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Abstract

Different distribution shifts require different algorithmic and operational interven-
tions. Methodological research must be grounded by the specific shifts they address.
Although nascent benchmarks provide a promising empirical foundation, they im-
plicitly focus on covariate shifts, and the validity of empirical findings depends on
the type of shift, e.g., previous observations on algorithmic performance can fail to
be valid when the Y |X distribution changes. We conduct a thorough investigation
of natural shifts in 5 tabular datasets over 86,000 model configurations, and find
that Y |X-shifts are most prevalent. To encourage researchers to develop a refined
language for distribution shifts, we build WHYSHIFT, an empirical testbed of
curated real-world shifts where we characterize the type of shift we benchmark
performance over. Since Y |X-shifts are prevalent in tabular settings, we identify
covariate regions that suffer the biggest Y |X-shifts and discuss implications for
algorithmic and data-based interventions. Our testbed highlights the importance of
future research that builds an understanding of why distributions differ.2

1 Introduction

The performance of predictive models has been observed to degrade under distribution shifts in a
wide range of applications, such as healthcare [9, 95, 76, 93], economics [36, 25], education [6],
vision [74, 63, 86, 98], and language [62, 7]. Distribution shifts vary in type, typically defined as
either a change in the marginal distribution of the covariates (X-shifts) or the conditional relationship
between the outcome and covariate (Y |X-shifts). Real-world scenarios comprise of both types of
shifts. In computer vision [62, 47, 81, 38, 101], Y |X-shifts are less likely to occur as Y is constructed
from human knowledge given an input X , unless the labeling noise is severe. For tabular datasets,
Y |X-shifts can be more common because of missing variables and hidden confounders. For example,
the prevalence of a disease may be affected by unrecorded covariates whose distribution changes
across domains, such as lifestyle factors and socioeconomic status [39, 103, 93].

Different types of distribution shifts require different solutions. When facing X-shifts, the implicit
goal of many researchers is to develop a single robust model that can be generalized effectively across
multiple domains. Various algorithms have been developed to align the marginal distributions (PX ),
including domain adaptation and importance sampling methods. However, under Y |X-shifts, there
may be a fundamental trade-off between learning algorithms: to perform well on a target distribution,
a model may have to necessarily perform worse on others. Algorithmically, typical methods for
∗Equal contribution
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Figure 1. Relative regret (1.1) in typical benchmarks [26, 31] (left 5 bars) and seven settings designed
in our benchmark (right 7 bars). We use XGBoost F here for illustration.

addressing Y |X-shifts include distributionally robust optimization (DRO) [13, 85, 28, 80, 27] and
causal learning methods [72, 8, 83, 46]. Operationally, the modeler can identify and collect an
unobserved confounderC such that Y |X,C remains invariant across domains, or resort to overhauling
the entire model development pipeline to collect more samples from the target.

However, existing distribution shift benchmarks only focus on X-shifts [74, 47, 107, 81, 101]. To
illustrate this concretely, consider popular tabular datasets used to benchmark model performance over
demographic subgroups: Adult, BRFSS, COMPAS, ACS Public Coverage, and ACS Income [3,
102, 31]. We take the largest demographic group as training P and the smallest as target Q to
simulate subgroup shifts, e.g., in Adult, P =white men and Q =non-white women. We measure the
optimality gap of the model fP trained on P as measured on the target Q using the relative regret

EQ[`(Y, fP (X))]

minf∈F EQ[`(Y, f(X))]
− 1, where fP ∈ argmin

f∈F
EP [`(Y, f(X))] (1.1)

and `(·, ·) is the 0-1 loss. For these widely-used benchmarks, the relative regret is small (left 5 bars in
Figure 1), suggesting the Y |X distribution is largely transferable across those demographic groups.

To study diverse distribution shift patterns, we consider 5 real-world tabular datasets constructed
from the US Census (as proposed by Ding et al. [25]) and traffic measurements [64, 65, 2, 1]. We
focus on spatiotemporal shifts to model most common natural shifts. Our full benchmark covers 22
settings (see Table 3 in Appendix D), where each setting includes one source (e.g., California) and
a number of possible targets (e.g., other states). For illustration purposes, we focus on 7 settings
covering 169 possible source-target pairs (see Table 2) and carefully select one target per setting to
represent a wide range of Y |X-shifts (right bars in Figure 1).

We find Y |X-shifts constitute a substantial proportion of real-world distribution shifts, yet previous
(unqualified) empirical findings in the literature only hold over mild X-shifts and fail to hold over
Y |X-shifts (Section 2). Out of 169 source-target pairs with significant performance degradation
(> 8 percentage points of accuracy drop), 80% of them are primarily attributed to Y |X-shifts. Y |X-
shifts introduce considerable performance variations on the target distribution, leading to different
relationships between in- and out-of-distribution performances across settings and datasets. This is
in stark contrast to the recently observed accuracy-on-the-line phenomenon [63], where the in- and
out-of-distribution performance have been posited to exhibit a strong linear relationship. In Figure 2,
we showcase how the accuracy-on-the-line trend fails to hold when Y |X-shifts are strong. Our results
imply that the standard practice of blindly evaluating performance over various shifts is only justified
over X-shifts, where we expect there to be a single model that is robust across domains.

For severe Y |X-shifts, the training data may not even be informative for modeling the Y |X rela-
tionship in the target. To inform algorithmic and data-based interventions, we must understand why
the distribution changed. In Section 3, we illustrate the need for more methodological research that
builds a deep understanding of distributional differences. As a concrete example, we show that a
simple approach for identifying covariate regions with strong Y |X-shifts can suggest data-based
interventions. Our case study shows it can be useful to collect target data over a particular covariate
region, or features C such that the Y |X,C distribution is more stable across source and target.

In Section 4, we provide the details of our benchmark, WHYSHIFT. We use five datasets to construct
7 spatiotemporal distribution shifts, and evaluate 22 methods over 86,000+ model configurations.
We compare a broad range of algorithms including tree ensembles, DRO, imbalance, and fairness
methods and summarize our key findings below.
• Rankings of model performance change over different shift patterns. As the validity of empirical

findings implicitly depends on the type of shift, any methodological development must be grounded
by the specific shifts it addresses.

• Tree ensemble methods are competitive, but still suffer from significant performance degradation.
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Figure 2. Target vs. source accuracies for 22 algorithms and datasets in our benchmark. A linear fit
(green line) and its corresponding R2 value is reported on the top left of each figure. Each blue point
represents one hyperparameter configuration. (a)-(f): six examples of ACS Income, ACS Mobility,
Taxi, ACS Pub.Cov, US Accident datasets. (g): simulated covariate shifts on on sub-sampled ACS
Income dataset.

• DRO methods are sensitive to configurations and exhibit significant performance variations.
• Imbalance and fairness methods show similar performance with the base learner (XGBoost).
• A small validation data from the target distribution goes a long way, and more generally, non-

algorithmic interventions warrant greater consideration.

2 Distribution Shifts in Tabular Settings

To illustrate how complex distribution shift patterns arise in tabular data. we compare 22 algorithms
including tree ensemble methods, robust learning, imbalance, and fairness methods. On 5 real-world
tabular datasets (ACS Income, ACS Public Coverage (ACS Pub.Cov), ACS Mobility [25], US
Accident [64, 65] and Taxi [2, 1]), we consider the natural spatial shifts between states/cities, e.g.,
California to Puerto Rico. For the ACS Pub.Cov dataset, we also consider temporal shifts, e.g., from
2010 to 2017. Since all natural distribution shifts we consider are largely induced by Y |X-shifts, we
construct a synthetic subgroup shift from younger people to older people in order to simulateX-shifts.
Deferring a detailed summary to Section 4.1, we focus on introducing representative phenomena in
this section.

In Figure 2, we present the source (in-distribution) and target (out-of-distribution) performances of 22
algorithms, each with 200 hyperparameter configurations. To understand shift patterns, we utilize the
recently proposed DIstribution Shift DEcomposition (DISDE) framework [16] which decomposes the
performance degradation into components attributed to Y |X- and X-shifts. Using the best XGBoost
configuration as the baseline model for each source-target pair, we present the total performance
degradation and the proportion attributed to Y |X-shifts.

Distribution shifts are predominantly Y |X-shifts in our empirical study We find performance
degradation under natural shifts is overwhelmingly attributed to Y |X-shifts, as illustrated in the
curated list in Figure 2. More generally, out of the 169 source-target pairs whose performance
degradation is larger than 8 percentage points, 87.2% of them have over 50% of the performance
degradation attributed to Y |X-shifts (70.2% of them have over 60% of the gap attributed to Y |X-
shifts). We conjecture that Y |X-shifts are prevalent in tabular data due to missing features. For
example, in the context of income prediction, individual outcomes may change due to unobserved
economic and political factors whose distribution changes over geographical locations [25]. In
contrast, in vision and language tasks, the input (e.g., pixels and words) often encapsulates most of
the necessary information for predicting the outcome, making strong Y |X-shifts less likely unless the
labeling noise is severe. Consequently, compared to vision and language data in domain generalization
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Figure 3: Performances of typical algorithms of 7 settings in our benchmark.

tasks, tabular data exhibits more pronounced real Y |X-shifts. Our findings highlight the importance
of understanding the cause of the distribution shift.

Accuracy-on-the-line fails to hold over Y |X-shifts We find significant variation in the relation-
ship between source and target performance throughout all natural distribution shifts presented in
Figure 2 (a)-(g). The correlation between source and target performance is relatively weak, and we
tend to see poor linear fits (low R2) when the bulk of the performance degradation is attributed to
Y |X-shifts. That is, we see in Figures 2 (a)-(f) that the relationship between the two performances
exhibits significant fluctuations across different source-target pairs. In Figure 3, we observe that
performance rankings of algorithms substantially vary across different Y |X-shifts. Our finding
highlights the inherent complexity associated with real distribution shifts in tabular datasets, which
stands in sharp contrast to the “accuracy-on-the-line” phenomena [63]. The varied shift patterns
in tabular data highlight how empirical observations must be qualified over the range of shifts they
remain valid over. This is particularly important for Y |X-shifts which introduce larger variations in
the relationship between source and target performance.

Source and target performances are correlated when X-shifts dominate Across all natural
shifts we study, we find X-shifts are only prominent in temporal shifts (ACS Time dataset; Figure 2f)
To better investigate the role of X-shifts, we subsample the data to artificially induce strong covariate
shifts over an individual’s age. Specifically, we focus on individuals from California and form two
groups according to whether their age is ≥ 25. The source data oversamples low age groups where
80% is drawn from the age ≤ 25 group; proportions are reversed in the target data.

On this synthetic shift we construct, the DISDE [16] method attributes the bulk of the performance
degradation to X-shifts in Figure 2g. Our finding confirms the intuition that unobserved economic
factors remain relatively consistent for individuals from the same state (CA). In this synthetic example
with X-shifts, we observe a relatively strong correlation between source and target performance.
Moreover, the large performance degradation on these datasets suggests that existing robust learning
methods are still severely affected by covariate shifts, indicating the need for future research that
addresses covariate shifts in tabular data.

3 Case Study: Understanding Distribution Shifts Facilitates Interventions

Typical algorithmic approaches to handling practical distribution shifts aim to optimize performance
over a postulated set of distribution shifts. Causal learning assumes the underlying causal structure
can be learned to withstand distribution shifts [72, 83, 82, 77], while DRO methods explicitly optimize
worst-case performance over a set of distributions [13, 53, 28, 27]. Despite progress in algorithm
design, there are few efforts that examine the patterns of real-world distribution shifts. It remains
unclear whether the data assumptions made by algorithms hold in practice, and this mismatch often
leads to poor empirical performance [40, 95, 76, 19, 46].

Complementing the active literature on algorithmic development, we present an empirical study
that underscores the practical significance of tools that provide a qualitative understanding of the
shift at hand. In light of the prevalence of Y |X-shifts in tabular data, we introduce a simple yet
effective approach for identifying covariate regions that suffer strong Y |X-shifts. We demonstrate
our approach on the income prediction task (ACS Income), and show that it can guide operational
interventions for addressing distribution shifts. Our case study is not meant to be a rigorous scientific
analysis, but rather a (heuristic) vignette illustrating the need for future research on methodologies
that can generate qualitative insights on distributional differences.
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3.1 Identifying Regions with Strong Y |X-shifts

Here we propose a simple yet effective method for identifying covariate regions with strong Y |X-
shifts. Despite its simplicity, we demonstrate in the following subsections that our method can inspire
operational and modeling interventions. Letting (X,Y ) be random variable supported on the space
X × Y , consider a model f : X → Y that predicts outcome Y ∈ Y from covariates X ∈ X with
the associated loss function `(f(X), Y ). Given samples (X,Y ) drawn from the source and target
distributions P and Q, our goal is to identify a regionR ⊆ X where PY |X differs a lot from QY |X .

Since PY |X and QY |X are undefined outside of the support of PX and QX respectively, the com-
parison can only be made on a subset of the common support. To aid comparisons on the common
support, Cai et al. [16] introduced a shared distribution approach. The shared distribution has high
density when both pX and qX are high, and low density whenever either is small. Following Cai et
al. [16], we choose a specific shared distribution SX over X from the likelihood ratio:

sX(x) ∝ pX(x)qX(x)/(pX(x) + qX(x)). (3.1)
We provide more discussion on the choices of SX and other technical details justifying the correctness
of sX in Appendix C.3. Since we do not have access to samples from the shared distribution SX , we
reweight samples from PX and QX using the likelihood ratios sX(x)/pX(x) ∝ qX(x)/(pX(x) +
qX(x)) and sX(x)/qX(x) ∝ pX(x)/(pX(x) + qX(x)). The ratio can be modeled as the probability
that an input x is from PX vs QX . Denote α∗ as the proportion of the pooled data that comes from
QX and π∗(x) := P(X̃ from QX |X̃ = x), we can express the likelihood ratios as:

sX
pX

(x) ∝ π∗(x)

(1− α∗)π∗(x) + α∗(1− π∗(x)) =: wP (π
∗(x), α∗), (3.2)

sX
qX

(x) ∝ 1− π∗(x)
(1− α∗)π∗(x) + α∗(1− π∗(x)) =: wQ(π

∗(x), α∗). (3.3)

With the likelihood ratios, we estimate the best prediction model under P and Q over the shared
distribution SX (using XGBoost as the model class F):

fµ := argmin
f∈F

{
ESX

[
Eµ[`(f(X), Y )|X]

] (
= Eµ

[
`(f(X), Y )wµ(π

∗(x), α∗)
])}

, for µ = P,Q.

(3.4)

Then, for any threshold b ∈ [0, 1], {x ∈ X : |fP (x) − fQ(x)| ≥ b} suggests a region that
may suffer model performance degradation with at least b due to Y |X-shifts. Without evaluating
the performance on the shared distribution SX , it is hard to distinguish the source of the model
performance degradation, i.e. from X-shifts or Y |X-shifts.

