; ξsj) +∇fs(xt−1)−∇fs(xt)) ∥2

(b)

≤Et∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2 + L2
t∑

i=(nt−1)q

1

|A|
E∥xi+1 − xi∥2. (9)

(a) stems from Proposition 1 in Fang et al. (2018), where the expectation of the gradient difference
is broken down. (b) leverages Eq. (2.3) from Fang et al. (2018), applying a bound based on the
Lipschitz continuity of the gradient.

Telescoping over from (nt − 1) q + 1 to t, where t ≤ ntq − 1, we obtain that

Et∥∇fs(xt)− us
t∥2 ≤ Et∥∇fs(x(nt−1)q)− us

(nt−1)q∥
2 + L2

t∑
i=(nt−1)q

1

|A|
E∥xi+1 − xi∥2 (10)

Then, we have

Et∥∇fs(xt)− us
t∥2 ≤

L2

|A|

t∑
i=(nt−1)q

E∥xi+1 − xi∥2 + Et∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2. (11)

Lemma 2. For general L-smooth functions {fs, s ∈ [S]}, choose the learning rate η s.t. η ≤ 1
2 , the

update dt of the algorithm satisfies:

fs(xt+1) ≤ fs(xt) +
η

2
∥∇fs(xt)− us

t∥2 −
η

4
∥dt∥2. (12)
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Proof of Lemma. 2.

Proof.

fs(xt+1)
(a)

≤ fs(xt) + ⟨∇fs(xt),−ηdt⟩+
1

2
L∥ηdt∥2

= fs(xt)− η ⟨∇fs(xt)− us
t ,dt⟩ − η ⟨us

t ,dt⟩+
1

2
L∥ηdt∥2

(b)

≤ fs(xt)− η ⟨∇fs(xt)− us
t ,dt⟩ − η∥dt∥2 +

1

2
L∥ηdt∥2

(c)

≤ fs(xt) +
η

2
∥∇fs(xt)− us

t∥2 +
1

2
η∥dt∥2 − η∥dt∥2 +

1

2
Lη2∥dt∥2

= fs(xt) +
η

2
∥∇fs(xt)− us

t∥2 − η

(
1

2
− 1

2
Lη

)
∥dt∥2. (13)

(a) follows from the objective function fs is L-smooth. (b) follows from ⟨us
t ,dt⟩ ≥ ∥dt∥2 since dt is

a general solution in the convex hull of the family of vectors {us
t , s ∈ [S]} (see Lemma 2.1 Désidéri

(2012)). (c) follows from the triangle inequality.

By setting
(
1
2 −

1
2η
)
≥ 1

4 , that is, η ≤ 1
2 , we have

fs(xt+1) ≤ fs(xt) +
η

2
∥∇fs(xt)− us

t∥2 −
η

4
∥dt∥2. (14)

Proof of Theorem. 1

Proof. Taking expectation on both sides of the inequality in Lemma. 2, we have

E[fs(xt+1)]
(a)

≤ E[fs(xt)] +
η

2
E∥∇fs(xt)− us

t∥2 −
η

4
E∥dt∥2

(b)

≤ E[fs(xt)]−
η

4
E∥dt∥2 + E

η

2
[
L2

|A|

t∑
i=(nt−1)q

E∥xi+1 − xi∥2 + E∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2]

(c)
= E[fs(xt)]−

η

4
E∥dt∥2 +

η

2
[
L2

|A|

t∑
i=(nt−1)q

η2E∥di∥2]. (15)

(a) follows from Lemma. 2. (b) follows from the Lemma. 1. (c) follows from the update rule of x as
shown in Eq. (6) and E∥∇fs(x(nt−1)q)− us

(nt−1)q∥
2 = 0 as shown in Line 5 in our Algorithm. 1.

Next, telescoping the above inequality over t from (nt − 1) q to t where t ≤ ntq − 1 and noting that
for (nt − 1) q ≤ j ≤ ntq − 1, nj = nt, we obtain

E[fs(xt+1)]

≤ E[fs(x(nt−1)q)]−
η

4

t∑
j=(nt−1)q

E∥dj∥2 +
η

2
[
L2

|A|

t∑
j=(nt−1)q

j∑
i=(nt−1)q

η2E∥di∥2]

(a)

≤ E[fs(x(nt−1)q)]−
η

4

t∑
j=(nt−1)q

E∥dj∥2 +
η

2
[
L2

|A|

t∑
j=(nt−1)q

t∑
i=(nt−1)q

η2E∥di∥2]

(b)

≤ E[fs(x(nt−1)q)]−
η

4

t∑
j=(nt−1)q

E∥dj∥2 +
η3q

2
[
L2

|A|

t∑
j=(nt−1)q

E∥dj∥2]
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= E[fs(x(nt−1)q)]− [
η

4
− η3q

2

L2

|A|
]

t∑
j=(nt−1)q

E∥dj∥2. (16)

where (a) extends the summation of the third term from j to t, (b) follows from the fact that
t ≤ ntq − 1.

We continue the proof by further driving

E[fs(xT )]− E[fs(x0)]

= (E[fs(xq)]− E[fs(x0)]) + (E[fs(x2q)]− E[fs(xq)]) + ·+ (E[fs(xT )]− E[fs(x(nT−1)q)])

≤ −[η
4
− η3q

2

L2

|A|
]

T−1∑
t=0

E∥dt∥2 (17)

Note that E[fs (xT+1)] ≥ f∗
s ≜ infx∈Rd fs(x). Hence, we have

[
η

4
− η3q

2

L2

|A|
]

T−1∑
t=0

E∥dt∥2 ≤ [[fs(x0)]− [fs(xT )]] ≤ [[fs(x0)]− f∗
s ]. (18)

Based on the parameter setting q = |A| = ⌈
√
n⌉, we have

[
η

4
− η3L2

2
]

T−1∑
t=0

∥dt∥2 ≤ [[fs(x0)]− f∗
s ]. (19)

Thus, we have

1

T

T−1∑
t=0

E∥dt∥2 ≤
[[fs(x0)]− f∗

s ]

[η4 −
η3L2

2 ]T
. (20)

Since 1
T

∑T−1
t=0 E∥dt∥2 is just common descent directions. According to Definition. 3 shown in the

paper, the quantity to our interest is ∥
∑

s∈[S] λ
s
t∇f(x)∥2.

1

T

T−1∑
t=0

E∥
∑
s∈[S]

λs
t∇fs(xt)∥2

(a)

≤ 1

T

T−1∑
t=0

2E∥
∑
s∈[S]

λs
t∇fs(xt)−

∑
s∈[S]

λs
tu

s
t∥2 +

1

T

T−1∑
t=0

2E∥
∑
s∈[S]

λs
tu

s
t∥2

(b)
=

1

T

T−1∑
t=0

2E∥
∑
s∈[S]

λs
t (∇fs(xt)− us

t )∥2 +
1

T

T−1∑
t=0

2E∥dt∥2

(c)

≤ 1

T

T−1∑
t=0

2S
∑
s∈[S]

(λs
t )

2E∥(∇fs(xt)− us
t )∥2 +

1

T

T−1∑
t=0

2E∥dt∥2

(d)

≤ 1

T

T−1∑
t=0

2S
∑
s∈[S]

(λs
t )

2[Et∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2 + L2
t∑

i=(nt−1)q

1

|A|
E∥xi+1 − xi∥2]

+
1

T

T−1∑
t=0

2E∥dt∥2

=
1

T

T−1∑
t=0

2S
∑
s∈[S]

(λs
t )

2[Et∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2]

+ 2SL2 1

T

T−1∑
t=0

t∑
i=(nt−1)q

1

|A|
E∥xi+1 − xi∥2 +

1

T

T−1∑
t=0

2E∥dt∥2

14
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(e)

≤ 1

T

T−1∑
t=0

2S
∑
s∈[S]

(λs
t )

2[Et∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2]

+ 2SL2 1

T

T−1∑
t=0

ntq−1∑
i=(nt−1)q

1

|A|
E∥xt+1 − xt∥2 +

1

T

T−1∑
t=0

2E∥dt∥2

=2SL2 1

T

T−1∑
t=0

q

|A|
E∥xt+1 − xt∥2 +

1

T

T−1∑
t=0

2E∥dt∥2

(f)
=2SL2η2

1

T

T−1∑
t=0

E∥dt∥2 +
1

T

T−1∑
t=0

2E∥dt∥2

=(2SL2η2 + 2)
1

T

T−1∑
t=0

E∥dt∥2 (21)

where (a) and (c) hold from the triangle inequality. (b) is because the definition dt =
∑

s∈[S] λ
s
tu

s
t

as shown in Line 14 in Algorithm. 1. (d) follows from the Lemma. 1. (e) is because t ≤ ntq − 1.
(f) is because we have q = |A| = ⌈

√
n⌉.