Empirically, given samples {(xPi , yPi )}i∈[nP ] from P and {(xQj , yQj )}j∈[nQ] from Q, we estimate
α̂ =

nQ

nP +nQ
and then train a binary “domain” classifier π̂(x) to approximate the ratio π∗(x). Note

that the “domain” classifier can be any black-box method, and we use XGBoost throughout. Then
we plug these empirical estimands in to obtain the estimated likelihood ratios wµ(π̂(x), α̂) and learn
prediction models fP and fQ in Equation (3.4). To investigate the model difference under SX , we
pool samples from P and Q together and set sample weights as:

λPi =
wP (π̂(x

P
i ), α̂)∑

k∈[nP ] wP (π̂(x
P
k ), α̂)

∀i ∈ [nP ], λQj =
wQ(π̂(x

Q
j ), α̂)∑

k∈[nQ] wQ(π̂(x
Q
k ), α̂)

∀j ∈ [nQ], (3.5)

which are used to learn a prediction model h(x) to approximate |fP (x) − fQ(x)| on the shared
distribution SX . The pseudo-code is summarized in the Algorithm 1; To allow simple interpretation
and efficient region identification, we use a shallow decision tree h(x) and consider the region R
corresponding to the feature range of a leaf node within the tree. More details could be found in
Appendix C.5 and Appendix C.6. We show that the node splitting criterion in a standard decision
trees training procedure is equivalent with our goal of finding regions with the largest discrepancy in
Appendix C.4.

3.2 Data-based Interventions

Using Algorithm 1, we now demonstrate how a better understanding of distribution shifts can facilitate
the design of interventions. We focus on the ACS Income dataset where the goal is to predict whether
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Algorithm 1: Identify Regions with Strong Y |X-Shifts.

Input: Source samples {(xPi , yPi )}i∈[nP ]
i.i.d∼ P and target samples {(xj , yj)}j∈[nQ]

i.i.d∼ Q.
Model discrepancy threshold b.

1 Estimate π̂(x) ≈ P(X̃ ∼ Qx|X̃ = x) by training a classifier on the source and target samples.
2 Calculate density ratios wµ(π̂(x), α̂) according to Equation (3.2) and (3.3) for µ = P,Q.
3 Fit prediction models fµ according to Equation (3.4) replacing wµ(π∗(x), α∗) there with

wµ(π̂(x), α̂) for µ = P,Q.
4 Fit a model h(x) to predict |fP (x)− fQ(x)| using samples {(xPi , yPi )}i∈[nP ] and
{(xQj , yQj )}j∈[nQ], each with the weight λPi (or λQj respectively), according to Equation (3.5).

Output: RegionR = {x ∈ X : h(x) ≥ b}.

an individual’s income exceeds 50k (Y ) based on their tabular census data (X). We train an income
classifier on 20,000 samples from California (CA, source), and deploy the classifier in Puerto Rico
and South Dakota (PR & SD, target), where we get 4,000 samples from PR and SD after deployment.
Given the considerable disparities in the economy, job markets, and cost of living between CA and
PR/SD, we observe substantial performance degradation due to distribution shifts.

In Figure 4a, we first decompose the performance degradation from CA to PR to understand the
shift and find Y |X-shifts are the predominant factor. The calculation of X-shifts and Y |X-shifts is
deferred to Appendix C.1. We dive deeper into the significant Y |X-shifts and identify from CA to
PR for the XGBoost and MLP classifier. From the region shown in Figure 4c and Figure 4d, we find
college-educated individuals in business and educational roles (such as management, business, and
educational work) exhibit large Y |X differences.

To illustrate how our analysis can inspire subsequent operational interventions to enhance performance
on the target distribution, we study two operational interventions.

Collect specific data from the target To improve target performance, the most natural operational
intervention is to collect additional data from the target distribution. While a rich body of work on
domain adaptation [69, 23, 30, 90, 89] study how to effectively utilize data from the target distribution
to improve performance, there is little work that discusses how to efficiently collect supervised data
from the target distribution to maximize out-of-distribution generalization. To highlight the need for
future research in this space, we use the interpretable region identified by Algorithm 1 as shown in
Figure 4c to simulate a concerted data collection effort.

Since indiscriminately collecting data from the target distribution can be resource-intensive, we
concentrate sampling efforts on the subpopulation that may suffer from Y |X-shifts and selectively
gather data on them. For five base methods (logistic regression, MLP, random forest, lightGBM,
and XGBoost), we randomly sample 250 points from the whole target distribution and the identified
region suffering prominent Y |X-shifts, respectively. We report the test accuracies in Figure 4e, and
observe that incorporating data from this region is more effective in enhancing OOD generalization.
While preliminary, our results demonstrate the potential robustness benefits of efficiently allocating
resources toward concerted data collection. Future methodological research in this direction may be
fruitful; potential connections may exist with active learning algorithms [84, 96, 59].

Add more relevant features We now illustrate the potential benefits of generating qualitative
insights on the distribution shift at hand. Our analysis in Figure 4c suggests educated individuals
in financial, educational, and legal professions tend to experience large Y |X-shifts from CA to PR.
These roles typically need communication skills, and language barriers could potentially affect their
incomes. In California (CA), English is the primary language, while in Puerto Rico (PR), despite
both English and Spanish being recognized as official languages, Spanish is predominantly spoken.
Consequently, for a model trained on CA data and tested on PR data, incorporating a new feature that
denotes English language proficiency (hereafter denoted “ENG”) might prove beneficial in improving
generalization performances. However, this feature is not included in the ACS Income dataset.

To address this, we went back to the Census Bureau’s American Community Survey database to
include the ENG feature in the set of covariates. In Figure 4b, we observe that the inclusion of this
feature substantially reduces the degradation due to Y |X-shifts, verifying that the originally missing

6



CA PR Difference

81.4

71.8

Ac
cu

ra
cy

de
gr

ad
at

io
n

Y|X shift
X shift

(a) Raw setting: drop 10.3
CA PR Difference

81.5
79.7

A
cc

ur
ac

y
de

gr
ad

at
io

n

Y|X shift
X shift

(b) Add ENG: drop 2.1

Work Hour ≥ 34.5

Education ≥ College

Occupation ∈ 𝒜

Risk Region

yes

yes

yes

no

no

Rules
• Sex: female    Age	≥ 31
• Wo𝐫𝐤 𝐇𝐨𝐮𝐫 ∈[34.5,49.5]
• Education ≥ College
• Occupation set 𝒜 : MGR, 

BUS, FIN, LGL, EDU, ENT

…

… …

no
…

(c) Region with Y |X-shifts (XGBoost)

Work Hour > 35.5

Sex: female

Risk Region

yes

yes

yes

no

no

Rules
• Sex: female    Age	≥ 39
• Wo𝐫𝐤 𝐇𝐨𝐮𝐫 > 35.5
• Education ≥ College

…

… …

no
…

Education > College

(d) Region with Y |X-shifts (MLP)

LR MLP RF LightGBM XGBoost

70

80

Te
st 

A
cc

ur
ac

y

Original Setting
Add Target Data

Add Region Data

(e) Test accuracies of different ways to incorporate data.

20 60 100
Source Acc

60

100

Ta
rg

et
 A

cc

Original
Add ENG
y = x

(f) Add ENG (CA→PR)

20 60 100
Source Acc

60

100

Original
Add ENG
y = x

(g) Add ENG (CA→ SD)

Figure 4. Case study illustrations. (a)-(b) Decomposition of performance degradation for the XGBoost
classifier from CA to PR. Figure (a) is for the original setting and (b) corresponds to the results post-
integration of the "ENG" feature. (c)-(d) Demonstration of Algorithm 1: an interpretable version of the
region with strong Y |X-shifts for the XGBoost and MLP models, respectively. (e) Test accuracies of five
typical base methods trained on the source, post addition of 250 randomly selected target observations,
and 250 observations from the identified risk region. (f)-(g) Performances of all algorithms prior to and
following the addition of the "ENG" feature. Figure (f) corresponds to the CA to PR, and Figure (g) is
CA to SD.

Table 1: Overview of datasets and 7 selected settings.
#ID Dataset Type #Samples #Features Outcome #Domains Selected Settings Shift Patterns

1 ACS Income Natural 1,599,229 9 Income≥50k 51 California→ Puerto Rico Y |X � X
2 ACS Mobility Natural 620,937 21 Residential Address 51 Mississippi→ Hawaii Y |X � X
3 Taxi Natural 1,506,769 7 Duration time≥30 min 4 New York City→ Botogá Y |X � X
4 ACS Pub.Cov Natural 1,127,446 18 Public Ins. Coverage 51 Nebraska→ Louisiana Y |X > X
5 US Accident Natural 297,132 47 Severity of Accident 14 California→ Oregon Y |X > X
6 ACS Pub.Cov Natural 859,632 18 Public Ins. Coverage 4 2010 (NY)→ 2017 (NY) Y |X < X
7 ACS Income Synthetic 195,665 9 Income≥50k 2 Younger→ Older Y |X � X

ENG feature may be one cause of Y |X-shifts. Figure 4f contrasts the performances of 22 algorithms
(each with 200 hyperparameter configurations) with original features with those that additionally use
the ENG feature. The new feature significantly improves target performances across all algorithms;
roughly speaking, we posit that we have identified a variable C such that Y |X,C remains similar
across CA and PR. However, when we extend this comparison to the source-target pair (CA→ SD),
we observe no significant improvement (Figure 4g). This highlights that the selection of new features
should be undertaken judiciously depending on the target distributions of interest. A feature that
proves effective in one target distribution might not yield similar results in another.
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4 WHYSHIFT: Benchmarking Distribution Shifts on Tabular Data

In this section, we detail our benchmark and summarize the main observations. Our finding highlights
the importance of future research that builds an understanding of why the distribution has shifted.

4.1 Setup

Datasets We explore distribution shifts on 5 real-world tabular datasets from the economic and
traffic sectors with natural spatiotemporal distribution shifts. For economic data, we use ACS
Income, ACS Mobility, and ACS Public Coverage datasets from the US-wide ACS PUMS data
[25], where the outcome is whether an individual’s income exceeds 50k, whether an individual
changed the residential address one year ago, and whether an individual is covered by public health
insurance, respectively. We primarily focus on spatial shifts across different states in the US. To
complement spatial shifts, we derive an ACS Time task based on the ACS Public Coverage dataset,
where there are temporal shifts between different years (2010 to 2021). For traffic data, we use
US Accident [64, 65] and Taxi [2, 1], where the outcome is whether an accident is severe and
whether the total ride duration time exceeds 30 minutes, respectively. We focus on spatial shifts
between different states/cities. We summarize the datasets in Table 1 and defer a full description to
the Appendix D.1.

Algorithms We evaluate 22 algorithms that span a wide range of learning strategies on tabular
data, and compare their performances under different patterns of distribution shifts we construct.
Concretely, these algorithms include: (1) base learners: Logistic Regression, SVM, fully-connected
neural networks (MLP) with standard ERM optimization; (2) tree ensemble models: Random Forest,
XGBoost, LightGBM; (3) robust learning: CVaR-DRO and χ2-DRO with fast implementation [53],
CVaR-DRO and χ2-DRO of outlier-robust enhancement [105], Group DRO [79]; (4) imbalanced
learning: JTT [57], SUBY, RWY, SUBG, RWG [42], DWR [51] and (5) fairness-enhancing methods:
inprocessing method [4] with demographic parity, equal opportunity, error parity as constraints,
postprocessing method [37] with exponential and threshold controls. For DRO methods (i.e. (3)),
we use MLP as the backbone model. For other algorithms compatible with tree ensemble models
(i.e. (4-5)), we use the XGBoost model due to its superior performance on tabular data [34]. For
algorithms requiring group labels, we use ‘hour’ for US Accident and Taxi, and ‘sex’ for the others.
Detailed descriptions for each algorithm can be found in Appendix D.5.

Benchmarks We conduct experiments with more than 86,000 model configurations on various
source-target distribution shift pairs, and carefully select 7 selected pairs with different distribution
shift patterns. In Table 1, we characterize the shift patterns of these 7 source-target pairs, which
contain different proportions of Y |X-shifts and X-shifts corresponding with plots in Figure 2. The
first six settings are natural shifts. In the last setting, we sub-sample the dataset according to age to
introduce covariate shift, where we focus on individuals from CA and form two groups according to
whether their age is ≥ 25. The source data over-samples the low age group where 80% is drawn from
the group where the individual’s age ≥ 25, and the proportions are reversed in the target data.

In Figure 5 and Figure 6, we plot the performance of algorithms using their best hyperparameter
configuration on the validation dataset (i.i.d. with the source distribution). Additional results with
various source distributions are in the Appendix. Our benchmark is designed to support empirical
research, including new learning algorithms and diagnostics that provide qualitative insights on
distribution shifts.
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Figure 7. (a): Sensitivity of DRO methods and Imbalance Methods w.r.t. configurations. (b) Target
performances of 22 algorithms under different validation protocols on ACS Income (CA→PR) setting.

Hyper-parameter Tuning For each model, we conduct a grid search over a large set of hyper-
parameters. See Appendix D.3 for the complete search space for each method. When one method
includes another as a “base” learner (e.g., DRO with MLP, RWY with XGBoost), we explore the full
tuning space for the base model (e.g., the cross-product of all MLP hyper-parameters with all DRO
hyper-parameters). To control for computational effort, each method is run with 200 configurations
for each source-target pair and we select the best configuration according to the i.i.d. validation
performance. In Figure 7b, we further compare different choices of validation protocols.

Evaluation Metrics In our benchmark, we include different metrics for a thorough evaluation.
Specifically, we use Average Accuracy (micro-average), Worst-group Accuracy, and Macro-F1 score
in our main results where we only have one target distribution. For the results with multiple target
distributions (i.e. 3 in Taxi, 13 in US Accident and 50 in the others), we present all target accuracies
and Macro-F1 scores, as well as the worst-distribution accuracy and Macro-F1 score among all target
distributions in Appendix D.6, D.7, D.8, D.9.

4.2 Analysis

Different algorithms do not exhibit consistent rankings over different shift patterns. In Fig-
ure 5, we observe the rankings across different shifts are quite different, especially for ACS Income
(CA→PR) and ACS Mobility (MS→HI) where Y |X-shifts dominate. This observation reaffirms
the phenomena in Figure 2 that as Y |X-shifts become stronger, the relationship between source vs
target performances becomes less consistent. In Appendix D.3, we also show that even for a fixed
source distribution in one fixed prediction task, algorithmic rankings of performances on different
target distributions vary a lot.

Tree ensemble methods show competitive performance, but do not significantly improve the
generalization drop between source and target data. From Figure 5, tree-based ensembles
(yellow bars) show robust and competitive performance on the target distribution in 6 out of 7 settings.
However, in Figure 6 which plots the performance degradation between source and target, tree
ensembles do not show improved robustness. This suggests that they do not actually achieve better
robustness against real-world distribution shifts, and their better performances on target data may
simply be due to better fitting the source distribution.