Then, we can conclude that

1

T

T−1∑
t=0

E∥
∑
s∈[S]

λs
t∇fs(xt)∥2

(a)

≤ (2SL2η2 + 2)
[[fs(x0)]− f∗

s ]

[η4 −
η3L2

2 ]T
, (22)

where (a) follows from Eqs. (21) and Eqs. 20.

Let η ≤ 1
2L , we have

1

T

T−1∑
t=0

E∥
∑
s∈[S]

λs
t∇fs(xt)∥2

≤
(2SL2η2 1

T + 2)[[fs(x0)]− f∗
s ]

[η8 ]T
=

(2SL2η2 + 2) 8η [[fs(x0)]− f∗
s ]

T
= O( 1

T
). (23)

Lastly, to show the sample complexity, the number of samples with mod(t, q) = 0 can be calculated
as: ⌈Tq ⌉·M . Also, the number of samples with mod(t, q) ̸= 0 can be calculated as T · |A|. Hence, the
total sample complexity can be calculated as: ⌈Tq ⌉n+T · |A| ≤ T+q

q n+T
√
n = T

√
n+n+T

√
n =

O(n+
√
nϵ−1). Thus, the overall sample complexity is O(n+

√
nϵ−1). This completes the proof.

A.1 PROOF OF THEOREM. 2

Proof.

fs(xt+1)

≤fs(xt) + ⟨∇fs(xt),−ηdt⟩+
1

2
L∥ηdt∥2

(a)

≤fs(x∗) + ⟨∇fs(xt),xt − x∗⟩ −
µ

2
∥xt − x∗∥2 + ⟨∇fs(xt),−ηdt⟩+

1

2
L∥ηdt∥2

=fs(x∗) + ⟨∇fs(xt),xt − x∗ − ηdt⟩ −
µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2

(b)

≤fs(x∗) + ⟨∇fs(xt)− us
t ,xt − x∗ − ηdt⟩+ ⟨us

t ,xt − x∗ − ηdt⟩

− µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2

15
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(c)

≤fs(x∗) +
1

2δ
∥∇fs(xt)− us

t∥2 +
δ

2
∥xt − x∗ − ηdt∥2 + ⟨us

t ,xt − x∗ − ηdt⟩

− µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2

(d)

≤fs(x∗) +
1

2δ
∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥ηdt∥2

+ ⟨us
t ,xt − x∗ − ηdt⟩ −

µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2, (24)

the first inequality is due to L-smoothness, the second inequality follows from µ-strongly convex.
The last two inequality follows from the triangle inequality.

According to Definition. 3 shown in the paper, the quantity to our interest is∑
s∈[S] λ

s
t [fs(xt+1)− fs(x∗)], then we have

∑
s∈[S]

λs
t [fs(xt+1)− fs(x∗)]

(a)

≤ 1

2δ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥ηdt∥2

+

〈∑
s∈[S]

λs
tu

s
t ,xt − x∗

〉
− µ

2
∥xt − x∗∥2 +

〈∑
s∈[S]

λs
tu

s
t ,−ηdt

〉
+

1

2
L∥ηdt∥2

=
1

2δ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥ηdt∥2

+

〈∑
s∈[S]

λs
tu

s
t ,xt − x∗ − ηdt

〉
− µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2

(b)

≤ 1

2δ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥ηdt∥2

+ ⟨dt,xt − x∗ − ηdt⟩ −
µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2

= ⟨dt,xt − x∗⟩ − η∥dt∥2 −
µ

2
∥xt − x∗∥2 +

1

2
Lη2∥dt∥2

+
1

2δ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥ηdt∥2

(c)

≤ 1

2η

(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− 1

2
η∥dt∥2 −

µ

2
∥xt − x∗∥2 +

1

2
Lη2∥dt∥2

+
4

µ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2 +
µ

8
∥xt − x∗∥2 +

µ

8
∥ηdt∥2

(d)

≤ 1

2η

(
(1− 3µη

4
)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− (

1

2
η − µ

8
η2 − 1

2
Lη2)∥dt∥2

+
4

µ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2

(e)

≤ 1

2η

(
(1− 3µη

4
)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− (

1

2
η − µ

8
η2 − 1

2
Lη2)∥dt∥2

+
4

µ
(
L2

|A|

t∑
i=(nt−1)q

∥xi+1 − xi∥2 +
∑
s∈[S]

λs
t∥∇fs(x(nt−1)q)− us

(nt−1)q∥
2)

16
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=
1

2η

(
(1− 3µη

4
)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− (

1

2
η − µ

8
η2 − 1

2
Lη2)∥dt∥2

+
4

µ
(
L2

|A|

t∑
i=(nt−1)q

∥xi+1 − xi∥2). (25)

where (a) follows from Eqs. (24). (b) is because the definition dt =
∑

s∈[S] λ
s
tu

s
t as shown in Line

14 in Algorithm. 1. (c) is because ∥xt − x∗∥2 − ∥xt+1 − x∗∥2 = −η2∥dt∥2 + 2 ⟨ηdt,xt − x∗⟩,
and we choose δ = µ

8 in (d). (e) follows from Lemma. 1. Next, telescoping the above inequality
over t from (nt − 1) q to t where t ≤ ntq− 1 and noting that for (nt − 1) q ≤ j ≤ ntq− 1, nj = nt,
we obtain

t∑
i=(nt−1)q

∑
s∈[S]

λs
i [fs(xi+1)− fs(x∗)]

(a)

≤ 1

2η

(1− 3µη

4
)

t∑
i=(nt−1)q

∥xi − x∗∥2 −
t∑

i=(nt−1)q

∥xi+1 − x∗∥2


− (
1

2
η − µ

8
η2 − 1

2
Lη2)

t∑
i=(nt−1)q

∥di∥2 +
4

µ
(
L2

|A|

t∑
j=(nt−1)q

j∑
i=(nj−1)q

∥xi+1 − xi∥2)

(b)

≤ 1

2η

(1− 3µη

4
)

t∑
i=(nt−1)q

∥xi − x∗∥2 −
t∑

i=(nt−1)q

∥xi+1 − x∗∥2


− (
1

2
η − µ

8
η2 − 1

2
Lη2)

t∑
i=(nt−1)q

∥di∥2 +
4

µ
(
L2

|A|

t∑
j=(nt−1)q

t∑
i=(nt−1)q

∥xi+1 − xi∥2)

=
1

2η

(1− 3µη

4
)

t∑
i=(nt−1)q

∥xi − x∗∥2 −
t∑

i=(nt−1)q

∥xi+1 − x∗∥2


− (
1

2
η − µ

8
η2 − 1

2
Lη2 − 4

µ

L2qη2

|A|
)

t∑
i=(nt−1)q

∥di∥2), (26)

where (a) is from Eqs. (25). (b) relaxes j to t, since j ≤ t. We continue the proof by further driving

T∑
i=0

∑
s∈[S]

λs
i [fs(xi+1)− fs(x∗)]

=

q∑
i=0

∑
s∈[S]

λs
i [fs(xi+1)− fs(x∗)] +

2q∑
i=q

∑
s∈[S]

λs
i [fs(xi+1)− fs(x∗)] +

·+
T∑

i=(nT−1)q

∑
s∈[S]