DRO methods are sensitive to configurations, with rankings varying significantly across 7
different settings. From Figure 5, DRO methods exhibit competitive performances on ACS
Mobility (MS→HI), Taxi (NYC→BOG), and ACS Income (Young→Old), yet underperform in
others. This sensitivity to configurations, as shown in Figure 7a (red points), could be attributed to
the worst-case optimization that perturbs the training distribution within a pre-defined uncertainty
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set, without any information regarding the target distribution. However, when target information is
incorporated for hyper-parameter tuning, as shown in Figure 7b, there is a notable improvement in
the performance of DRO methods. Our observations suggest potential avenues for building more
refined uncertainty sets in DRO methods.

Imbalance methods and fairness methods show similar performance with the base learner
(XGBoost). In our experiments, we choose the XGBoost model as the base learner for imbalance
and fairness methods due to its superior performance on tabular data [34]. However, from Figure 5
and Figure 6, imbalance methods and fairness methods do not show a clear improvement upon their
base learner (XGBoost, last yellow bar). Further, as shown in Figure 7a, imbalance methods (green)
are also quite sensitive to configurations, and their performances do not improve much when their
hyperparameters are tuned over the target data (Oracle).

Target information matters in validation. Based on the ACS Income (CA→PR) dataset, we
compare different validation protocols, including the best average accuracy, minimum subgroup
discrepancy, and best worst-subgroup accuracy on validation data generated from the source dis-
tribution. We also use the Oracle validation that chooses the configuration with the best average
accuracy on validation data generated from the target distribution. In Figure 7b, we find the first three
protocols do not show a significant difference. However, oracle validation with target information
substantially improves the effectiveness of both DRO and tree ensemble methods. We conclude using
target information for model selection can provide robustness gains even with a small target dataset.

Non-algorithmic interventions warrant greater consideration. Reflecting on Section 3, it is
clear that operational interventions yield significant enhancements for various methods, as demon-
strated in Figure 4e and Figure 4f. In comparison to algorithmic interventions, such as designing
different algorithms (e.g., DRO, Imbalance methods), a data-centric approach can be more effective
in addressing distribution shifts. For instance, research on feature collection and feature engineering
methods may prove impactful. Another avenue for future work is developing methods that can
optimally incorporate expensive samples from the target distribution.

5 Discussion

We explore the complexity of distribution shifts in real-world tabular datasets in depth. Using
natural shifts from 5 real-world tabular datasets across different domains, we specify each shift
pattern and evaluate 22 methods via experiments with over 86k trained models. Our benchmark
WHYSHIFT encompasses various distribution shift patterns to evaluate the robustness of the methods.
We propose a simple but effective algorithm to identify regions with large Y |X-shifts, and through a
comprehensive case study, we demonstrate how a better understanding of distribution shifts facilitates
algorithmic and data-based interventions. Our findings highlight the importance of future research to
understand how and why distributions differ in real-world applications.

Our study leaves many open directions for improvements in future work. Our benchmark only
includes tabular datasets from the economic and transportation domain. Considering datasets from
other domains such as the medicine or those involving feature embeddings may highlight different
types of distribution shift. On the algorithmic side, our region-identification algorithm requires some
target data to identify risky regions and cannot be used in cases where the target distribution is
completely unknown. Furthermore, targeted data collection on regions of Y |X-shifts may be pose
ethical and privacy concerns for marginalized groups. We provide more discussion in Appendix B.
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A Relevant Work

A.1 On Distribution Shifts

Distribution Shift Benchmarks. Existing distribution shift benchmarks primarily concentrate
on image and language datasets [74, 47, 107, 81, 101] to assess the robustness and efficiency of
algorithms in real applications.

We briefly review benchmarks that address distribution shifts across various data types, including
image and language data. For image data, several datasets capture natural distribution shifts, such
as spatial and temporal variations. PACS [54] and Office-Home [91] categorize environments to
be image styles. VLCS [29] and iWildCam [10] set their primary environments as data sources.
DomainNet [108] is built on PACS and provides a more extensive selection with additional domains
and categories. In recent developments, Koh et al. [47] collect several datasets to establish WILDS,
setting a new structure for OOD generalization. Similarly, Yao et al. [100] introduced Wild-Time,
highlighting temporal distribution shifts across diverse real-world scenarios. For language data,
CivilComments [14] and Amazon [66] consist of individual comments collected from different
users and distinctive groups (e.g. male and female). GLUE-X [97] provides a unified benchmark for
evaluating OOD robustness in NLP models. For other types of data, OGB-MolPCBA [75] collects
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molecular graphs in over 100,000 scaffolds and formulates a molecular property prediction task
across different scaffolds. Towards auto-engineering, Py150 [73] contains codes from 8,421 git
repositories for code completion generalization.

However, these datasets/benchmarks do not specify or investigate in-depth the distribution shift
patterns, and there is a noticeable lack of benchmark papers that specifically address real-world
tabular datasets. These tabular datasets often present distinct patterns compared to image/language
datasets, including prevalent methods [34] and shift patterns.

Therefore, it is important to understand detailed distribution patterns among these datasets to develop
corresponding methodologies to address specific shifts, which is also observed in a recent bench-
mark [101]. Yang et al. [99] recently introduce one benchmark characterizing different patterns of
subpopulation shift. This benchmark focuses on the relationship between a specific attribute and
covariates, such as spurious correlation, which can be challenging to identify in tabular datasets.
Besides, they focus on changes in the subpopulation, which is a subset of distribution shift patterns.
For example, individuals in different states may suffer from little subpopulation shifts but still incur a
large distribution shift. Individuals’ demographic features are similar but the income level differs
greatly between CA and PR in ACS Income, as demonstrated in Table 2. Besides, Kulinski and
Inouye [52] use optimal transport to explain the shift between two distributions recently. But their
method could not explicitly decompose the performance degradation as in our work. Motivated by
the challenges above, our work hopes to fill in the gap by demonstrating one benchmark on tabular
datasets with detailed analysis.

Table 2: Descriptive Characteristics under different states in ACS income dataset

State CA MA NY NE MT SD PR

Total Size 195665 40114 103021 10785 5463 4899 9071

White Man 0.3311 0.4161 0.3687 0.4822 0.4959 0.4691 0.3526
Nonwhite Man 0.1969 0.0878 0.1379 0.0454 0.0428 0.0492 0.1818
White Woman 0.2873 0.4066 0.3464 0.4318 0.4221 0.4297 0.3124
NonWhite Woman 0.1847 0.0895 0.1471 0.0404 0.0392 0.0521 0.1532

P (Y = 0) 0.589 0.532 0.585 0.688 0.707 0.730 0.894

Choice of Domains in Distribution Shifts Although it is popular in the fairness literature to set
each demographic subgroup in the adult and ACS dataset as one domain [104, 22, 25], the relative
regret of models trained on these domains is quite small shown in Figure 1 empirically. This implicitly
shows that Y |X-shifts are not strong across different demographic subgroups. In contrast, the model
usually experiences relatively large Y |X-shifts under different spatial domains, which corresponds to
the right-hand side of Figure 1. Besides, from the practical perspective, machine learning models
often need to be deployed in spatialtemporal domains (by city, state, and country-wise; by year) only
with few observed data while the model is trained with abundant data from the source domain. This
is why we mainly choose spatiotemporal domains to benchmark distribution shifts in our case.

A.2 Connection between Non-algorithmic Interventions and Algorithmic Interventions

Here we discuss the connections between our non-algorithmic interventions and several branches
of methods addressing the distribution shifts, including active learning, imitation learning, causal
learning, feature sensitivity analysis, and feature importance analysis.

Active Learning. Active learning aims to improve model performance by acquiring a limited
number of labels from the target distribution. See the survey [84] for a detailed reference. The
challenge here is to quantify the value of unlabeled data so that we can select samples better. The
selection criterion of existing approaches includes estimated variance [20], influence on the model
performance [59], and Shapley value [32, 33, 44], or source-target distance metrics through the
importance weighting [18, 61]. Some work also proposed running a regression problem for the
query procedure based on learning strategies from the existing dataset [48]. Specifically, the target
distribution where we query data and aim to evaluate the model subsequently differs from the source
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distribution. Some work also develops active learning methods on domain adaptation to select
additional samples from the target distribution [88, 87]. However, these works usually assume some
restricted distribution structures between the source and target distribution such as only X-shifts
occur, which may not hold in the tabular data. In contrast, we assume we have a few labeled target
data but impose no restrictions on the two distributions. And we sample data in specific regions after
identifying regions where we experience the largest Y |X-shifts.

Imitation Learning Imitation learning aims to mimic the behavior of the expert with some off-
policy data. This usually occurs in the reinforcement learning setup where a learner aims to learn
the best action given each state [41]. Here, distribution shifts occur due to the mismatch of the state
coverage between the observed data (source domain) and the environment to deploy (target domain).
This raises the need for the importance sampling method to match the two distributions in imitation
learning [92, 94]. In fact, the underlying conditional distribution does not change only with covariate
(state) shifts in the imitation learning setup. Therefore, thiis does not fit into our case where the
conditional distribution between the source and target domains differ.

Causal Learning Causal learning methods receive much attention in the field of machine learning.
The core idea of causal learning [72, 8] is to learn causally invariant relationships across multiple
pre-defined training environments. Arjovsky et al. [8] propose Invariant Risk Minimization (IRM)
to learn invariant representations across environments, and follow-up works [17, 49, 5, 50] propose
variations with similar invariant regularizations. However, the effectiveness of these methods are
challenged both theoretically and empirically. Theoretically, Rosenfeld et al. [78] illustrate that IRM
could fail in a nonlinear context, and Liu et al. [58] demonstrate that the learned invariance property
largely depends on the quality of pre-defined environments. Empirically, Gulrajani and Lopez-Paz
[35] show that when carefully implemented and tuned, ERM still outperforms the state-of-the-art
methods in terms of average performance.

Compared with the simple non-algorithmic interventions in this work, causal learning methods
rely heavily on the invariance assumptions and have strict requirements on the quality of multi-
environment data. This restricts their applicability in practice, since modern datasets are often
collected without explicit environment labels, and in many scenarios, it is quite hard to pre-define
meaningful environment labels. Our proposed non-algorithmic interventions (collecting features and
data) do not rely on the invariance assumption, and it could serve as a "solution" when observing
performance degradation, which helps to analyze the model failure and to direct further improvements.
And we hope that these simple data-centric interventions could inspire future research in this direction
to mitigate the effects of distribution shifts.

Since we are also considering other missing features to improve the performance under distribution
shifts, there are some works providing insights on the feature / region importance to the final output.

Feature Analysis: Sensitivity and Importance. There are two streams of literature measuring the
relationship between input features and the response variable. These are feature sensitivity analysis
and feature importance. Feature sensitivity analysis aims to quantify the sensitivity of the performance
metrics to each input. This helps understand the impact of variations in input features on the output
of a simulation system. Classical metrics include ANOVA, Sobol indices [68] and Morris methods
[43]. Meanwhile, feature importance aims to understand the performance decomposition of different
algorithms. Shapley value-based approaches gain the most popularity in understanding the attribution
of predictions to each input feature [60, 21]. Some work leverages these ideas to understand the
difference in distribution shifts to each existing input feature in the data [15, 106]. They decompose
the shift on the joint distribution to particular Xi-shifts or the condition Xj |Xi-shifts (Xi and Xj

denote different features) under a known causal graph. In contrast, we investigate the additional
missing feature beyond existing datasets and aim to reduce the performance drop under distribution
shifts in our paper. Specifically, we focus on the local regions where the distribution incurs the largest
shifts and add the feature ENG in our main body due to our prior knowledge that “ENG” feature
would yield the largest difference in that subpopulation between two distributions. Our region-based
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approach, in fact, can be further rigorously extended to investigate the marginal distribution of what
features would yield the largest difference in that region between two distributions. We hope this can
inspire researchers to apply refined tools in this line such as Shapley value to help understand and
mitigate distribution shifts.

Region Analysis: Attribution of Distribution Shifts. Similar to our algorithmic goal in Sec-
tion 3.1 of identifying regions where model learners are different, Oberst et al. [67] and Lim et
al. [56] developed specific methods to identify specific covariate regions where model learners are
different. The difference between their setup and ours lies in the sampling and assumption of observed
data. In their approach, the observed data is sampled i.i.d. across various prediction models, without
any distribution shift. Besides, they can observe only one selected prediction result per sample from
all the model learners. However, in our case study, the models are built on datasets from two domains
that experience distribution shifts. As a result, we can further isolate the model difference based on
the shared input space X and differentiate it from the total difference, specifically focusing on the
Y |X-shifts.

B Discussion on Limitations

We discuss some limitations of our work.

For Benchmark First, we only consider the source-target transfer pairs from datasets including the
economic and transportation domain, and we leave the detailed pattern evaluation of these datasets in
other domains such as the medical area (e.g. MIMIC-III [45]) as an interesting direction of the future
work. Besides, we only consider the source and target from one fixed domain (i.e. one state or city).
In practice, it is reasonable to extend this benchmark to consider the source and target distribution
with multiple domains of varying proportions. Our results of characterizing the distribution shift
patterns highlight the importance of utilizing other refined tools. These tools can help us understand
the difference between real-world distribution shifts and enable further investigation and analysis.

For Algorithm 1 Our Algorithm 1 is proposed to identify risky regions with large Y |X-shifts when
observing severe model degradation between the source target distributions. Therefore, one limitation
is that it requires target data to identify the risky regions with large Y |X-shifts. This algorithm cannot
evaluate the generalization performance when the target distribution is completely unknown.

Furthermore, when conducting non-algorithmic interventions based on the risky regions learned by
Algorithm 1, researchers should be careful and incorporate more background knowledge to find
the proper way. For example, in Section 3.2, we analyze the risky regions and find that the "ENG"
feature may be important to mitigate the Y |X-shifts. This is from our prior knowledge that the
official language between the two states is different. Also, when Algorithm 1 is misused (e.g., the
learned risky regions are used without destination or not being checked carefully), it might harm
some vulnerable groups.

For Data-Collection In Section 3.2, we propose two simple non-algorithmic interventions to
mitigate the Y |X-shifts, one of which is to efficiently collect target data from the risky region. It
achieves much better results combined with several typical methods on our benchmark. However, in
practice, we acknowledge that this technique could only be used when we can obtain data from the
target distribution and the data collection procedure does not raise any privacy concerns and predatory
inclusion.

Applicability Across Different Data Modalities In this work, we focus on real-world distribution
shifts in tabular data settings. We propose Algorithm 1 to find the risk regions and come up with
some simple data-based interventions. Therefore, we do not investigate in-depth the applicability
of the proposed methods across other data types. However, we argue that our proposed Algorithm
1 could generalize to complicated data types (e.g., image data) with corresponding deep models.
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Specifically, both the domain classifier (to estimate P(X from QX |X)) and region learner h(X)
should be replaced by deep neural networks. And our data-based interventions also have the potential
to incorporate with more complicated data types. We leave this investigation to future work.

C Case Study Details

In this section, we provide more details about our case study in the main body.

C.1 DISDE to X-shifts and Y |X-shifts

When facing performance degradation under distribution shifts, one direct idea is to figure out the
reasons why the performance drop. To this end, Cai et al. [16] propose DIstribution Shift DEcomposi-
tion (DISDE) to attribute the total performance degradation to Y |X-shifts and X-shifts. Specifically,
given samples (X,Y ) from distributions P and Q, to quantify the discrepancy between PY |X and
QY |X , they first control the marginal distribution on X by introducing the shared distribution SX .
From that, we can estimate the performance degradation caused by Y |X-shifts and that caused by
X-shifts could also be estimated by comparing SX with PX and QX , respectively. Note that DISDE
could be used in image datasets (see Section 4.2 in [16]). The official code for DISDE could be found
at https://github.com/namkoong-lab/disde. We specify the formula of DISDE as follows:

EQ[`(fP (X), Y )]− EP [`(fP (X), Y )] = ESX
[RP (X)]− EP [RP (X)] (I)

+ ESX
[RQ(X)−RP (X)] (II)

+ EQ[RQ(X)]− ESX
[RQ(X)], (III)

where Rµ(x) := Eµ[`(fP (X), Y )|X = x] for µ = P,Q is denoted as the conditional risks on P
and Q. SX is the share distribution with support contained in both PX and QX . Then we see the
sum of the two terms (I) and (III) as the performance drop attributed to X-shifts and the term (II) as
the performance drop attributed to Y |X-shifts. Besides, we also implement DISDE in our released
package named WHYSHIFT, which could be found at https://github.com/namkoong-lab/
whyshift.

C.2 Prevalence of Y |X-Shifts

For each of the 7 settings in Table 1, we only select one target distribution in the main body, while
our benchmark supports multiple target distributions. Specifically, for ACS Income, ACS Mobility,
ACS Pub.Cov, we have 50 target distributions (the other 50 American states) in total for each setting;
for Taxi, we have 3 target distributions (other cities Mexico City, Bogotá, Quitio); for the temporal
shift version of ACS Pub.Cov (i.e. setting 6), we have 3 target distributions (i.e. the year 2014, 2017,
and 2021); and for US Accident, we have 13 target distributions (13 American states). Therefore,
we have 169 source-target transfer pairs in total for these 7 settings.

We use XGBoost classifier and calculate the decomposition of performance degradation via DISDE
[16]. We calculate the Y |X-shift ratio from the source distribution P to the target distribution Q:

Y |X-shift ratio =
ESX

[RQ(X)−RP (X)]

EQ[`(fP (X), Y )]− EP [`(fP (X), Y )]
,

where Rµ(X) is defined in Appendix C.1. We first focus on pairs with relatively strong distribution
shifts (i.e. performance degradation larger than 8 percentage points). Across these pairs, we find that
70.2% pairs have over 60% Y |X-shifts, and 87.2% pairs have over 50% Y |X-shifts, indicating
the prevalence of Y |X shifts. To visualize the result better, in all 22 settings in our benchmark (as
shown in Table 3), we focus on transfer pairs with performance degradation larger than 5 percentage
points and plot the histogram of the ratio of Y |X-shifts in Figure 8. From Figure 8, we could see that
Y |X-shifts are prevalent in real-world distribution shifts.

C.3 Details of Algorithm 1

In this section, we provide a more detailed introduction of our proposed Algorithm 1. We propose
a simple yet efficient method to identify data regions with strong Y |X shifts, and it could inspire
operational and modeling interventions as shown in Section 3.2.
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Figure 8: Histogram of Y |X-shift ratio in our benchmark.

Consider a model f : X → Y that predicts outcome Y from covariates X . Let `(f(x), y) be a loss
function denoting a notion of predictive error (e.g., cross-entropy loss, mean-square error). Our goal
is to identify a region S ⊆ X where P (Y |X) differs a lot fromQ(Y |X). In order to directly compare
P (Y |X) and Q(Y |X), we must do an apples-to-apples comparison: we cannot know Q(Y |X) for
X’s that are primarily observed in P (and vice versa).

To address this, we first construct a shared distribution SX over X whose support is contained in
that of both PX and QX . We choose a specific shared distribution SX over X whose support is
contained in that of PX and QX (following [16]). Ideally, the chosen shared distribution would
exhibit a higher density when both PX and QX densities are high, and a lower density when either of
the two possesses a low density. This strategy effectively allows regions of shared density to be more
pronounced. Recall that pX , qX , sX are the densities of X under P,Q and S, we formulate sX as

sX(x) ∝ pX(x)qX(x)/(pX(x) + qX(x)). (C.1)

Choices of SX Here we would like to discuss different choices of SX to provide more intuitions.
As demonstrated in [16], we can use many forms of the shared distribution. For example, we could
choose the following form:

sX(x) ∝ min{pX(x), qX(x)}, (C.2)

which guarantees that the support of SX is contained in that of both PX and QX . Another choice is:

sX(x) ∝
{
pX(x) + qX(x) if min{pX(x)

qX(x) ,
qX(x)
pX(x)} ≥ ε,

0 otherwise,
(C.3)

for some ε ≥ 0. This form of SX defines shared samples as those with high likelihood ratios. Notably,
for all the three forms of SX , if PX = QX , then SX = PX = QX . And when pX(x)� qX(x) or
pX(x)� qX(x), Equation (C.1) and Equation (C.2) become similar. In our Algorithm 1, we use the
form of Equation (C.1), and Cai et al. [16] observe that in practice the qualitative conclusions are not
very sensitive to the specific choice of shared distribution.

Intuitions behind Algorithm 1 Since we do not have access to samples from the shared distribution
SX , we reweight samples from PX and QX using the likelihood ratios:

sX
pX

(x) ∝ qX(x)

pX(x) + qX(x)
and

sX
qX

(x) ∝ pX(x)

pX(x) + qX(x)
. (C.4)

Then we define α̂ as the proportion of the pooled data that comes from distribution Q:

α̂ =
nQ

nP + nQ
and π̂(x) = P(X̃ from QX |X̃ = x), (C.5)
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where π̂(x) denotes the probability of a sample to come from QX . Using Bayes’ rule, we have:

π̂(x) =
P(X̃ = x|X̃ from QX)P(X̃ from QX)

P(x)
=

α̂q(x)

α̂q(x) + (1− α̂)p(x) ,

=
α̂

α̂+ (1− α̂)p(x)
q(x)

.
(C.6)

Noting that the ratio π̂(x) can be modeled as the probability that an input x came from PX vs QX ,
we train a binary “domain” classifier to estimate the ratios. (The “domain” classifier can be any
black-box method, and we use XGBoost throughout.)

Then the likelihood ratios that we care about could be reformulated as:

sX
pX

(x) ∝ 1
pX(x)
qX(x) + 1

and
sX
qX

(x) ∝
pX(x)
qX(x)

pX(x)
qX(x) + 1

, (C.7)

which gives that:

sX
pX

(x) ∝ π̂(x)

(1− α̂)π̂(x) + α̂(1− π̂(x)) and
sX
qX

(x) ∝ 1− π̂(x)
(1− α̂)π̂(x) + α̂(1− π̂(x)) . (C.8)

After obtaining the likelihood ratios sX
pX

(x) and sX
qX

(x), we could do an apples-to-apples comparison:
we estimate PY |X and QY |X over the shared distribution SX (using XGBoost F)

fP := argmin
f∈F

{
ESX

[
EP [`(f(X), Y )|X]

]
= EP

[
`(f(X), Y )

dSX

dPX
(X)

]}
, (C.9)

fQ := argmin
f∈F

{
ESX

[
EQ[`(f(X), Y )|X]

]
= EQ

[
`(f(X), Y )

dSX

dQX
(X)

]}
. (C.10)

Then, for any threshold b ∈ [0, 1], {x ∈ X : |fP (x)− fQ(x)| ≥ b} suggests a region that may suffer
model performance degradation due to Y |X-shifts.

C.4 Analysis of Decision Tree

In Algorithm 1, we use a shallow decision tree h(x) to approximate y = |fP (x) − fQ(x)| on the
shared distribution SX to find the covariate region with highest discrepancy. In our decision tree,
we use the squared error as the splitting criterion. And below we demonstrate that this criterion is
equivalent to maximizing the discrepancy between two children nodes.

Suppose there are N samples with outcomes {yi}i∈[N ] belonging to tree node fa, and these samples
are split into two children nodes s1, s2, where the node s1, s2 denote the set of sample indices in the
two children nodes respectively. The squared error criterion to split fa into s1 and s2 is:

min
s1,s2

{
L(s1, s2) :=

1

N

(∑
i∈s1

(yi − µY,1)2 +
∑
i∈s2

(yi − µY,2)2
)}

, (C.11)

where

µY,1 :=

∑N
i=1 yi1{i∈s1}∑N
i=1 1{i∈s1}

, µY,2 :=

∑N
i=1 yi1{i∈s2}∑N
i=1 1{i∈s2}

(C.12)

denote the mean values of the outcome Y with samples in children nodes s1 and s2. Denote the
distribution of the outcome Y follows the empirical distribution over the N samples {yi}i∈[N ].
Simplifying (C.11), we have:

L(s1, s2) = P (Y ∈ s1)Vars1(Y ) + P (Y ∈ s2)Vars2(Y ) = ES [Var(Y |S)], (C.13)

where Vars(Y ) denotes the variance of the outcome variable Y in node s, S = {s1, s2} is the variable
representing the children nodes. Therefore, given that Varfa(Y )(:= VarS(E[Y |S]) +ES [Var(Y |S)])
is constant, the minimal ES [Var(Y |S)] corresponds with the largest VarS(E[Y |S]), which maximizes
the discrepancy of the outcome between two children nodes.
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C.5 Details of Non-algorithmic Interventions

In Section 3.2, we propose two potential non-algorithmic interventions to mitigate the performance
degradation. In this section, we introduce in detail the intervention of collecting specific data from
the target.

Experiment Setup We focus on the income prediction task using the ACS Income dataset. Con-
sider a practical scenario where the training set consists of 20,000 samples from California (CA) and
the trained model was deployed in Puerto Rico (PR) in trial. After the trial deployment in PR, we got
a small amount of samples from PR with labels and observed performance degradation. Under this
setting, we investigate the effect of non-algorithmic interventions.

Collect specific data from the target We first identify the regions with high discrepancy between
source and target. Note that the sample size of the target state is small compared to the training
samples. Then for typical algorithms like logistic regression (LR), MLP, random forest (RF),
LightGBM and XGBoost, we compare the performances of:

• original setting (only 20,000 samples from the source);
• original setting with N additional random samples drawn from the whole target state;
• original setting with N additional random samples drawn from the risk region of the target

state.

In this experiment, we first select the best configuration of each method according to the i.i.d
validation set in the original setting (only samples from CA), and fix it for the other two interventions.
We vary N as 100, 200, 300 and the results are shown in Figure 9. From Figure 9, incorporating
data from the risk region leads to a stable improvement on typical algorithms even for small target
sample sizes. However, we observe that LightGBM and XGBoost would easily overfit fQ on the
target data, and we use random forest under this setup as an alternative. It is worth investigating
approaches to find risk regions effectively under small/imbalanced sample sizes in the future. The
approach mentioned here is a simple way of non-algorithmic and explainable interventions and we
hope it could inspire further research in this direction.
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Figure 9: Test accuracies of different ways to incorporate data.

C.6 Potential Alternative Approach of Identifying Risk Region

In Algorithm 1, we propose a simple way to identify the risk region to explain the cause of Y |X-shifts.
And the identified region could be used to guide the collecting process of target data, which could
help to further reduce the effects of performance degradation. However, in practice, when the amount
of target samples is quite small, it may be hard to train the fQ only with target samples accurately.
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Therefore, it may be better to propose a method that does not need fQ to fit Q(Y |X) on the target
distribution.

Following this idea, we propose an alternative way of Algorithm 1. Since the training data is enough,
it is feasible to fit fP on the shared distribution SX as:

fP := argmin
f∈F

EP
[
dSX
dPX

`(f(X), Y )

]
. (C.14)

Then for nQ samples from target distributionQ, we could use a prediction model h(x) to approximate
|Y − fP (X)| on the shared distribution (by reweighting density ratio dSX

dQX
). Note that this method

does not need to train fQ on target samples, but the quality of the density ratio dSX/dPX and the
prediction model h(x) still depend on the target samples. We hope the estimation of the ratio and
the residuals |Y − fP (X)| can be less affected by the low sample size nQ. This non-algorithmic
intervention is not the main focus of this work, but we hope this idea could help to promote this line
of research.

D Benchmark Details

In this section, we provide the details of our benchmark. In our benchmark, we explore distri-
bution shifts on 5 real-world tabular datasets from the economic and traffic sectors with natural
spatiotemporal distribution shifts. We carefully design 22 settings utilizing these 5 datasets, and the
overview of 22 settings is shown in Table 3. Note that in our main body, due to space limitations,
we only pick 7 typical settings and select only one representative target domain for each setting,
as shown in Table 1. Detailed introductions of all datasets, algorithms, and experiment settings
will be given in the following sections. A Python package for our benchmark can be found at
https://github.com/namkoong-lab/whyshift.

Table 3. Overview of datasets and the whole 22 selected settings. In our benchmark, each setting has
multiple target domains (except the last setting). In our main body, we select only one target domain for
each setting. �: we report the “Dom. Ratio” to represent the dominant ratio of Y |X-shifts or X-shifts
in source-target pairs with performance degradation larger than 5 percentage points in each setting. For
example, "Y |X: 13/14" means that there are 14 source-target pairs in Setting 1 with degradation larger
than 5 percentage points and 13 out of them with over 50% degradation attributed to Y |X shifts. We
use XGBoost to measure this.

#ID Dataset Type #Features Outcome Source #Train Samples #Test Domains Dom. Ratio�

1 ACS Income Spatial 9 Income≥50k California 195,665 50 Y |X: 13/14
2 ACS Income Spatial 9 Income≥50k Connecticut 19,785 50 Y |X: 24/24
3 ACS Income Spatial 9 Income≥50k Massachusetts 40,114 50 Y |X : 21/22
4 ACS Income Spatial 9 Income≥50k South Dakota 4,899 50 Y |X : 9/9
5 ACS Mobility Spatial 21 Residential Address Mississippi 5,318 50 Y |X : 28/34
6 ACS Mobility Spatial 21 Residential Address New York 40,463 50 Y |X : 30/31
7 ACS Mobility Spatial 21 Residential Address California 80,329 50 Y |X : 9/17
8 ACS Mobility Spatial 21 Residential Address Pennsylvania 23,918 50 Y |X : 17/17
9 Taxi Spatial 7 Duration time≥30 min Bogotá 3,063 3 Y |X : 1/2
10 Taxi Spatial 7 Duration time≥30 min New York City 1,458,646 3 Y |X : 3/3
11 ACS Pub.Cov Spatial 18 Public Ins. Coverage Nebraska 6,332 50 Y |X : 32/39
12 ACS Pub.Cov Spatial 18 Public Ins. Coverage Florida 71,297 50 Y |X : 28/29
13 ACS Pub.Cov Spatial 18 Public Ins. Coverage Texas 98,928 50 Y |X : 33/34
14 ACS Pub.Cov Spatial 18 Public Ins. Coverage Indiana 24,330 50 Y |X : 11/13
15 US Accident Spatial 47 Severity of Accident Texas 26,664 13 Y |X : 7/7

16 US Accident Spatial 47 Severity of Accident California 64,909 13 X : 22/31
17 US Accident Spatial 47 Severity of Accident Florida 32,278 13 X: 5/7
18 US Accident Spatial 47 Severity of Accident Minnesota 8,927 13 X: 8/11
19 ACS Pub.Cov Temporal 18 Public Ins. Coverage Year 2010 (NY) 73,208 3 X : 2/2
20 ACS Pub.Cov Temporal 18 Public Ins. Coverage Year 2010 (CA) 149,441 3 X : 2/2
21 ACS Income Synthetic 9 Income≥50k Younger People (80%) 20,000 1 X : 1/1
22 ACS Income Synthetic 9 Income≥50k Younger People (90%) 20,000 1 X : 1/1

D.1 Datasets & Settings

Here we introduce 5 real-world tabular datasets in detail. ACS Income, ACS Mobility, ACS
Public Coverage are based on the American Community Survey (ACS) Public Use Microdata
Sample (PUMS) [25]. And here we use the same data filtering as [25].
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ACS Income The task is to predict whether an individual’s income is above $50,000. We filter the
dataset to only include individuals above the age of 16, usual working hours of at least 1 hour per
week in the past year, and an income of at least $100.