λs
i [fs(xi+1)− fs(x∗)]

≤ 1

2η

(
(1− 3µη

4
)

T∑
i=0

∥xi − x∗∥2 −
T∑

i=0

∥xi+1 − x∗∥2
)

− (
1

2
η − µ

8
η2 − 1

2
Lη2 − 4

µ

L2qη2

|A|
)

T∑
i=0

∥di∥2), (27)
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where the last inequality is from Eq. (16) and Eq. (26). Next, we have
T∑

i=0

∑
s∈[S]

λs
i [fs(xi)− fs(x∗)]

=

T∑
i=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)− fs(xi+1) + fs(xi)]

≤
T∑

i=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)]−

T∑
i=0

∑
s∈[S]

λs
t |fs(xi+1)− fs(xi)|

≤ 1

2η

(
(1− 3µη

4
)

T∑
i=0

∥xi − x∗∥2 −
T∑

i=0

∥xi+1 − x∗∥2
)

− (
1

2
η − µ

8
η2 − 1

2
Lη2 − 4

µ

L2qη2

|A|
− [

η

4
− η3q

2

L2

|A|
])

T∑
i=0

∥di∥2 (28)

Let |A| = q = ⌈
√
n⌉ and η ≤ min{ 1

2µ ,
1
8L ,

µ
64L2 }, we have ( 12η −

µ
8 η

2 − 1
2Lη

2 − 4
µ

L2qη2

|A| − [η4 −
η3q
2

L2

|A| ]) >
η
16 > 0

Thus, we have
T∑

i=0

∑
s∈[S]

λs
i [fs(xi)− fs(x∗)] ≤

1

2η

(
(1− 3µη

4
)

T∑
i=0

∥xi − x∗∥2 −
T∑

i=0

∥xi+1 − x∗∥2
)
. (29)

Then, we have

Et[
∑
s∈[S]

λs
i [fs(xt)− fs(x∗)]] ≤

1

2η

(
(1− 3µη

4
)Et∥xt − x∗∥2 − Et∥xt+1 − x∗∥2

)
. (30)

Averaging using weight wt = (1− 3µη
4 )1−t and using such weight to pick output x, by using Lemma

1 in Karimireddy et al. (2020) with η ≥ 1
uR , we have

Et[
∑
s∈[S]

λs
i [fs(xt)− fs(x∗)]] ≤ ∥x0 − x∗∥2µ exp(−3ηµT

4
) (31)

= O(µ exp(−µT )). (32)

Then we have the convergence rate Et[
∑

s∈[S] λ
s
i [fs(xt)− fs(x∗)]] = O(µ exp(−µT )).

Lastly, the total sample complexity can be calculated as: ⌈Tq ⌉n + T · |A| ≤ T+q
q n + T

√
n =

T
√
n+n+T

√
n = O(n+

√
n ln(µ/ϵ). Thus, the overall sample complexity isO(n+

√
n ln(µ/ϵ).

This completes the proof.

B PROOF OF CONVERGENCE OF STIMULUS-M

Lemma 3. For general L-smooth functions {fs, s ∈ [S]}, choose the learning rate η s.t. η ≤ 1
2 , the

update dt of the VR-MOO-M algorithm satisfies:

fs(xt+1) ≤fs(xt) +
η

2

t∑
i=(nt−1)q

α(t−i)∥∇fs(xi)− us
i∥2 −

1

2
η

t∑
i=(nt−1)q

α(t−i)∥di∥2

+
1

2
L∥xt+1 − xt∥2. (33)

18
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Proof of Lemma. 3.

Proof.

fs(xt+1) ≤ fs(xt) + ⟨∇fs(xt),xt+1 − xt⟩+
1

2
L∥xt+1 − xt∥2

(a)

≤ fs(xt) + ⟨∇fs(xt), α(xt+1 − xt)⟩+ ⟨∇fs(xt),−ηdt⟩+
1

2
L∥ηdt∥2

(b)
= fs(xt) +

t∑
i=0

α(t−i) ⟨∇fs(xi),−ηdi⟩+
1

2
L∥ηdt∥2

= fs(xt)− η

t∑
i=0

α(t−i) ⟨∇fs(xi)− us
i ,di⟩ − η

t∑
i=0

α(t−i) ⟨us
i ,di⟩+

1

2
L∥xt+1 − xt∥2

(c)

≤ fs(xt)− η

t∑
i=0

α(t−i) ⟨∇fs(xi)− us
i ,di⟩ − η

t∑
i=0

α(t−i)∥di∥2 +
1

2
L∥xt+1 − xt∥2

(d)

≤ fs(xt) +
η

2

t∑
i=0

α(t−i)∥∇fs(xi)− us
i∥2 +

1

2
η

t∑
i=0

α(t−i)∥di∥2

− η

t∑
i=0

α(t−i)∥di∥2 +
1

2
L∥xt+1 − xt∥2

= fs(xt) +
η

2

t∑
i=0

α(t−i)∥∇fs(xi)− us
i∥2 −

1

2
η

t∑
i=0

α(t−i)∥di∥2 +
1

2
L∥xt+1 − xt∥2. (34)

(a) follows from the objective function fs is L-smooth. (b) follows from the update rule of xt shown
in Line 19 in Algorithm. 1. (c) follows from ⟨us

t ,dt⟩ ≥ ∥dt∥2 since dt is a general solution in the
convex hull of the family of vectors {us

t , s ∈ [S]} (see Lemma 2.1 Désidéri (2012)). (d) follows from
the triangle inequality.

Proof of Theorem. 3

Proof. Taking expectation on both sides of the inequality in Lemma. 3, we have

E[fs(xt+1)]

(a)

≤E[fs(xt)] +
η

2

t∑
i=0

α(t−i)E∥∇fs(xi)− us
i∥2 −

1

2
η

t∑
i=0

α(t−i)E∥di∥2 +
1

2
LE∥xt+1 − xt∥2

(b)

≤E[fs(xt)]−
1

2
η

t∑
i=0

α(t−i)E∥di∥2 +
1

2
LE∥xt+1 − xt∥2

+
η

2

t∑
j=0

α(t−j)[
L2

|A|

j∑
i=(nt−1)q

E∥xi+1 − xi∥2 + E∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2]

=E[fs(xt)]−
1

2
η

t∑
i=0

α(t−i)E∥di∥2 +
1

2
LE∥xt+1 − xt∥2

+
η

2

t∑
j=0

α(t−j)[
L2

|A|

j∑
i=(nt−1)q

E∥xi+1 − xi∥2], (35)
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where (a) follows from Eqs. 34. (b) follows from the Lemma. 1. (c) follows from
E∥∇fs(x(nt−1)q)− us

(nt−1)q∥
2 = 0 as shown in Line 5 in our Algorithm. 1.

Next, telescoping the above inequality over t from (nt − 1) q to t where t ≤ ntq − 1 and noting that
for (nt − 1) q ≤ j ≤ ntq − 1, nj = nt and let η ≤ 1

4L , we obtain

E[fs(xt+1)]

(a)

≤E[fs(x(nt−1)q)]−
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)E∥di∥2 +
1

2
L

t∑
i=(nt−1)q

E∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)[
L2

|A|

i∑
r=(nt−1)q

E∥xr+1 − xr∥2]

(b)

≤E[fs(x(nt−1)q)]−
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)E∥di∥2 +
1

2
L

t∑
i=(nt−1)q

E∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)[
L2

|A|

ntq−1∑
r=(nt−1)q

E∥xr+1 − xr∥2]

≤E[fs(x(nt−1)q)]−
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)E∥di∥2 +
1

2
L

t∑
i=(nt−1)q

E∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)[
L2

|A|
qE∥xj+1 − xj∥2]

(c)
=E[fs(x(nt−1)q)]−

η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)E∥di∥2 +
1

2
L

t∑
i=(nt−1)q

E∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)[L2E∥xj+1 − xj∥2]

(d)
=E[fs(x(nt−1)q)]−

η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)E∥di∥2 +
1

2
L

t∑
i=(nt−1)q

E∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)[L2E∥η
j∑

r=0

α(j−r)dr∥2]

(e)

≤E[fs(x(nt−1)q)]−
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)E∥di∥2 +
1

2
L

t∑
i=(nt−1)q

E∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α2(j−i)[L2η2E∥di∥2]

(f)

≤E[fs(x(nt−1)q)]−
η

4

t∑
j=(nt−1)q

j∑
i=0

α(j−i)E∥di∥2 +
1

2
L

t∑
j=(nt−1)q

E∥η
j∑

i=0

α(j−i)dj∥2

(g)

≤E[fs(x(nt−1)q)]−
η

8

t∑
j=(nt−1)q

E∥dj∥2, (36)

where (a) holds from Eqs. (35). (b) is extend i to t since i ≤ ntq−1. (c) is because q = |A| = ⌈
√
n⌉.