• In our Setting 1∼4, we use data from 2018 and the source/target domain refers to Amer-
ican states, which contain natural spatial distribution shifts. We train methods on data
from California, Connecticut, Massachusetts, and South Dakota respectively, and test the
generalization performance on the other 50 American states.

• In our Setting 21∼22, we sub-sample the dataset according to age to introduce covariate
shift, where we focus on individuals from California and form two groups according to
whether their age is ≥ 25. In Setting 21, the source data over-samples the low age group
where 80% is drawn from the age ≥ 25 group, and the proportions are reversed in the target
data (20% from age ≥ 25 group). In Setting 22, the source data over-samples the low age
group where 90% is drawn from the age ≥ 25 group, and the proportions are reversed in the
target data (10% from age ≥ 25 group).

ACS Mobility The task is to predict whether an individual had the same residential address one
year ago. We filter the dataset to only include individuals between the ages of 18 and 35, which
increases the difficulty of the prediction task.

• In our Setting 5∼8, we use data from 2018 and the source/target domain refers to American
states, which contain natural spatial distribution shifts. We train methods on data from
Mississippi, New York, California, and Pennsylvania respectively, and test the generalization
performance on the other 50 American states.

ACS Public Coverage The task is to predict whether an individual has public health insurance. We
focus on low-income individuals who are not eligible for Medicare by filtering the dataset to only
include individuals under the age of 65 and with an income of less than $30,000.

• In our Setting 11∼14, we use data from 2018 and the source/target domain refers to
American states, which contain natural spatial distribution shifts. We train methods on
data from Nebraska, Florida, Texas, and Indiana respectively, and test the generalization
performance on the other 50 American states.

• In our Setting 19∼20, we consider the temporal shifts. We use data from 2010 in training
and data from 2014, 2017, and 2021 in testing (3 test domains). In Setting 19, the training
data come from New York, and in Setting 20, the training data come from California.

US Accident The task is to predict whether an accident is severe (long delay) or not (short delay)
based on weather features and Road conditions features.

• In our Setting 15∼18, the source/target domain refers to American states, which contain
natural spatial distribution shifts. We train methods on data from California, Florida, Texas,
and Minnesota respectively, and test the generalization performance on other 13 American
states. Here we only involve 13 test domains because the sample sizes in the other states are
quite small.

Taxi The task is to predict whether the total ride duration time exceeds 30 minutes, based on
location and temporal features. We filter the data in 2017 and remove some extremely large or small
features (e.g. samples with too long distances which can be easily classified).

• In our Setting 9∼10, we use data from 2016 and the source/target domain refers to different
cities. We train methods on data from Bogota and New York City and test the generalization
performance in the other cities.

D.2 Algorithms & Implementations

In our benchmark, we evaluate 22 algorithms that span a wide range of learning strategies on tabular
data and compare their performances under different patterns of distribution shifts we construct.
Concretely, these algorithms include:
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Base Methods We include some typical supervised learning methods for tabular data: Logistic
Regression (LR), SVM, and fully-connected neural networks (MLP) with standard ERM optimization.
For LR and SVM, we use the standard implementation in scikit-learn [71] and train them on
CPUs. For MLP, we implement it via PyTorch [70] and train it on GPUs.

Tree Ensemble Models As shown by Gardner et al. [31], several tree-based methods achieve good
performances on tabular datasets. And gradient-boosted trees (e.g., XGBoost, LightGBM) are widely
considered as the state-of-the-art methods on tabular data. Therefore, we evaluate XGBoost and
LightGBM in our benchmark. Also, we evaluate Random Forest (RF) to incorporate the performance
of tree bagging methods.

DRO Methods Distributionally Robust Optimization (DRO) methods are proposed to address the
distribution shifts, which is the form of:

min
θ∈Θ

sup
Q∈P(Ptr)

EQ[`(fθ(X), Y )], (D.1)

where P(Ptr) denotes the uncertainty set around the training distribution Ptr. Following Gardner et
al. [31], we implement two typical variants of DRO, namely CVaR-DRO and χ2-DRO. CVaR-DRO
is equivalent to Conditional Value at Risk (CVaR), and χ2-DRO uses χ2-divergence to regulate
the uncertainty set. We use the fast implementation [53] in PyTorch [70]. We also consider the
DORO [105], which discards a proportion ε of the largest error points in each iteration to mitigate
the outliers in DRO with two variants, CVaR-DORO and χ2-DORO. We also evaluate the Group
DRO [79], which is proposed to minimize the worst-group loss and shows good generalization
performances on many vision tasks. This method needs the group label and we define groups
according to the “SEX” feature on ACS datasets. For US Accident and Taxi, we do not run Group
DRO, since the current Group DRO model in the codebase only accepts the input with few groups
while it is hard to define such group here. For all DRO methods, we use the MLP as the backbone
model. We do not choose tree ensemble methods since tree ensemble methods are difficult to adapt to
the distributionally robust case. Therefore, we leave their method developments and implementations
as our future work.

Imbalanced Learning Methods Recently, some simple data balancing methods [42] have shown
good worst-group performances under distribution shifts. In our benchmark, we implement 4
typical balancing methods, namely Sub-Sampling Y (SUBY), Reweighting Y (RWY), Sub-Sampling
Group (SUBG), and Reweighting Group (RWG). Besides, “Just Train Twice” (JTT [57]) exhibits
good performances in many vision tasks, and therefore we also evaluate it in our tabular settings.
Furthermore, stable learning methods [51, 24] propose to de-correlate sample covariates for an
accurate estimation of causal relationships via global balancing, which could mitigate distribution
shifts. In our benchmark, we implement one typical method named DWR [51]. For these imbalanced
learning methods, we use XGBoost as the backbone model due to its superiority on tabular data and
adjust sample weight or training procedure accordingly for each of the methods.

Fairness-enhancing Methods Following Ding et al. [25] and Gardner et al. [31], fairness-
enhancing methods have the potential to mitigate the performance degradation under distribution
shifts. In our benchmark, we evaluate the in-processing and post-processing intervention methods.
The in-processing method [4] minimizes the prediction error subject to some fairness constraints, and
in our benchmark, we choose three typical fairness constraints, including demographic parity (DP),
equal opportunity (EO), error parity (EP). And the post-processing method [37] randomizes the pre-
dictions of a fixed classifier to satisfy equalized odds criterion, and we use exponential and threshold
controls in our benchmark. We use the implementations of aif360 [11] and fairlearn [12].

D.3 Parameter Search Space

We provide the hyperparameter grids in Table 4. We mainly use the hyperparameter grids proposed
in [31], and we restrict the grid size of each method in each setting to 200 in consideration of
computational costs. For each setting, we randomly pick 200 configurations for each algorithm for a
fair comparison. For methods incorporating backbone models (e.g., MLP/XGBoost), we choose the
top 10 best configurations for that backbone model to reduce the search space, making the searched
best configuration represent its best performance more accurately. Moreover, to accelerate the grid
search process, we utilize Ray [55] to run experiments in parallel.
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Table 4. Hyperparameter grids used in all experiments. �: for methods with the total grid size above
200, we randomly sample 200 configurations for fair comparisons. For methods incorporating backbone
models (e.g., MLP/XGBoost), we choose top-10 best configurations for that backbone model to reduce
the search space, making the searched best configuration represent its best performance more accurately.

Model Total Grid Size Hyperparameter Value Range
Base Methods

MLP 270�

Learning Rate {0.001, 0.003, 0.0001, 0.005, 0.01}
Batch Size {64, 128, 256}
Hidden Units {16, 32, 64}
Dropout Ratio {0, 0.1}
Train Epoch {50, 100, 200}

SVM 96

C {0.01, 0.1, 1, 10, 100, 1000}
Kernel {linear,RBF}
Loss Squared Hinge
γ {0.1, 0.3, 0.5, 1.0, 1.5, 2.0, scale, auto}

Logistic Regression 23 L2 penalty {0.001, 0.03, 0.005, 0.007, 0.01, 0.03, 0.05, . . .
1.3, 1.7, 5, 10, 50, 100, 5e2, 1e3, 5e3, 1e4}

Tree Ensemble Methods

Random Forest 640�

Num. Estimators {32, 64, 128, 256, 512}
Max Features {sqrt, log2}
Min. Samples Split {2, 4, 8, 16}
Min. Samples Leaf {1, 2, 4, 8}
Cost-Complexity α {0., 0.001, 0.01, 0.1}

XGBoost 1944�

Learning Rate {0.1, 0.3, 1.0, 2.0}
Min. Split Loss {0, 0.1, 0.5}
Max. Depth {4, 6, 8}
Column Subsample Ratio (tree) {0.7, 0.9, 1}
Column Subsample Ratio (level) {0.7, 0.9, 1}
Max. Bins {128, 256, 512}
Growth Policy {Depthwise,Loss Guide}

LightGBM 1680�

Learning Rate {0.01, 0.1, 0.5, 1.}
Num. Estimators {64, 128, 256, 512}
L2-reg. {0., 0.001, 0.01, 0.1, 1.}
Min. Child Samples {1, 2, 4, 8, 16, 32, 64}
Column Subsample Ratio (tree) {0.5, 0.8, 1.}

DRO Methods

DRO χ2 1890� Uncertainty set size α {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}
Backbone Model MLP

DRO CVaR 1890� Uncertainty set size α {0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}
Backbone Model MLP

DORO χ2 8100�
Uncertainty set size α {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}
Outlier proportion ε {0.001, 0.01, 0.1, 0.2, 0.3}
Backbone Model MLP

DORO CVaR 8100� Uncertainty set size α {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}
Outlier proportion ε {0.001, 0.01, 0.1, 0.2, 0.3}

Group DRO 1080� Group weights step size {0.001, 0.01, 0.1, 0.2}
Backbone Model MLP
Imbalanced Learning Methods

SUBY, RWY, SUBG, RWG 1944� Backbone Model XGBoost

JTT 11664� Up-weight λ {4, 5, 6, 20, 50, 100}
Backbone Model XGBoost

DWR 48600�
L1 penalty λ {1e− 3, 1e− 2, 1e− 1, 0.2, 0.3}
L2 penalty λ {1e− 3, 1e− 2, 1e− 1, 0.2, 0.3}
Backbone Model XGBoost

Fairness Methods

In-processing 1944� Constraint Type {DP,EO,Error Parity}
Backbone Model XGBoost

Post-processing 1944� Constraint Type {Exp,Threshold}
Backbone Model XGBoost
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Figure 10: Algorithmic rankings vary across different target states for the fixed source state and task.

D.4 Training Details

In each setting, we randomly sample 20,000 samples from the source domain for training, 20,000
samples from the source domain for validation, and 20,000 samples from the target domain for testing.
For US Accident and Taxi datasets, we only randomly sample 8,000 samples for the source/target
domain due to fewer samples involved in each setting. For setting where the source domain has
fewer samples, we use 80% samples for training and 20% for validation. For results not specified
by the validation protocol, we selected the best configuration according to the performance on such
validation set (i.i.d with training).

For settings with ACS Income, ACS Public Coverage, ACS Mobility and US Accident
datasets, all experiments were run on a server using 48 cores from two AMD EPYC 7402 24-
Core Processors. For settings with Taxi dataset, all experiments were run on a cluster using 24
cores from an Intel Xeon Gold 6126 Processor. Neural-network-based models (MLP, DRO methods)
were trained on GPU, NVIDIA GeForce RTX 3090, the other methods were trained only on CPUs.
Note that all experiments are small-scale and could be run efficiently. Besides, during training, we
found that the bi-search in χ2-DRO sometimes failed to converge, and therefore we set the maximal
iteration num to 2500.

D.5 Detailed Results of 7 Selected Settings in Main Body

In the main body, due to space limitations, we only visualize the target performances of different
methods. Here we provide the detailed results of all algorithms on the 7 selected settings in Table 1.
We select the top-10 configurations according to the validation set i.i.d with training data and report
the mean accuracy as well as the standard deviation in Table 5. Also, in Figure 11, we visualize the
results of 22 algorithms of all configurations in our 7 selected settings.

Table 5. Results of 7 selected settings in the main body, where we run each method with its best
configuration 10 times and report their mean accuracies and standard deviations.