(d) follows from the update rule of xt shown in Line 19 in Algorithm. 1. (e) follows from the triangle
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inequality. (f) and (g) hold from η ≤ 1
2L and 0 < α < 1. We continue the proof by further driving

[fs(xT )]− [fs(x0)]

= ([fs(xq)]− [fs(x0)]) + ([fs(x2q)]− [fs(xq)]) + ·+ ([fs(xT )]− [fs(x(nT−1)q)])

≤ −[η
8
]

T−1∑
t=0

∥dt∥2 (37)

Note that [fs (xT+1)] ≥ f∗
s ≜ infx∈Rd fs(x). Hence, we have

[
η

8
]

T−1∑
t=0

∥dt∥2 ≤ [[fs(x0)]− [fs(xT )]] ≤ [[fs(x0)]− f∗
s ]. (38)

Based on the parameter setting q = |A| =
√
n, we have

[
η

8
]

T−1∑
t=0

∥dt∥2 ≤ [[fs(x0)]− f∗
s ]. (39)

Since 1
T

∑T−1
t=0 E∥dt∥2 is just common descent directions. According to Definition. 3 shown in the

paper, the quantity to our interest is ∥
∑

s∈[S] λ
s
t∇f(x)∥2.

1

T

T−1∑
t=0

E∥
∑
s∈[S]

λs
t∇fs(xt)∥2

(a)

≤ (2SL2η2
1

T
+ 2)

1

T

T−1∑
t=0

E∥dt∥2 (40)

where (a) follows from Eqs. (21).

Then, we can conclude that

1

T

T−1∑
t=0

E∥
∑
s∈[S]

λs
t∇fs(xt)∥2

(a)

≤ (2SL2η2 + 2)
[E[fs(x0)]− f∗

s ]
η
8T

, (41)

where (a) follows from Eqs. (21) and Eqs. 20.

Thus, we have

1

T

T−1∑
t=0

E∥
∑
s∈[S]

λs
t∇fs(xt)∥2 = O( 1

T
). (42)

The total sample complexity can be calculated as: ⌈Tq ⌉n+ T · |A| ≤ T+q
q n+ T

√
n = T

√
n+ n+

T
√
n = O(n +

√
nϵ−1). Thus, the overall sample complexity is O(n+

√
nϵ−1). This completes

the proof.

B.1 PROOF OD THEOREM. 4

Proof.

fs(xt+1)

(a)

≤fs(xt) +

〈
∇fs(xt),−η

T∑
t=0

α(t−i)di

〉
+

1

2
L∥η

T∑
t=0

α(t−i)di∥2

(b)

≤fs(x∗) + ⟨∇fs(xt),xt − x∗⟩ −
µ

2
∥xt − x∗∥2 +

〈
∇fs(xt),−η

T∑
t=0

α(t−i)di

〉
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+
1

2
L∥η

T∑
t=0

α(t−i)di∥2

=fs(x∗) +

〈
∇fs(xt),xt − x∗ − η

T∑
t=0

α(t−i)di

〉
− µ

2
∥xt − x∗∥2 +

1

2
L∥η

T∑
t=0

α(t−i)di∥2

=fs(x∗) +

〈
∇fs(xt)− us

t ,xt − x∗ − η

T∑
t=0

α(t−i)di

〉
+

〈
us
t ,xt − x∗ − η

T∑
t=0

α(t−i)di

〉

− µ

2
∥xt − x∗∥2 +

1

2
L∥η

T∑
t=0

α(t−i)di∥2

(c)

≤fs(x∗) +
1

2δ
∥∇fs(xt)− us

t∥2 +
δ

2
∥xt − x∗ − η

T∑
t=0

α(t−i)di∥2

+

〈
us
t ,xt − x∗ − η

T∑
t=0

α(t−i)di

〉
− µ

2
∥xt − x∗∥2 +

1

2
L∥η

T∑
t=0

α(t−i)di∥2

(d)

≤fs(x∗) +
1

2δ
∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥η
T∑

t=0

α(t−i)di∥2

+

〈
us
t ,xt − x∗ − η

T∑
t=0

α(t−i)di

〉
− µ

2
∥xt − x∗∥2 +

1

2
L∥η

T∑
t=0

α(t−i)di∥2, (43)

where (a) is due to L-smoothness, (b) follows from µ-strongly convex. (c) and (d) follow from the
Young’s inequality.

Next, we have∑
s∈[S]

λs
t [fs(xt+1)− fs(x∗)]

(a)

≤ 1

2δ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥η
T∑

t=0

α(t−i)di∥2

+

〈∑
s∈[S]

λs
tu

s
t ,xt − x∗

〉
− µ

2
∥xt − x∗∥2 +

〈∑
s∈[S]

λs
tu

s
t ,−η

T∑
t=0

α(t−i)di

〉

+
1

2
L∥η

T∑
t=0

α(t−i)di∥2

=
1

2δ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥η
T∑

t=0

α(t−i)di∥2

+

〈∑
s∈[S]

λs
tu

s
t ,xt − x∗ − η

T∑
t=0

α(t−i)di

〉
− µ

2
∥xt − x∗∥2 +

1

2
L∥η

T∑
t=0

α(t−i)di∥2

(b)
=

1

2δ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥η
T∑

t=0

α(t−i)di∥2

+

〈
dt,xt − x∗ − η

T∑
t=0

α(t−i)di

〉
− µ

2
∥xt − x∗∥2 +

1

2
L∥η

T∑
t=0

α(t−i)di∥2

(c)

≤ 1

2η

(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− 1

2
η∥

T∑
t=0

α(t−i)di∥2 −
µ

2
∥xt − x∗∥2
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+
1

2
L∥η

T∑
t=0

α(t−i)di∥2 +
4

µ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2 +
µ

8
∥xt − x∗∥2 +

µ

8
∥η

T∑
t=0

α(t−i)di∥2

=
1

2η

(
(1− 3µη

4
)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− (

1

2
η − µ

8
η2 − 1

2
Lη2)∥

T∑
t=0

α(t−i)di∥2

+
4

µ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2

(e)

≤ 1

2η

(
(1− 3µη

4
)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− (

1

2
η − µ

8
η2 − 1

2
Lη2)∥

T∑
t=0

α(t−i)di∥2

+
4

µ
(
L2

|A|

t∑
i=(nt−1)q

∥xi+1 − xi∥2 +
∑
s∈[S]

λs
t∥∇fs(x(nt−1)q)− us

(nt−1)q∥
2)

(f)
=

1

2η

(
(1− 3µη

4
)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− (

1

2
η − µ

8
η2 − 1

2
Lη2)∥

T∑
t=0

α(t−i)di∥2

+
4

µ
(
L2

|A|

t∑
i=(nt−1)q

∥xi+1 − xi∥2). (44)

where (a) follows from Eqs. (43). (b) is because the definition dt =
∑

s∈[S] λ
s
tu

s
t as shown in

Line 14 in Algorithm. 1. (c) is because ∥xt − x∗∥2 − ∥xt+1 − x∗∥2 = −η2∥
∑T

t=0 α
(t−i)di∥2 +

2
〈
η
∑T

t=0 α
(t−i)di,xt − x∗

〉
, and we choose δ = µ

8 . (e) and (f) follow from
∑

s∈[S] λ
s
t = 1 and

∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2 = 0.

Next, telescoping the above inequality over t from (nt − 1) q to t where t ≤ ntq − 1 and noting that
for (nt − 1) q ≤ j ≤ ntq − 1, nj = nt, we obtain

t∑
i=(nt−1)q

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)]

(a)
=

1

2η

(1− 3µη

4
)

t∑
i=(nt−1)q

∥xi − x∗∥2 −
t∑

i=(nt−1)q

∥xi+1 − x∗∥2


− (
1

2
η − µ

8
η2 − 1

2
Lη2)

t∑
i=(nt−1)q

∥
T∑

t=0

α(t−i)di∥2 +
4

µ
(
L2

|A|

t∑
j=(nt−1)q

j∑
i=(nj−1)q

∥xi+1 − xi∥2)

(b)

≤ 1

2η

(1− 3µη

4
)

t∑
i=(nt−1)q

∥xi − x∗∥2 −
t∑

i=(nt−1)q

∥xi+1 − x∗∥2


− (
1

2
η − µ

8
η2 − 1

2
Lη2)

t∑
i=(nt−1)q

∥
T∑

t=0

α(t−i)di∥2 +
4

µ
(
L2

|A|

t∑
j=(nt−1)q

t∑
i=(nt−1)q

∥xi+1 − xi∥2)

(c)
=

1

2η

(1− 3µη

4
)

t∑
i=(nt−1)q

∥xi − x∗∥2 −
t∑

i=(nt−1)q

∥xi+1 − x∗∥2


− (
1

2
η − µ

8
η2 − 1

2
Lη2 − 4

µ

L2qη2

|A|
)

t∑
i=(nt−1)q

∥
T∑

t=0

α(t−i)di∥2), (45)

where (a) follows from Eqs. (44), (b) extend j to t. (c) follows from the update rule of xt+1 shown
in Eqs. (5).

We continue the proof by further driving
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T∑
t=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)]

=

q∑
i=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)] +

2q∑
i=q

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)] +

T∑
i=(nT−1)q

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)]

(a)

≤ 1

2η

(
(1− 3µη

4
)

T∑
i=0

∥xi − x∗∥2 −
T∑

t=0

∥xi+1 − x∗∥2
)

− (
1

2
η − µ

8
η2 − 1

2
Lη2 − 4

µ

L2qη2

|A|
)

T∑
t=0

∥
T∑

t=0

α(t−i)di∥2), (46)

where (a) follows from Eqs. (45). Next, we have

T∑
t=0

∑
s∈[S]

λs
t [fs(xi)− fs(x∗)]

=

T∑
t=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)− fs(xi+1) + fs(xi)]

=

T∑
t=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)]−

T∑
t=0

∑
s∈[S]

λs
t |fs(xi+1)− fs(xi)|

(a)

leq
1

2η

(
(1− 3µη

4
)

T∑
i=0

∥xi − x∗∥2 −
T∑

t=0

∥xi+1 − x∗∥2
)

− (
1

2
η − µ

8
η2 − 1

2
Lη2 − 4

µ

L2qη2

|A|
− [

η

4
− η3q

2

L2

|A|
])

T∑
t=0

∥
T∑

t=0

α(t−i)di∥2, (47)

where (a) follows from Eqs. (46). Let |A| = q = ⌈
√
n⌉ and η ≤ min{ 1

2µ ,
1
8L ,

µ
64L2 }, we have

( 12η −
µ
8 η

2 − 1
2Lη

2 − 4
µ

L2qη2

|A| − [η4 −
η3q
2

L2

|A| ]) >
η
16 > 0

Thus, we have

T∑
t=0

∑
s∈[S]

λs
t [fs(xi)− fs(x∗)] ≤

1

2η

(
(1− 3µη

4
)

T∑
i=0

∥xi − x∗∥2 −
T∑

t=0

∥xi+1 − x∗∥2
)
. (48)

Then, we have

E[
∑
s∈[S]

λs
t [fs(xt)− fs(x∗)]] ≤

1

2η

(
(1− 3µη

4
)E∥xt − x∗∥2 − E∥xt+1 − x∗∥2

)
. (49)

Averaging using weight wt = (1− 3µη
4 )1−t and using such weight to pick output x, by using Lemma

1 in Karimireddy et al. (2020) with η ≥ 1
uR , we have

E[
∑
s∈[S]

λs
t [fs(xt)− fs(x∗)]] ≤ ∥x0 − x∗∥2µ exp(−3ηµT

4
) (50)
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= O(µ exp(−µT )). (51)

Then we have the convergence rate E[
∑

s∈[S] λ
s
t [fs(xt)− fs(x∗)]] = O(µ exp(−µT )). the total

sample complexity can be calculated as: ⌈Tq ⌉n+ T · |A| ≤ T+q
q n+ T

√
n = T

√
n+ n+ T

√
n =

O(n+
√
n ln(µ/ϵ). Thus, the overall sample complexity is O(n+

√
n ln(µ/ϵ). This completes the

proof.

C PROOF OF CONVERGENCE OF STIMULUS+

Proof of Theorem. 5 [Part 1]

Proof. Recall that Ns = min{cγσ2(γt)
−1, cϵσ

2ϵ−1, n}. Then we have

I(Ns<n)

Ns
≤ 1

min{cϵσ2(ϵ)−1, cγσ2(γt)−1}

= max{ γt
cγσ2

,
ϵ

cϵσ2
} ≤ γt

cγσ2
+

ϵ

cϵσ2
. (52)

From Lemma. 2, we have

[fs(xt+1)]
(a)

≤ [fs(xt)] +
η

2
∥∇fs(xt)− us

t∥2 −
η

4
∥dt∥2

(b)

≤ [fs(xt)]−
η

4
∥dt∥2

+
η

2
[
L2

|A|

t∑
i=(nt−1)q

∥xi+1 − xi∥2 + ∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2]

(c)

≤ [fs(xt)]−
η

4
∥dt∥2 +

η

2
[
L2

|A|

t∑
i=(nt−1)q

η2∥di∥2 +
I(Ns<n)

Ns
σ2], (53)

where (a) follows from Lemma. 2. (b) follows from Lemma. 1. (c) follows from the update rule
shown in Eqs. (6).

Next, telescoping the above inequality over t from (nt − 1) q to t where t ≤ ntq − 1 and noting that
for (nt − 1) q ≤ j ≤ ntq − 1, nj = nt, and aking expectation on both sides of the inequality in Eqs.
(53),we obtain

E[fs(xt+1)]

(a)

≤E[fs(x(nt−1)q)]−
η

4

t∑
j=(nt−1)q

E∥dj∥2

+
η

2
[
L2

|A|

t∑
j=(nt−1)q

j∑
i=(nt−1)q

η2E∥di∥2 +
t∑

i=(nt−1)q

I(Ns<n)

Ns
σ2]

(b)

≤E[fs(x(nt−1)q)]−
η

4

t∑
j=(nt−1)q

E∥dj∥2

+
η

2

t∑
i=(nt−1)q

[
L2

|A|

t∑
j=(nt−1)q

t∑
i=(nt−1)q

η2E∥di∥2] +
η

2

t∑
i=(nt−1)q

I(Ns<n)

Ns
σ2
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=E[fs(x(nt−1)q)]−
η

4

t∑
j=(nt−1)q

E∥dj∥2

+
η3q

2
[
L2

|A|

t∑
j=(nt−1)q

E∥dj∥2] +
η

2

t∑
i=(nt−1)q

I(Ns<n)

Ns
σ2

(c)
=E[fs(x(nt−1)q)]− [

η

4
− η3q

2

L2

|A|
]

t∑
j=(nt−1)q

E∥dj∥2 +
η

2

t∑
i=(nt−1)q

(
γi
cγ

+
ϵ

cϵ
), (54)

where (a) follows from Eqs. (53), (b) extends j to t. (c) follows from Eqs. (52)

Recall that γt = 1
q

∑t
i=(nt−1)q ∥dt∥2. Then, we have We continue the proof by further driving

E[fs(xT )− fs(x0)]

= E[([fs(xq)]− [fs(x0)]) + ([fs(x2q)]− [fs(xq)]) + ·+ ([fs(xT )]− [fs(x(nT−1)q)])]

(a)

≤ −[η
4
− η3q

2

L2

|A|
]

T−1∑
t=0

E∥dt∥2 +
η

2

T−1∑
t=0

(
E[γi]
cγ

+
ϵ

cϵ
)

(b)

≤ −[η
4
− η3q

2

L2

|A|
− η

2cγ
]

T−1∑
t=0

E∥dt∥2 +
η

2
T

ϵ

cϵ
, (55)

where (a) is from Eqs. (54). (b) follows from γt =
1
q

∑t
i=(nt−1)q ∥dt∥2.