Dataset ACS Income ACS Mobility US Taxi ACS Pub.Cov US Accident ACS Time Sub-Sampling
Shift Pattern Y |X dominates Y |X dominates Y |X dominates Y |X more Y |X more X more X dominates
Source→ Target Pair CA→PR MS→HI NYC→BOG NE→LA CA→OR 2010→2017 Young→Old

i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d

Base
Methods

LR 80.5±0.2 73.2±0.2 76.9 ±0.2 76.9 ±2.6 83.6±0.3 73.7±0.2 83.2±0.6 66.3±1.4 82.3±0.3 67.7±0.3 75.3±1.8 66.7±2.4 92.4±0.0 81.5±0.0

SVM 79.0±0.3 67.0±0.9 78.6±0.6 76.9±0.3 83.4±0.2 74.9±0.6 83.9±0.4 64.9±1.2 81.3±0.8 65.5±0.4 75.4±0.9 67.4±0.9 91.9±0.1 79.5±0.7

MLP 80.9±0.4 68.9±2.5 76.8 ±0.5 76.4 ±2.7 84.5±0.5 73.8±0.5 82.5±1.1 66.4±2.6 83.6±0.5 63.5±0.8 77.0±1.0 70.5±0.5 92.3±0.1 81.6±0.3

Tree
Ensemble
Methods

Random forest 81.1±0.2 72.9±0.4 80.2 ±0.3 72.0 ±0.3 85.8±0.2 73.4±0.8 85.5±0.3 68.3±0.4 86.2±0.5 66.5±0.4 78.5±0.2 70.6±0.3 92.2±0.1 81.2±0.1

LightGBM 81.2±0.2 71.4±0.5 79.5 ±0.3 71.3 ±0.8 86.4±0.4 72.7±0.8 85.7±0.4 70.0±0.4 86.6±0.4 65.4±0.4 79.1±0.3 71.8±0.3 93.0±0.0 82.4±0.0

XGBoost 81.4±0.2 71.7±0.6 80.0 ±0.4 71.2 ±0.8 86.5±0.4 73.0±0.7 85.8±0.5 70.1±0.3 86.6±0.4 65.4±0.3 79.0±0.3 71.6±0.2 92.6±0.0 81.6±0.0

DRO
Methods
(base: MLP)

χ2-DRO 80.7±0.2 73.2±2.2 76.3 ±0.3 78.4 ±0.2 84.8±0.4 73.0±1.1 80.6±0.6 60.9±1.7 83.3±0.4 64.0±0.8 70.5±12.6 64.2±7.6 92.1±0.2 81.2±0.5

CVaR-DRO 80.9±0.2 71.7±1.7 76.4 ±0.5 78.3 ±0.4 85.4±0.4 73.8±0.8 79.5±4.0 61.7±1.7 84.1±0.3 64.8±0.7 75.6±1.6 67.5±2.7 92.3±0.1 81.4±0.3

χ2-DORO 77.2±6.2 71.0±10.2 76.3 ±0.4 78.6 ±0.0 84.6±0.4 73.6±0.7 80.6±0.4 59.4±0.0 83.5±0.4 64.5±0.8 71.2±0.3 64.5±0.3 91.9±0.3 80.6±1.2

CVaR-DORO 78.8±0.6 72.4±4.2 76.4 ±0.4 78.6 ±0.1 85.2±0.3 74.3±0.4 83.7±0.5 66.9±0.9 83.4±2.4 63.9±1.0 77.6±0.3 70.7±0.4 92.0±0.2 81.0±0.6

Group DRO 80.7±0.3 71.9±3.4 75.5 ±0.4 78.5 ±0.2 N/A N/A 80.3±7.3 65.8±3.6 N/A N/A 74.4±7.1 68.3±4.0 92.3±0.1 81.6±0.2

Imbalanced
Learning
Methods
(base: XGB)

JTT 77.9±0.4 69.7±1.3 77.2 ±0.3 70.1 ±0.8 85.0±0.3 71.4±1.1 84.1±0.8 68.9±0.4 85.9±0.4 65.9±0.7 72.9±0.4 67.7±1.0 91.5±0.0 79.0±0.0

SUBY 80.5±0.2 64.9±0.7 76.0 ±0.2 70.3 ±2.6 85.8±0.4 72.0±1.9 75.2±1.0 68.6±0.7 85.3±0.3 64.4±0.4 73.5±0.4 70.3±1.5 85.7±0.4 68.5±0.7

RWY 80.9±0.2 65.9±0.6 75.9 ±0.4 68.5 ±1.3 86.2±0.5 73.1±1.1 82.1±0.7 69.7±0.5 86.1±0.4 65.3±0.6 74.7±0.5 71.3±0.6 90.6±0.0 78.5±0.0

SUBG 81.2±0.3 70.9±0.6 79.1 ±0.2 71.1 ±0.6 85.3±0.3 71.4±1.2 85.1±0.5 70.2±0.4 86.4±0.4 65.2±0.4 78.8±0.3 71.4±0.3 92.4±0.1 81.2±0.3

RWG 81.4±0.2 71.5±0.5 79.7 ±0.2 71.0 ±0.8 86.3±0.4 72.8±0.9 85.8±0.5 70.1±0.3 86.7±0.4 65.2±0.4 79.1±0.4 72.1±0.3 92.9±0.0 82.5±0.0

DWR 81.3±0.2 71.3±0.6 78.2 ±0.4 69.8 ±0.8 83.5±0.5 71.2±1.2 85.8±0.4 69.8±0.4 86.7±0.4 65.4±0.4 79.0±0.3 72.0±0.3 92.5±0.0 81.2±0.0

Fairness
Methods
(base: XGB)

DP 80.8±0.3 70.4±0.6 79.5 ±0.3 71.3 ±0.8 86.3±0.4 72.0±1.0 85.2±0.5 70.2±0.5 86.3±0.4 65.6±0.5 79.0±0.3 71.8±0.2 92.7±0.0 81.6±0.0

EO 81.3±0.2 71.2±0.6 79.3 ±0.3 71.4 ±1.0 86.4±0.3 72.8±1.2 85.8±0.4 70.2±0.4 86.4±0.5 65.4±0.5 79.0±0.3 71.8±0.2 92.7±0.0 81.5±0.0

EP 81.3±0.2 71.4±0.5 79.6 ±0.3 70.9 ±0.9 85.7±0.4 71.7±1.4 86.0±0.2 70.1±0.5 86.3±0.4 66.1±0.8 79.0±0.3 71.8±0.2 92.6±0.0 81.5±0.0

Exp 80.9±0.2 70.6±0.6 79.4 ±0.6 71.2 ±0.9 85.6±0.5 71.5±1.1 85.5±0.2 70.2±0.5 85.8±0.4 65.5±0.6 79.0±0.3 71.8±0.2 92.6±0.0 81.5±0.0

Threshold 77.2±0.3 73.6±0.4 77.5 ±0.5 69.9 ±1.3 84.1±0.6 54.3±0.4 84.5±0.3 68.2±0.7 83.8±0.5 64.5±0.6 78.8±0.2 71.7±0.3 91.6±0.0 78.3±0.0

Top 3 Classes Fair>Base≈Rob. DRO>Base�Tree. Base>DRO>Tree Tree≈Fair≈Imb. Base>Tree>Fair Imb>Fair≈Tree Tree≈Imb>Others
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(a) ACS Income (CA→ PR)
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(b) ACS Income (CA→ SD)
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(c) ACS Mobility (MS→ HI)
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(d) Taxi (NYC→ BOG)
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(e) ACS Pub.Cov (NE→ LA)
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(f) US Accident (CA→ OR)

60 100
Source  Acc

20

60

100

Ta
rg

et
  A

cc

LR
SVM
MLP
Random Forest
LightGBM
XGBoost

2-DORO
2-DRO

CVaR-DRO
CVaR-DORO
Group DRO
JTT

RWG
RWY
SUBG
SUBY
DWR
Fair EO
Fair DP
Fair Error Parity
Fair Exp
Fair Threshold
y = x

(g) ACS Pub.Cov (2010→2017)
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(h) ACS Income (Young→ Old)

Figure 11. Target vs. source accuracies for 22 algorithms and datasets in our benchmark. Each point
represents one hyperparameter configuration. (a)-(b): two examples of ACS Income dataset with
California (CA) as the source state, and Puerto Rico (PR) and South Dakota (SD) as targets. (c)-(g): five
examples of ACS Mobility, Taxi, ACS Pub.Cov, US Accident datasets. (h): simulated covariate
shifts on on sub-sampled ACS Income dataset.

Analysis From the numbers of numerical results in that Table, we give a more detailed analysis
corresponding with our main body.

• Different algorithms do not exhibit consistent rankings over different distribution shift
patterns. In Table 5, we boldface the best target performance within each class of methods.
And we show the top-3 classes at the bottom. The results show that the algorithmic rankings
across different settings and tasks are quite different. And even the rankings of algorithms
within the same class vary a lot. This further demonstrates the complexity of Y |X shifts.
Also, Figure 10 shows that even for the fixed source state, algorithmic rankings vary a lot
across different target states.

• Tree ensemble methods show competitive performances but do not significantly eliminate
the generalization error between source and target data, characterized by the difference
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between o.o.d. and i.i.d. model performance. From the bottom, we could see that tree
ensemble methods achieve top-3 performances in most of the selected settings (6 out of 7),
exhibiting their superiority on tabular data. However, the performance degradation between
source and target is still large.

• Imbalance methods and fairness methods show similar performance with the base learner
(XGBoost). We find these methods do not have a significant improvement over the base
learner (XGBoost). This may be due to that they are not designed to incorporate tree
ensemble methods.

D.6 Full Results of 22 Settings

In this section, we provide the full results of our 22 settings in Table 3.

D.6.1 Average Accuracy

In Table 6, Table 7 and Table 8, we report the source accuracy and the target accuracy of all algorithms.
Since in these settings, we have multiple target domains, as for the target accuracy of each algorithm,
we report the average accuracy as well as the standard deviation calculated on all target domains.
Here the standard deviation reflects the stability of out-of-distribution generalization performances
across different target domains different instead of random seeds.

From the average result over, Table 6, Table 7 and Table 8, we can still obtain similar findings
compared to that from the 7 selected settings in the main body. Especially, while tree ensemble
methods serve as a strong in-sample benchmark illustrated by their competitive i.i.d. performance,
these methods do not yield better performance than other methods in the target distribution uniformly.
And when we average across different target domains, DRO methods do not perform better than
their empirical counterpart, indicating that the worst-case optimization from the uncertainty sets
constructed by existing DRO methods can rarely occur in practical setups and does not help much
compared with standard ERM cases. This tricky part of worst-case intervention also holds when we
compare imbalanced learning and fairness methods with the XGB base learner. These methods can
lead to better o.o.d. results than the base learner sometimes indeed, while this may not hold true
when we average over different target domains. In general, existing methods cannot generalize well
averaging over different target domains, and it would be interesting to develop methods to close that
gap.

D.7 Worst-Domain Accuracy

Another widely-used metric in evaluating generalization performance is worst-case accuracy. In
settings built on ACS Income, ACS Pub.Cov, ACS Mobility, and US Accident, for the target
accuracy of each algorithm, we report the worst target domain accuracy in Table 9 and Table 10.
For other settings, we do not report the worst-case accuracy because there are not many target
domains, and the average& standard deviation results could reflect the population generalization
performance well. In terms of the worst target accuracy for each setting, we usually observe a large
performance degradation (usually over a 10 percent performance drop) in all of the existing methods.
And algorithms do not show a consistent and stable ranking performance in the o.o.d. performance.
DRO / Imbalanced learning methods can perform quite well in one o.o.d. setup but are dominated by
other methods in some other cases. This demonstrates a need to carefully understand the difference
between different domains first and develop corresponding methods then.

D.8 Average Macro-F1 Score

In consideration of the label imbalance in real-world tabular datasets, we also calculate the Macro-F1
Score for all algorithms under our settings. In this section, we report the average results in Table 11,
Table 12, and Table 13. Here the standard deviation reflects the stability of out-of-distribution
generalization performances (not the randomness).

D.9 Worst-Domain Macro-F1 Score

In settings built on ACS Income, ACS Pub.Cov, ACS Mobility, and US Accident, for the target
accuracy of each algorithm, we report the worst target domain Macro-F1 score in Table 14 and
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Table 6. Average target domain accuracy of all algorithms on the ACS Income and ACS Pub.Cov
datasets. In each setting, we test all algorithms on the 50 American states and report the mean and
standard deviation across all 50 target states. The standard deviation here reflects the stability of
performances across different target states.

Dataset ACS INCOME ACS PUB.COV
Source State CA CT MA SD FL TX NE IN

i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d

Base
Methods

LR 81.1 77.3 ±1.9 80.7 76.2 ±2.3 80.9 76.8 ±2.2 80.1 75.8 ±3.3 81.3 73.7 ±7.3 84.1 73.9 ±7.2 84.3 75.0 ±6.7 78.6 75.8 ±5.9

SVM 79.4 74.8 ±1.9 78.6 72.4 ±2.9 80.1 73.0 ±2.7 79.3 73.3 ±3.8 80.5 74.4 ±6.3 84.2 74.1 ±6.9 84.8 73.8 ±6.5 77.1 74.3 ±5.1

MLP 81.8 76.4 ±2.6 81.4 76.8 ±2.3 81.7 77.4 ±2.2 80.5 76.8 ±2.9 83.3 76.5 ±6.4 85.4 76.6 ±6.5 84.5 75.3 ±6.3 78.8 76.2 ±5.9

Tree
Ensemble
Methods

Random Forest 81.7 77.9 ±1.8 81.2 77.1 ±2.1 81.5 77.4 ±2.0 80.2 75.5 ±3.6 84.6 77.3 ±6.7 86.8 77.0 ±6.8 86.7 76.2 ±6.7 81.2 77.7 ±5.4

LightGBM 81.8 77.3 ±2.1 82.1 76.7 ±2.4 82.3 77.4 ±2.4 80.2 76.1 ±2.9 84.6 77.7 ±6.4 86.9 77.4 ±6.6 86.9 76.6 ±6.3 81.2 78.0 ±5.2

XGBoost 82.0 72.5 ±0.4 81.9 76.6 ±2.4 82.2 77.2 ±2.3 80.5 76.9 ±3.0 84.6 77.4 ±6.7 86.7 77.2 ±6.7 87.3 76.3 ±5.8 81.2 77.9 ±5.1

DRO
Methods

χ2-DRO 81.8 77.0 ±2.3 81.2 76.7 ±2.4 81.6 76.0 ±2.7 80.2 76.3 ±3.0 82.9 75.9 ±6.9 85.4 75.6 ±7.2 83.4 74.7 ±6.2 78.4 75.5 ±4.6

CVaR-DRO 81.4 77.7 ±1.9 81.2 76.3 ±2.4 82.0 76.7 ±2.4 79.7 75.5 ±3.5 82.6 75.3 ±7.0 85.2 75.8 ±6.9 83.3 73.4 ±6.5 77.8 75.2 ±6.4

χ2-DORO 81.1 77.8 ±1.7 80.4 75.1 ±2.9 81.2 75.7 ±2.7 78.8 75.9 ±2.6 78.8 70.0 ±8.2 82.1 69.9 ±8.1 82.2 70.0 ±8.1 72.4 70.2 ±6.9

CVaR-DORO 80.9 76.7 ±2.0 80.5 75.6 ±2.7 81.1 75.2 ±2.8 79.6 75.8 ±2.7 80.7 73.0 ±7.2 84.3 75.4 ±6.7 81.9 69.9 ±8.1 76.4 74.2 ±5.8

Group DRO 81.9 77.7 ±2.0 81.3 77.0 ±2.2 81.7 76.8 ±2.4 79.8 75.7 ±3.6 83.3 76.1 ±6.7 85.4 76.6 ±6.6 83.5 72.8 ±6.5 72.2 70.2 ±8.2

Imbalanced
Learning
Methods

SUBY 81.0 75.1 ±3.1 81.5 76.0 ±2.8 82.0 76.1 ±2.8 74.8 75.7 ±1.3 79.8 72.8 ±6.4 82.3 71.5 ±7.7 77.8 71.5 ±3.4 77.8 74.9 ±3.0

RWY 81.5 75.7 ±3.0 81.8 75.9 ±2.8 82.1 76.5 ±2.7 77.7 76.2 ±1.1 80.7 75.2 ±6.4 82.5 72.2 ±7.5 83.7 74.3 ±4.5 78.7 75.6 ±3.3