Note that [fs (xT+1)] ≥ f∗
s ≜ infx∈Rd fs(x). Let cγ > 4. Hence, we have

[
η

8
− η3q

2

L2

|A|
− η

2cγ
]

T−1∑
t=0

E∥dt∥2 ≤ E[[fs(x0)]− [fs(xT )]] ≤ E[[fs(x0)]− f∗
s ] +

η

2
T

ϵ

cϵ
. (56)

Based on the parameter setting q = |A| = ⌈
√
n⌉, we have

[
η

8
− η3L2

2
− η

2cγ
]

T−1∑
t=0

E∥dt∥2 ≤ E[[fs(x0)]− f∗
s ] +

η

2
T

ϵ

cϵ
. (57)

Thus, we have

1

T

T−1∑
t=0

E∥dt∥2 ≤
E[[fs(x0)]− f∗

s ]

[η8 −
η3L2

2 − η
2cγ

]T
+

η

2

ϵ

cϵ
. (58)

Let η ≤ 1
4L , cγ ≥ 8, cϵ ≥ η, we have

Since 1
T

∑T−1
t=0 E∥dt∥2 is just common descent directions. According to Definition. 3 shown in the

paper, the quantity to our interest is ∥
∑

s∈[S] λ
s
t∇f(x)∥2.

1

T

T−1∑
t=0

E∥
∑
s∈[S]

λs
t∇fs(xt)∥2

(a)

≤ (2SL2η2 + 2)
1

T

T−1∑
t=0

E∥dt∥2 (59)

where (a) follows from Eqs. (21).

Then, we can conclude that

1

T

T−1∑
t=0

E∥
∑
s∈[S]

λs
t∇fs(xt)∥2

(a)

≤ (2SL2η2 + 2)(
E[[fs(x0)]− f∗

s ]

[η8 −
η3L2

2 − η
2cγ

]T
+

η

2

ϵ

cϵ
), (60)

where (a) follows from Eqs. (21) and Eqs. 20.
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Thus, we have

1

T

T−1∑
t=0

E∥
∑
s∈[S]

λs
t∇fs(xt)∥2 = O( 1

T
). (61)

The total sample complexity can be calculated as: ⌈Tq ⌉n+ T · |A| ≤ T+q
q n+ T

√
n = T

√
n+ n+

T
√
n = O(n +

√
nϵ−1). Thus, the overall sample complexity is O(n+

√
nϵ−1). This completes

the proof.

C.1 PROOF OF THEOREM. 6 [PART 1]

Proof.

fs(xt+1)

(a)

≤fs(xt) + ⟨∇fs(xt),−ηdt⟩+
1

2
L∥ηdt∥2

(b)

≤fs(x∗) + ⟨∇fs(xt),xt − x∗⟩ −
µ

2
∥xt − x∗∥2 + ⟨∇fs(xt),−ηdt⟩+

1

2
L∥ηdt∥2

=fs(x∗) + ⟨∇fs(xt),xt − x∗ − ηdt⟩ −
µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2

=fs(x∗) + ⟨∇fs(xt)− us
t ,xt − x∗ − ηdt⟩+ ⟨us

t ,xt − x∗ − ηdt⟩

− µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2

(c)

≤fs(x∗) +
1

2δ
∥∇fs(xt)− us

t∥2 +
δ

2
∥xt − x∗ − ηdt∥2 + ⟨us

t ,xt − x∗ − ηdt⟩

− µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2

(d)

≤fs(x∗) +
1

2δ
∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥ηdt∥2

+ ⟨us
t ,xt − x∗ − ηdt⟩ −

µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2, (62)

where (a) follows from L-smoothness, (b) follows from µ-strongly convexity. (c) follows from
Young’s inequality, and (d) follows from triangle inequality.

Then, we have∑
s∈[S]

λs
t [fs(xt+1)− fs(x∗)] (63)

(a)

≤ 1

2δ
∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥ηdt∥2

+

〈∑
s∈[S]

λs
tu

s
t ,xt − x∗

〉
− µ

2
∥xt − x∗∥2 +

〈∑
s∈[S]

λs
tu

s
t ,−ηdt

〉
+

1

2
L∥ηdt∥2 (64)

=
1

2δ
∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥ηdt∥2

+

〈∑
s∈[S]

λs
tu

s
t ,xt − x∗ − ηdt

〉
− µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2 (65)

(b)

≤ 1

2δ
∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥ηdt∥2
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+ ⟨dt,xt − x∗ − ηdt⟩ −
µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2 (66)

= ⟨dt,xt − x∗⟩ − η∥dt∥2 −
µ

2
∥xt − x∗∥2 +

1

2
Lη2∥dt∥2

+
1

2δ
∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥ηdt∥2

(c)
=

1

2η

(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− 1

2
η∥dt∥2 −

µ

2
∥xt − x∗∥2 +

1

2
Lη2∥dt∥2

+
4

µ
∥∇fs(xt)− us

t∥2 +
µ

8
∥xt − x∗∥2 +

µ

8
∥ηdt∥2 (67)

=
1

2η

(
(1− 3µη

4
)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− (

1

2
η − µ

8
η2 − 1

2
Lη2)∥dt∥2

+
4

µ
∥∇fs(xt)− us

t∥2 (68)

(d)

≤ 1

2η

(
(1− 3µη

4
)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− (

1

2
η − µ

8
η2 − 1

2
Lη2)∥dt∥2

+
4

µ
(
L2

|A|

t∑
i=(nt−1)q

∥xi+1 − xi∥2 + ∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2) (69)

(f)

≤ 1

2η

(
(1− 3µη

4
)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− (

1

2
η − µ

8
η2 − 1

2
Lη2)∥dt∥2

+
4

µ
(
L2

|A|

t∑
i=(nt−1)q

∥xi+1 − xi∥2) +
µ

4

I(Ns<n)

Ns
σ2. (70)

where (a) follows from Eqs.(62). (b) follows from the definition dt =
∑

s∈[S] λ
s
tu

s
t as shown in Line

14 in Algorithm. 1. (c) is because ∥xt − x∗∥2 − ∥xt+1 − x∗∥2 = −η2∥dt∥2 + 2 ⟨ηdt,xt − x∗⟩.
(d) is from Lemma. 1 and we choose δ = µ

8 . (e) is from Eqs. (52).