SUBG 81.9 77.3 ±2.2 81.6 76.8 ±2.4 82.0 76.9 ±2.5 80.2 76.0 ±3.2 84.3 77.4 ±6.5 86.7 77.1 ±6.7 86.3 76.1 ±5.8 80.8 77.8 ±5.2

RWG 82.0 77.4 ±2.2 81.9 76.7 ±2.4 82.2 77.2 ±2.3 80.2 76.8 ±3.0 84.5 77.5 ±6.4 86.8 77.4 ±6.8 86.7 76.4 ±5.9 81.0 78.0 ±5.4

JTT 78.3 74.1 ±2.5 78.1 75.3 ±1.7 79.1 75.8 ±1.8 77.9 74.7 ±2.6 80.6 74.9 ±5.1 83.1 75.6 ±5.7 84.7 75.4 ±5.7 77.6 74.2 ±4.6

DWR 81.9 77.5 ±2.1 81.6 76.8 ±2.2 82.1 77.0 ±2.5 80.1 76.3 ±2.0 84.3 77.5 ±6.4 86.8 77.3 ±6.7 85.9 76.4 ±6.4 80.6 78.0 ±5.2

Fairness
Methods

DP 81.3 76.3 ±2.4 81.0 75.4 ±2.6 81.8 76.7 ±2.4 79.3 75.5 ±3.3 84.3 77.4 ±6.4 86.6 77.2 ±6.7 86.4 76.3 ±5.8 80.6 77.8 ±5.2

EO 81.8 77.1 ±2.3 81.8 76.5 ±2.4 82.1 77.2 ±2.4 80.0 76.7 ±2.9 84.4 77.2 ±6.7 86.8 77.1 ±6.9 86.4 76.6 ±6.3 80.8 77.7 ±4.9

EP 81.8 77.2 ±2.3 81.9 76.5 ±2.5 82.1 77.5 ±2.2 80.3 76.2 ±3.3 84.4 77.3 ±6.6 86.8 77.3 ±6.6 86.4 76.5 ±6.2 80.9 77.6 ±4.9

Exp 81.4 76.8 ±2.2 0.81 75.3 ±2.6 81.8 76.5 ±2.4 79.1 75.5 ±3.1 84.5 77.5 ±6.6 86.8 77.1 ±6.8 86.4 76.6 ±6.3 80.9 78.2 ±5.2

Threshold 77.9 75.0 ±1.3 77.0 74.1 ±1.8 77.5 74.4 ±1.3 78.0 71.7 ±4.0 84.3 77.2 ±6.3 86.2 76.7 ±6.9 85.8 76.0 ±6.5 80.0 77.0 ±5.3

Table 7. Average target domain accuracy of all algorithms on the ACS Mobility and US Accident
datasets. In ACS Mobility, we test all algorithms on the 50 American states and report the mean and
standard deviation across all 50 target states. And in US Accident, we choose 13 American states with
relatively high sample sizes in testing. The standard deviation here reflects the stability of performances
across different target states.

Dataset ACS MOBILITY US ACCIDENT
Source State NY CA MS PA CA FL TX MN

i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d

Base

Methods

LR 78.6 72.7 ±3.6 77.1 72.7 ±3.7 77.3 72.7 ±3.7 75.4 72.7 ±3.4 83.2 70.1 ±15.4 90.7 71.7 ±13.9 95.1 74.5 ±9.6 86.4 72.2 ±11.8

SVM 79.8 72.7 ±3.6 77.7 72.9 ±3.1 79.4 72.9 ±3.6 77.1 72.7 ±3.6 83.2 69.4 ±12.6 88.7 71.9 ±9.6 93.7 70.7 ±9.1 88.6 69.7 ±8.3

MLP 78.7 72.7 ±3.6 77.1 72.7 ±3.7 78.1 72.4 ±3.3 75.9 73.0 ±3.1 84.7 75.7 ±10.7 92.7 78.2 ±8.7 94.9 73.0 ±9.9 88.9 74.0 ±10.2

Tree
Ensemble
Methods

Random Forest 80.4 74.0 ±3.1 79.0 74.1 ±3.1 80.6 73.5 ±3.4 78.6 74.3 ±3.0 86.6 77.9 ±7.8 93.5 84.4 ±10.1 95.2 84.4 ±9.9 91.6 82.0 ±5.7

LightGBM 80.6 74.6 ±2.8 78.7 74.1 ±2.8 80.0 72.9 ±2.9 78.6 74.7 ±2.5 87.1 79.1 ±7.8 93.3 84.3 ±9.8 95.4 84.3 ±10.0 92.2 80.9 ±5.4

XGBoost 80.4 74.6 ±3.0 0.79 74.5 ±2.8 80.9 73.5 ±3.0 79.0 74.3 ±2.4 87.1 79.8 ±7.6 94.6 82.6 ±9.3 95.3 84.4 ±9.9 92.5 79.6 ±5.4

DRO
Methods

χ2-DRO 78.5 72.7 ±3.6 77.5 72.9 ±3.4 76.8 72.7 ±3.5 76.0 73.1 ±3.3 84.4 77.3 ±9.3 92.6 73.4 ±12.6 95.0 74.6 ±9.1 89.0 72.3 ±10.4

CVaR-DRO 78.6 72.6 ±3.5 77.2 72.8 ±3.5 77.7 72.6 ±3.7 75.7 73.3 ±3.2 84.7 74.5 ±10.3 92.7 74.4 ±11.4 95.0 74.9 ±9.4 89.5 73.4 ±10.0

χ2-DORO 78.6 72.6 ±3.6 77.8 72.8 ±3.3 77.1 72.7 ±3.7 75.3 72.7 ±3.7 84.7 72.9 ±11.5 92.3 77.6 ±8.9 94.3 74.3 ±9.6 87.6 74.7 ±8.7

CVaR-DORO 78.7 72.7 ±3.6 78.0 73.6 ±3.1 77.4 72.7 ±3.7 75.3 72.7 ±3.6 84.9 74.1 ±10.5 92.8 74.4 ±11.2 94.9 74.7 ±9.5 89.1 74.1 ±9.5

Group DRO 78.6 72.5 ±3.4 77.1 72.7 ±3.6 76.0 72.7 ±3.7 76.0 72.8 ±3.2 N/A N/A N/A N/A N/A N/A N/A N/A

Imbalanced
Learning
Methods

SUBY 78.2 72.7 ±3.5 76.3 72.5 ±3.6 76.6 70.0 ±2.8 74.7 69.5 ±2.0 86.5 85.4 ±7.3 93.7 84.6 ±10.0 95.2 84.4 ±9.9 91.8 83.8 ±6.6

RWY 78.5 72.7 ±3.6 76.7 72.7 ±3.6 76.5 72.2 ±3.4 74.5 72.6 ±3.7 86.9 82.2 ±7.1 93.4 84.5 ±10.2 95.3 84.3 ±10.0 92.5 81.1 ±5.4

SUBG 80.2 74.3 ±2.9 79.2 74.2 ±2.8 79.5 72.5 ±2.9 78.6 74.3 ±2.7 86.3 81.0 ±7.3 93.0 83.8 ±9.9 95.1 84.4 ±9.9 91.1 80.1 ±5.8

RWG 80.3 74.6 ±3.0 79.1 74.4 ±2.8 80.1 73.3 ±2.9 78.7 74.2 ±2.6 87.5 79.7 ±7.5 93.4 83.8 ±9.4 95.2 84.4 ±9.9 92.4 79.3 ±5.3

JTT 78.3 72.7 ±3.6 76.5 72.4 ±3.7 77.6 71.5 ±2.6 75.1 70.7 ±2.4 86.5 79.0 ±7.7 92.7 83.6 ±9.5 94.9 84.3 ±9.9 91.8 78.2 ±5.6

DWR 79.7 74.2 ±3.1 78.3 73.9 ±2.9 79.1 72.9 ±2.9 77.5 74.0 ±2.6 87.2 79.8 ±7.7 93.4 83.7 ±9.9 95.3 84.4 ±9.9 92.3 78.5 ±5.8

Fairness
Methods

DP 80.5 74.7 ±2.8 78.8 74.2 ±2.9 80.0 73.8 ±3.1 78.3 74.0 ±2.6 86.6 79.7 ±7.5 92.8 83.9 ±9.5 94.8 84.3 ±9.9 91.9 81.9 ±5.8

EO 80.3 74.7 ±2.8 78.9 74.1 ±2.8 79.8 73.4 ±3.0 78.5 73.9 ±2.7 86.6 79.5 ±7.5 93.2 84.4 ±9.6 95.2 84.4 ±10.1 92.2 79.6 ±5.4

EP 80.3 74.7 ±2.8 78.9 74.1 ±3.0 80.1 74.0 ±3.0 78.4 74.1 ±2.7 87.0 80.3 ±7.5 93.3 84.2 ±9.9 95.1 84.4 ±10.0 91.9 79.6 ±5.2

Exp 80.5 74.8 ±2.9 78.9 74.1 ±2.9 81.0 73.9 ±2.9 78.4 74.3 ±2.6 85.9 78.6 ±7.3 90.1 82.3 ±9.1 93.1 81.6 ±9.6 86.3 80.4 ±6.0

Threshold 80.5 74.5 ±2.9 78.6 74.3 ±2.8 78.2 71.9 ±2.9 78.5 73.9 ±2.6 84.3 77.8 ±7.3 88.1 79.9 ±7.9 91.2 79.9 ±9.3 82.0 75.7 ±4.8
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Table 8. Average target domain accuracy of all algorithms on the Taxi, ACS Pub.Cov (Temporal)
and ACS Income (Synthetic) datasets. In Taxi and ACS Pub.Cov (Temporal), we test all algorithms
on the 3 target domains and report the mean and standard deviation across all 3 target domains. The
standard deviation here reflects the stability of performances across different target states. In ACS
Income (Synthetic), we simulate strong covariate shifts according to the "Age" feature, where 10% and
20% means the minor group ratio in training, respectively.

Dataset Taxi ACS Pub.Cov (Temporal) ACS Income (Synthetic)
Source BOG NYC NY CA 20% 10%

i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d

Base
Methods

LR 75.6 71.2 ±2.0 83.6 74.2 ±1.2 76.3 68.5 ±2.3 80.8 68.2 ±4.0 92.2 81.6 94.0 79.3
SVM 75.7 76.1 ±3.1 83.4 74.4 ±1.4 77.4 69.1 ±2.0 80.7 67.7 ±3.9 92.0 80.0 94.1 79.5
MLP 77.7 70.0 ±1.3 84.5 73.7 ±0.6 78.0 70.6 ±2.4 82.5 70.3 ±3.8 92.5 82.1 94.3 79.5

Tree
Ensemble
Methods

Random Forest 76.1 77.5 ±4.7 85.7 71.6 ±0.9 79.1 71.3 ±2.5 83.4 70.4 ±4.1 92.7 81.7 94.4 78.5
LightGBM 86.3 73.2 ±4.3 87.0 72.0 ±0.9 79.7 72.1 ±2.4 84.0 70.7 ±3.9 92.6 83.0 94.2 80.4
XGBoost 85.0 71.5 ±2.7 86.7 72.5 ±1.0 79.3 71.9 ±2.6 83.6 71.1 ±3.7 92.7 82.2 94.4 79.7

DRO
Methods

χ2-DRO 77.4 72.2 ±2.4 84.6 73.0 ±0.8 77.3 69.0 ±2.5 81.9 70.0 ±3.8 92.5 81.3 94.2 79.7
CVaR-DRO 77.0 73.4 ±2.5 85.9 72.8 ±0.6 76.6 69.1 ±2.4 82.2 69.1 ±4.5 92.5 81.2 94.3 79.0
χ2-DORO 75.8 73.3 ±2.9 84.9 73.9 ±0.8 71.7 61.2 ±3.5 79.7 64.8 ±3.9 92.3 81.4 93.8 77.4
CVaR-DORO 75.6 74.3 ±3.0 85.1 73.8 ±0.8 76.0 67.9 ±2.6 79.5 64.9 ±4.0 92.5 81.4 93.9 76.7
Group DRO N/A N/A N/A N/A 76.8 70.5 ±2.1 81.9 70.0 ±3.9 92.5 81.4 94.2 79.8

Imbalanced
Learning
Methods

SUBY 87.2 67.1 ±1.6 85.9 70.8 ±0.5 73.9 69.8 ±1.3 81.4 68.3 ±3.8 87.0 69.9 88.5 64.2
RWY 81.2 73.0 ±1.4 86.7 72.4 ±0.7 75.1 70.9 ±1.6 79.4 65.8 ±4.1 90.3 78.6 92.1 76.3
SUBG 86.3 72.5 ±4.4 85.6 71.4 ±0.9 79.4 71.8 ±2.3 83.7 70.7 ±3.6 92.6 81.7 94.4 79.5
RWG 81.1 69.1 ±3.6 86.5 71.3 ±0.9 79.4 72.8 ±2.2 83.8 70.8 ±3.7 92.6 82.7 94.5 80.1
JTT 84.6 69.5 ±0.9 85.4 71.2 ±0.8 73.8 66.7 ±2.3 79.5 67.4 ±3.5 91.5 78.9 93.5 76.5
DWR 82.9 68.2 ±1.9 83.7 70.7 ±0.9 79.2 71.3 ±2.4 83.8 70.7 ±3.9 92.5 82.6 94.2 80.3

Fairness
Methods

DP 84.1 70.2 ±4.0 86.3 72.0 ±0.8 79.6 72.7 ±2.0 83.7 71.1 ±3.9 92.5 82.7 94.2 80.2
EO 81.1 71.9 ±3.0 87.1 71.8 ±0.8 79.5 72.3 ±2.5 83.4 70.1 ±4.0 92.6 81.7 94.3 79.5
EP 79.7 71.6 ±1.7 85.7 70.9 ±0.6 79.6 72.5 ±2.1 83.6 71.0 ±3.9 92.4 82.6 94.2 80.0
Exp 79.2 68.6 ±0.4 84.9 71.6 ±0.6 79.3 72.3 ±2.3 83.4 71.1 ±4.2 92.6 81.9 94.3 79.4
Threshold 80.8 69.8 ±1.7 84.3 59.7 ±3.9 79.2 71.9 ±2.2 83.4 70.4 ±3.9 91.8 78.3 93.5 74.0

Table 9. Worst target domain accuracy of all algorithms on the ACS Income and ACS Pub.Cov
datasets. In each setting, we test all algorithms on the 50 American states and report the worst accuracy
among all 50 target states.