Next, telescoping the above inequality over t from (nt − 1) q to t where t ≤ ntq − 1 and noting that
for (nt − 1) q ≤ j ≤ ntq − 1, nj = nt, we obtain

t∑
i=(nt−1)q

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)]

(a)

≤ 1

2η

(1− 3µη

4
)

t∑
i=(nt−1)q

∥xi − x∗∥2 −
t∑

i=(nt−1)q

∥xi+1 − x∗∥2


− (
1

2
η − µ

8
η2 − 1

2
Lη2)

t∑
i=(nt−1)q

∥di∥2 +
4

µ
(
L2

|A|

t∑
j=(nt−1)q

j∑
i=(nj−1)q

∥xi+1 − xi∥2)

+
µS

4

t∑
i=(nt−1)q

I(Ns<n)

Ns
σ2

(b)

≤ 1

2η

(1− 3µη

4
)

t∑
i=(nt−1)q

∥xi − x∗∥2 −
t∑

i=(nt−1)q

∥xi+1 − x∗∥2


− (
1

2
η − µ

8
η2 − 1

2
Lη2)

t∑
i=(nt−1)q

∥di∥2 +
4

µ
(
L2

|A|

t∑
j=(nt−1)q

t∑
i=(nt−1)q

∥xi+1 − xi∥2)

+
µ

4

t∑
i=(nt−1)q

I(Ns<n)

Ns
σ2
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(c)

≤ 1

2η

(1− 3µη

4
)

t∑
i=(nt−1)q

∥xi − x∗∥2 −
t∑

i=(nt−1)q

∥xi+1 − x∗∥2


− (
1

2
η − µ

8
η2 − 1

2
Lη2 − 4

µ

L2qη2

|A|
)

t∑
i=(nt−1)q

∥di∥2)

+
µ

4

t∑
i=(nt−1)q

(
[γi]

cγ
+

ϵ

cϵ
), (71)

where (a) follows from Eqs. (63) and the fact that λs
t ≤ 1∀s ∈ [S]. (b) extends j to t. (c) is because

t− (nt − 1)q ≥ q. We continue the proof by further driving

T∑
t=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)]

=

q∑
i=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)] +

2q∑
i=q

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)] +

·+
T∑

i=(nT−1)q

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)]

(a)

≤ 1

2η

(
(1− 3µη

4
)

T∑
i=0

∥xi − x∗∥2 −
T∑

t=0

∥xi+1 − x∗∥2
)

− (
1

2
η − µ

8
η2 − 1

2
Lη2 − 4

µ

L2qη2

|A|
+

µ

4cγ
)

T∑
t=0

∥di∥2 +
µ

4
T

ϵ

cϵ
, (72)

where (a) follows from Eqs. (71) and γt =
1
q

∑t
i=(nt−1)q ∥dt∥2.

Next, we have
T∑

t=0

∑
s∈[S]

λs
t [fs(xi)− fs(x∗)]

=

T∑
t=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)− fs(xi+1) + fs(xi)]

=

T∑
t=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)] +

T∑
t=0

∑
s∈[S]

λs
t |fs(xi+1)− fs(xi)|

(a)

≤ 1

2η

(
(1− 3µη

4
)

T∑
i=0

∥xi − x∗∥2 −
T∑

t=0

∥xi+1 − x∗∥2
)

− (
1

2
η − µ

8
η2 − 1

2
Lη2 − 4

µ

L2qη2

|A|
− [

η

4
− η3q

2

L2

|A|
]− µ

4cγ
)

T∑
t=0

∥di∥2 +
µ

4
T

ϵ

cϵ
, (73)

where (a) follows from Eqs. (72).

Let |A| = q = ⌈
√
n⌉ and η ≤ min{ 1

2µ ,
1
8L ,

µ
64L2 }, cγ ≥ 8µ

η , we have ( 12η −
µ
8 η

2 − 1
2Lη

2 −
4
µ

L2qη2

|A| − [η4 −
η3q
2

L2

|A| ]−
µ

4cγ
) > η

32 > 0

Thus, we have
T∑

t=0

∑
s∈[S]

λs
t [fs(xi)− fs(x∗)] ≤

1

2η

(
(1− 3µη

4
)

T∑
i=0

∥xi − x∗∥2 −
T∑

t=0

∥xi+1 − x∗∥2
)
. (74)
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Then, we have

E[
∑
s∈[S]

λs
t [fs(xt)− fs(x∗)]] ≤

1

2η

(
(1− 3µη

4
)E∥xt − x∗∥2 − E∥xt+1 − x∗∥2

)
+

µ

4
T

ϵ

cϵ
.

(75)

Averaging using weight wt = (1− 3µη
4 )1−t and using such weight to pick output x. By using Lemma

1 in Karimireddy et al. (2020) with η ≥ 1
uR , cϵ >

µ
2 , we have

E[
∑
s∈[S]

λs
t [fs(xt)− fs(x∗)]] ≤ ∥x0 − x∗∥2µ exp(−3ηµT

4
) +

µ

4
T

ϵ

cϵ
(76)

= O(µ exp(−µT )). (77)

Then we have the convergence rate E[
∑

s∈[S] λ
s
t [fs(xt)− fs(x∗)]] = O(µ exp(−µT )).

The total sample complexity can be calculated as: ⌈Tq ⌉n + T · |A| ≤ T+q
q n + T

√
n = T

√
n +

n+ T
√
n = O(n+

√
n ln(µ/ϵ). Thus, the overall sample complexity is O(n+

√
n ln(µ/ϵ). This

completes the proof.

D PROOF OF CONVERGENCE OF STIMULUS-M+

Proof of Theorem. 5 [Part 2]

Proof. From Lemma. 3, we have

[fs(xt+1)]

(a)

≤ [fs(xt)] +
η

2

t∑
i=0

α(t−i)∥∇fs(xi)− us
i∥2 −

1

2
η

t∑
i=0

α(t−i)∥di∥2 +
1

2
L∥xt+1 − xt∥2

(b)

≤ [fs(xt)]−
1

2
η

t∑
i=0

α(t−i)∥di∥2 +
1

2
L∥xt+1 − xt∥2

+
η

2

t∑
j=0

α(t−j)[
L2

|A|

j∑
i=(nt−1)q

∥xi+1 − xi∥2 + ∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2]

(c)

≤ [fs(xt)]−
1

2
η

t∑
i=0

α(t−i)∥di∥2 +
1

2
L∥xt+1 − xt∥2 +

η

2

t∑
j=0

α(t−j)[
L2

|A|

j∑
i=(nt−1)q

∥xi+1 − xi∥2]

+
η

2

t∑
i=0

α(t−i)(
γi
cγ

+
ϵ

cϵ
), (78)

where (a) follows from Lemma 3. (b) follows from Lemma. 1. (c) follows from Eqs. (52).

Next, telescoping the above inequality over t from (nt − 1) q to t where t ≤ ntq − 1 and noting that
for (nt − 1) q ≤ j ≤ ntq − 1, nj = nt and let η ≤ 1

4L , we obtain

[fs(xt+1)]

(a)

≤ [fs(x(nt−1)q)]−
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)∥di∥2 +
1

2
L

t∑
i=(nt−1)q

∥xi+1 − xi∥2
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+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)[
L2

|A|

i∑
r=(nt−1)q

∥xr+1 − xr∥2]

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)(
[γi]

cγ
+

ϵ

cϵ
)

(b)

≤ [fs(x(nt−1)q)]−
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)∥di∥2 +
1

2
L

t∑
i=(nt−1)q

∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)[
L2

|A|
q∥xj+1 − xj∥2]

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)(
[γi]

cγ
+

ϵ

cϵ
)

(c)
=[fs(x(nt−1)q)]−

η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)∥di∥2 +
1

2
L

t∑
i=(nt−1)q

∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)[L2∥xj+1 − xj∥2]

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)(
[γi]

cγ
+

ϵ

cϵ
)

(d)

≤ [fs(x(nt−1)q)]−
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)∥di∥2 +
1

2
L

t∑
i=(nt−1)q

∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)[L2∥η
j∑

r=0

α(j−r)dr∥2]

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)(
[γi]

cγ
+

ϵ

cϵ
)

=[fs(x(nt−1)q)]−
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)∥di∥2 +
1

2
L

t∑
i=(nt−1)q

∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α3(j−i)[L2η2∥di∥2]

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)(
[γi]

cγ
+

ϵ

cϵ
)

(e)

≤ [fs(x(nt−1)q)]−
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)∥di∥2 +
1

2
L

t∑
i=(nt−1)q

∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)[L2η2∥di∥2]

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)(
[γi]

cγ
+

ϵ

cϵ
)

31



Under review as a conference paper at ICLR 2024

(f)

≤ [fs(x(nt−1)q)]−
η

4

t∑
j=(nt−1)q

j∑
i=0

α(j−i)∥di∥2 +
1

2
L

t∑
i=(nt−1)q

∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)(
[γi]

cγ
+

ϵ

cϵ
)

(g)

≤ [fs(x(nt−1)q)]−
η

4

t∑
j=(nt−1)q

j∑
i=0

α(j−i)∥di∥2 +
1

2
L

t∑
j=(nt−1)q

∥η
j∑

i=0

α(j−i)dj∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)(
[γi]

cγ
+

ϵ

cϵ
)

(h)

≤ [fs(x(nt−1)q)]−
η

8

t∑
j=(nt−1)q

j∑
i=0

α(j−i)∥di∥2 +
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)(
[γi]

cγ
+

ϵ

cϵ
), (79)

where (a) follows from Eqs. (78). (b) follows from i ≤ ntq. (c) follows from q = |A| = ⌈
√
n⌉.

(d) and (g) follow from the update rule of xt shown in Line 19 in Algorithm. 1. (e) follows from
0 < α < 1, then we have α2(j − i) < α(j−i). (f) and (h) follow from η ≤ 1

4L Recall that
γt =

1
q

∑t
i=(nt−1)q ∥dt∥2. Then, we have

E[fs(xT )]− [fs(x0)]

= E([fs(xq)]− [fs(x0)]) + ([fs(x2q)]− [fs(xq)]) + ·+ ([fs(xT )]− [fs(x(nT−1)q)])

(a)

≤ −[η
8
]

T−1∑
t=0

j∑
i=0

α(j−i)E∥dt∥2 +
η

2cγ

T−1∑
t=0

j∑
i=0

α(j−i)E∥dt∥2 +
η

2
Tq

ϵ

cϵ

(b)

≤ −[ η
16

]

T−1∑
t=0

j∑
i=0

α(j−i)E∥dt∥2 +
η

2
Tq

ϵ

cϵ

(c)

≤ −[ η
16

]

T−1∑
t=0

E∥dt∥2 +
η

2
Tq

ϵ

cϵ
, (80)

where (a) follows from cγ ≥ 8, (c) follows from 0 < α < 1.

Note that [fs (xT+1)] ≥ f∗
s ≜ infx∈Rd fs(x). Hence, we have

[
η

16
]

T−1∑
t=0

∥dt∥2 ≤ [[fs(x0)]− [fs(xT )]] ≤ [[fs(x0)]− f∗
s ]. (81)

Based on the parameter setting q2 = |A| =
√
n, we have

[
η

16
]

T−1∑
t=0

∥dt∥2 ≤ [[fs(x0)]− f∗
s ]. (82)

Thus, we have

1

T

T−1∑
t=0

∥dt∥2 ≤
[[fs(x0)]− f∗

s ]

[ η
16 ]T

. (83)

Since 1
T

∑T−1
t=0 E∥dt∥2 is just common descent directions. According to Definition. 3 shown in the

paper, the quantity to our interest is ∥
∑

s∈[S] λ
s
t∇f(x)∥2.

1

T

T−1∑
t=0

E∥
∑
s∈[S]

λs
t∇fs(xt)∥2

(a)

≤ (2SL2η2 + 2)
1

T

T−1∑
t=0

E∥dt∥2 (84)
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where (a) follows from Eqs. (21).

Then, we can conclude that

1

T

T−1∑
t=0

E∥
∑
s∈[S]

λs
t∇fs(xt)∥2 = O( 1

T
). (85)

The total sample complexity can be calculated as: ⌈Tq ⌉n+ T · |A| ≤ T+q
q n+ T

√
n = T

√
n+ n+

T
√
n = O(n +

√
nϵ−1). Thus, the overall sample complexity is O(n+

√
nϵ−1). This completes

the proof.

D.1 PROOF OF THEOREM. 6 [PART 2]

Proof.
fs(xt+1)

(a)

≤fs(xt) +

〈
∇fs(xt),−η

T∑
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where (a) follows from L-smoothness assumption, (b) follows from µ-strongly convex. (c) and (d)
follow from the triangle inequality.

∑
s∈[S]

λs
t [fs(xt+1)− fs(x∗)] (87)
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where (a) follows from Eqs. (86), (b) follows from ∥xt − x∗∥2 − ∥xt+1 − x∗∥2 = −η2∥dt∥2 +
2 ⟨ηdt,xt − x∗⟩ and we choose δ = µ

8 . (c) is from Lemma. 1. (d) is from Eqs. (52). (d) follows
from 0 < λs

t < 1,∀s ∈ [S]
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Next, telescoping the above inequality over t from (nt − 1) q to t where t ≤ ntq − 1 and noting that
for (nt − 1) q ≤ j ≤ ntq − 1, nj = nt, we obtain

t∑
i=(nt−1)q
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where (a) follows from Eqs. (87), (b) extends j to t. (c) follows from t ≤ ntq − 1.

We continue the proof by further driving

T∑
t=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)]

=

q∑
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∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)] +

2q∑
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·+
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i=(nT−1)q

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)]
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Next, we have
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where (a) follows from Eqs. (90). Let |A| = q = ⌈
√
n⌉ and η ≤ min{ 1

2µ ,
1
8L ,

µ
64L2 }, cγ ≥ 8µ

η , cη ≥
µ2, we have ( 12η −
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32 > 0

Thus, we have
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Then, we have

E[
∑
s∈[S]

λs
t [fs(xt)− fs(x∗)]]

≤ 1

2η

(
(1− 3µη

4
)E∥xt − x∗∥2 − E∥xt+1 − x∗∥2

)
+

ϵ

2
. (93)

Averaging using weight wt = (1− 3µη
4 )1−t and using such weight to pick output x. By using Lemma

1 in Karimireddy et al. (2020) with η ≥ 1
uR , we have

E[
∑
s∈[S]

λs
t [fs(xt)− fs(x∗)]] ≤ ∥x0 − x∗∥2µ exp(−3ηµT

4
) (94)

= O(µ exp(−µT )). (95)
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Then we have the convergence rate E[
∑

s∈[S] λ
s
t [fs(xt)− fs(x∗)]] = O(µ exp(−µT )).

The total sample complexity can be calculated as: ⌈Tq ⌉n + T · |A| ≤ T+q
q n + T

√
n = T

√
n +

n+ T
√
n = O(n+

√
n ln(µ/ϵ). Thus, the overall sample complexity is O(n+

√
n ln(µ/ϵ). This

completes the proof.

E ADDITIONAL EXPERIMENT ON STRONGLY-CONVEX OPTIMIZATION
PROBLEM

In this section, we conducted experiments to assess the performance of our algorithms on a strongly-
convex optimization problem, where F(x) = [f1(x) = x2, f2(x) = e−x]. For this experiment, we
selected hyperparameters η = 0.005 and α = 0.3, while introducing stochasticity into the gradient
by adding Gaussian noise with a range of (-1, 1). As shown in Fig. 4, it is evident that all of the
algorithms successfully achieved convergence. Notably, the momentum-based algorithms, namely
MOCO, STIMULUS-M, and STIMULUS-M+, exhibited faster convergence compared to MGD,
MSGD, STIMULUS, and STIMULUS+ . We would also like to note that there isn’t a significant
difference between the stochastic algorithms (SMGD, MGD) and other algorithms. This is not
necessarily because the stochastic algorithms are inferior, but perhaps because the strongly-convex
function in question is too simplistic.
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Figure 4: Convergence comparison on strongly-convex optimization problem.

Table 3: Results of normalized loss with the river flow dataset and learning tasks.

# of samples Tasks

0 1 2 3 4 5 6 7

SMGD 8000 0.985 0.558 0.521 0.384 1 0.862 0.667 0.550
MOCO 8000 0.985 0.753 1 0.399 0.632 1 0.595 0.926
MGDA 128000 0.989 0.396 0.532 0.174 0.589 0.945 0.417 0.669
STIMULUS 27200 .985 0.546 0.675 1 0.077 0.898 0.417 0.281
STIMULUS+ 20947 0.996 1 0.528 0.178 0.990 0.395 0.427 1
STIMULUS-M 27200 0.996 0.864 0.530 0.475 0.036 0.271 1 0.264
STIMULUS-M+ 21085 1 0.596 0.627 0.1781 0.0376 0.482 0.430 0.055
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