Dataset ACS INCOME ACS PUB.COV
Source State CA CT MA SD FL TX NE IN

i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d

Base
Methods

LR 81.1 72.3 80.7 70.5 80.9 71.1 80.1 69.4 81.3 49.6 84.1 49.0 84.3 0.52 78.6 54.7
SVM 79.4 67.1 78.6 61.6 80.1 62.2 79.3 64.6 80.5 53.0 84.2 50.3 84.8 50.4 77.1 57.4
MLP 81.8 68.3 81.4 70.8 81.7 71.3 80.5 70.5 83.3 54.3 85.4 53.9 84.5 52.9 78.8 56.7

Tree
Ensemble
Methods

Random Forest 81.7 72.6 81.2 71.6 81.5 71.2 80.2 68.3 84.6 54.2 86.8 52.8 86.7 52.9 81.2 59.0
LightGBM 81.8 71.1 82.1 69.5 82.3 70.1 80.2 69.6 84.6 56.9 86.9 53.9 86.9 52.3 81.2 60.4
XGBoost 82.0 72.2 81.9 70.1 82.2 70.9 80.5 70.5 84.6 54.8 86.7 53.7 87.3 55.4 81.2 59.6

DRO
Methods

χ2-DRO 81.8 69.7 81.2 69.7 81.6 67.9 80.2 70.3 82.9 52.5 85.4 50.5 83.4 52.9 78.4 62.4
CVaR-DRO 81.4 72.1 81.2 70.7 82.0 70.0 79.7 68.4 82.6 52.2 85.2 51.7 83.3 52.3 77.8 53.9
χ2-DORO 81.1 70.3 80.4 62.6 81.2 63.8 78.8 69.5 78.8 43.6 82.1 43.6 82.2 43.6 72.4 49.9
CVaR-DORO 80.9 68.7 80.5 64.9 81.1 64.3 79.6 69.1 80.7 49.5 84.3 52.4 81.9 43.6 76.4 56.2
Group DRO 81.9 72.6 81.3 71.8 81.7 69.2 79.8 0.68 83.3 53.2 85.4 53.2 83.5 51.3 72.2 43.6

Imbalanced
Learning
Methods

SUBY 81.0 65.2 81.5 68.0 82.0 66.3 74.8 72.5 79.8 51.3 82.3 45.4 77.8 64.5 77.8 68.3
RWY 81.5 65.2 81.8 68.3 82.1 67.6 77.7 73.2 80.7 53.3 82.5 45.6 83.7 57.1 78.7 65.8
SUBG 81.9 71.4 81.6 70.1 82.0 68.4 80.2 70.3 84.3 56.1 86.7 53.0 86.3 53.6 80.8 60.2
RWG 82.0 71.3 81.9 70.6 82.2 70.3 80.2 70.6 84.5 56.8 86.8 52.1 86.7 55.1 81.0 57.2
JTT 78.3 68.4 78.1 71.2 79.1 71.6 77.9 68.6 80.6 59.4 83.1 56.2 84.7 55.4 77.6 56.7
DWR 81.9 71.2 81.6 71.0 82.1 69.0 80.1 72.0 84.3 58.1 86.8 54.2 85.9 52.8 80.6 59.4

Fairness

Methods

DP 81.3 70.3 81.0 68.8 81.8 70.7 79.3 68.4 84.3 57.4 86.6 53.7 86.4 52.9 80.6 57.8
EO 81.8 70.6 81.8 70.5 82.1 70.8 80.0 70.6 84.4 55.4 86.8 53.6 86.4 53.6 80.8 61.6
EP 81.8 70.7 81.9 69.8 82.1 70.9 80.3 69.2 84.4 55.5 86.8 54.4 86.4 53.6 80.9 60.1
Exp 81.4 70.6 81.0 69.4 81.8 70.4 79.1 68.8 84.5 55.4 86.8 52.8 86.4 52.5 80.9 61.5
Threshold 77.9 71.8 77.0 69.8 77.5 70.9 78.0 62.8 84.3 57.3 86.2 52.4 85.8 52.9 80.0 59.9
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Table 10. Worst target domain accuracy of all algorithms on the ACS Mobility and US Accident
datasets. In ACS Mobility, we test all algorithms on the 50 American states and report the worst
accuracy among all 50 target states. And in US Accident, we choose 13 American states with relatively
high sample sizes in testing.

Dataset ACS MOBILITY US ACCIDENT
Source State NY CA MS PA CA FL TX MN

i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d

Base
Methods

LR 78.6 64.7 77.1 64.6 77.3 64.8 75.4 66.3 83.2 44.9 90.7 48.3 95.1 57.4 86.4 52.8
SVM 79.8 64.6 77.7 66.8 79.4 65.3 77.1 64.7 83.2 49.2 88.7 58.3 93.7 55.7 88.6 56.1
MLP 78.7 64.7 77.1 64.8 78.1 66.3 75.9 67.0 84.7 58.4 92.7 61.1 94.9 57.2 88.9 57.1

Tree
Ensemble
Methods

Random Forest 80.4 68.0 79.0 68.2 80.6 67.5 78.6 68.7 86.6 66.6 93.5 58.2 95.2 58.5 91.6 68.0
LightGBM 80.6 68.7 78.7 69.0 80.0 67.9 78.6 69.8 87.1 65.3 93.3 59.0 95.4 58.6 92.2 68.1
XGBoost 80.4 68.6 79.0 69.0 80.9 68.3 79.0 69.4 87.1 65.6 94.6 59.0 95.3 58.8 92.5 68.5

DRO

Methods

χ2-DRO 78.5 65.1 77.5 66.6 76.8 65.4 76.0 67.1 84.4 62.9 92.6 53.3 95.0 57.9 89.0 53.5
CVaR-DRO 78.6 65.0 77.2 65.6 77.7 64.4 75.7 67.6 84.7 57.2 92.7 57.5 95.0 58.4 89.5 56.3
χ2-DORO 78.6 64.3 77.8 66.9 77.1 64.7 75.3 64.7 84.7 53.9 92.3 61.1 94.3 57.0 87.6 59.8
CVaR-DORO 78.7 64.7 78.0 67.4 77.4 64.7 75.3 64.9 84.9 57.8 92.8 58.1 94.9 57.5 89.1 57.6
Group DRO 78.6 65.5 77.1 65.1 76.0 64.5 76.0 66.8 N/A N/A N/A N/A N/A N/A N/A N/A

Imbalanced
Learning
Methods

SUBY 78.2 65.0 76.3 64.6 76.6 64.7 74.7 65.0 86.5 64.2 93.7 58.8 95.2 58.5 91.8 65.6
RWY 78.5 64.7 76.7 65.0 76.5 65.6 74.5 64.6 86.9 64.8 93.4 58.3 95.3 58.5 92.5 67.5
SUBG 80.2 68.8 79.2 68.9 79.5 67.0 78.6 69.2 86.3 66.4 93.0 58.1 95.1 58.4 91.1 67.4
RWG 80.3 68.4 79.1 69.4 80.1 68.3 78.7 69.4 87.5 65.4 93.4 59.4 95.2 58.4 92.4 68.6
JTT 78.3 64.7 76.5 64.7 77.6 66.6 75.1 65.6 86.5 65.9 92.7 58.6 94.9 58.6 91.8 68.2
DWR 79.7 67.4 78.3 68.5 79.1 67.4 77.5 69.0 87.2 65.8 93.4 58.1 95.3 58.5 92.3 67.6

Fairness
Methods

DP 80.5 69.2 78.8 68.4 80.0 68.2 78.3 68.7 86.6 65.2 92.8 59.0 94.8 58.4 91.9 66.6
EO 80.3 69.3 78.9 68.9 79.8 0.68 78.5 68.5 86.6 65.6 93.2 58.8 95.2 58.5 92.2 68.1
EP 80.3 68.7 78.9 68.5 80.1 68.1 78.4 68.5 87.0 65.6 93.3 59.0 95.1 58.6 91.9 67.9
Exp 80.5 69.0 78.9 68.6 81.0 68.8 78.4 69.0 85.9 65.4 90.1 58.7 93.1 56.5 86.3 64.7
Threshold 80.5 69.0 78.6 69.2 78.2 66.7 78.5 68.7 84.3 64.5 88.1 59.5 91.2 55.7 82.0 64.0

Table 11. Average target domain Macro-F1 score of all algorithms on the ACS Income and ACS
Pub.Cov datasets. In each setting, we test all algorithms on the 50 American states and report the mean
and standard deviation across all 50 target states. The standard deviation here reflects the stability of
performances across different target states.

Dataset ACS Income ACS Pub.Cov
Source State CA CT MA IN FL TX NE IN

i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d

Base
Methods

LR 0.804 0.757 ±0.032 0.807 0.747 ±0.035 0.809 0.752 ±0.034 0.714 0.692 ±0.019 0.652 0.620 ±0.050 0.644 0.580 ±0.052 0.653 0.612 ±0.046 0.698 0.659 ±0.044

SVM 0.795 0.726 ±0.037 0.790 0.709 ±0.039 0.793 0.718 ±0.041 0.698 0.664 ±0.023 0.663 0.623 ±0.044 0.665 0.614 ±0.044 0.698 0.611 ±0.043 0.696 0.650 ±0.032

MLP 0.814 0.751 ±0.038 0.814 0.753 ±0.036 0.816 0.755 ±0.037 0.734 0.729 ±0.018 0.709 0.664 ±0.049 0.713 0.664 ±0.049 0.698 0.644 ±0.046 0.716 0.680 ±0.038

Tree
Ensemble
Methods

Random Forest 0.809 0.759 ±0.032 0.812 0.755 ±0.034 0.814 0.758 ±0.034 0.687 0.673 ±0.024 0.715 0.659 ±0.055 0.727 0.651 ±0.058 0.729 0.648 ±0.046 0.746 0.691 ±0.039

LightGBM 0.811 0.757 ±0.035 0.821 0.753 ±0.037 0.823 0.759 ±0.037 0.732 0.718 ±0.021 0.730 0.670 ±0.053 0.739 0.665 ±0.057 0.745 0.663 ±0.048 0.750 0.704 ±0.034

XGBoost 0.814 0.651 ±0.049 0.819 0.751 ±0.036 0.822 0.757 ±0.036 0.723 0.708 ±0.021 0.723 0.673 ±0.051 0.730 0.659 ±0.058 0.755 0.667 ±0.042 0.747 0.701 ±0.038

DRO
Methods

χ2-DRO 0.813 0.754 ±0.036 0.812 0.752 ±0.036 0.816 0.748 ±0.039 0.732 0.737 ±0.019 0.704 0.659 ±0.044 0.697 0.657 ±0.048 0.685 0.646 ±0.038 0.715 0.673 ±0.030

CVaR-DRO 0.808 0.750 ±0.038 0.812 0.749 ±0.036 0.820 0.752 ±0.037 0.730 0.726 ±0.021 0.693 0.649 ±0.046 0.706 0.655 ±0.049 0.668 0.658 ±0.021 0.700 0.675 ±0.036

χ2-DORO 0.801 0.756 ±0.032 0.804 0.738 ±0.041 0.812 0.744 ±0.040 0.717 0.711 ±0.018 0.526 0.511 ±0.013 0.518 0.481 ±0.021 0.526 0.491 ±0.016 0.516 0.487 ±0.021

CVaR-DORO 0.802 0.746 ±0.037 0.804 0.740 ±0.041 0.811 0.740 ±0.041 0.720 0.706 ±0.020 0.660 0.619 ±0.044 0.675 0.629 ±0.052 0.559 0.541 ±0.025 0.649 0.623 ±0.023

Group DRO 0.812 0.760 ±0.033 0.813 0.754 ±0.035 0.817 0.753 ±0.037 0.741 0.742 ±0.018 0.706 0.665 ±0.051 0.717 0.660 ±0.050 0.700 0.635 ±0.042 0.419 0.411 ±0.030

Imbalanced
Learning
Methods

SUBY 0.807 0.739 ±0.041 0.815 0.748 ±0.039 0.820 0.750 ±0.040 0.719 0.739 ±0.025 0.710 0.699 ±0.023 0.710 0.692 ±0.027 0.704 0.682 ±0.031 0.748 0.710 ±0.025

RWY 0.812 0.747 ±0.041 0.818 0.747 ±0.039 0.821 0.753 ±0.039 0.733 0.732 ±0.020 0.725 0.705 ±0.025 0.729 0.699 ±0.032 0.736 0.680 ±0.031 0.749 0.709 ±0.024

SUBG 0.813 0.759 ±0.034 0.816 0.753 ±0.036 0.820 0.758 ±0.037 0.726 0.715 ±0.021 0.719 0.671 ±0.048 0.731 0.662 ±0.053 0.739 0.666 ±0.041 0.742 0.686 ±0.034

RWG 0.814 0.760 ±0.035 0.819 0.754 ±0.036 0.822 0.757 ±0.036 0.726 0.723 ±0.019 0.723 0.667 ±0.051 0.733 0.661 ±0.057 0.748 0.672 ±0.045 0.746 0.700 ±0.035

JTT 0.777 0.728 ±0.036 0.781 0.733 ±0.030 0.79 0.739 ±0.031 0.710 0.702 ±0.017 0.711 0.690 ±0.027 0.726 0.691 ±0.038 0.727 0.669 ±0.036 0.718 0.669 ±0.031

DWR 0.812 0.759 ±0.035 0.816 0.755 ±0.034 0.821 0.756 ±0.037 0.733 0.719 ±0.019 0.721 0.668 ±0.047 0.731 0.661 ±0.057 0.732 0.676 ±0.041 0.741 0.697 ±0.033

Fairness
Methods

DP 0.807 0.746 ±0.037 0.810 0.740 ±0.038 0.817 0.752 ±0.037 0.716 0.708 ±0.017 0.727 0.677 ±0.049 0.729 0.659 ±0.054 0.750 0.668 ±0.043 0.742 0.698 ±0.032

EO 0.813 0.757 ±0.035 0.818 0.752 ±0.036 0.820 0.757 ±0.037 0.721 0.709 ±0.020 0.724 0.668 ±0.054 0.734 0.661 ±0.052 0.737 0.671 ±0.044 0.748 0.704 ±0.031

EP 0.811 0.759 ±0.035 0.819 0.752 ±0.037 0.821 0.756 ±0.037 0.723 0.709 ±0.018 0.724 0.668 ±0.051 0.731 0.657 ±0.058 0.747 0.671 ±0.039 0.748 0.699 ±0.034

Exp 0.808 0.750 ±0.037 0.810 0.737 ±0.038 0.818 0.749 ±0.037 0.706 0.691 ±0.021 0.724 0.667 ±0.053 0.729 0.656 ±0.057 0.738 0.661 ±0.049 0.741 0.699 ±0.033

Threshold 0.766 0.709 ±0.037 0.768 0.718 ±0.032 0.771 0.716 ±0.028 0.665 0.669 ±0.019 0.722 0.669 ±0.050 0.717 0.652 ±0.056 0.714 0.644 ±0.040 0.728 0.681 ±0.031
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Table 12. Average target domain Macro-F1 score of all algorithms on the ACS Mobility and US
Accident datasets. In ACS Mobility, we test all algorithms on the 50 American states and report the
mean and standard deviation across all 50 target states. And in US Accident, we choose 13 American
states with relatively high sample sizes in testing. The standard deviation here reflects the stability of
performances across different target states.

Dataset ACS Mobility US Accident
Source State NY CA MS PA CA FL TX MN

i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d

Base
Methods

LR 0.451 0.427 ±0.015 0.462 0.446 ±0.026 0.531 0.488 ±0.020 0.527 0.488 ±0.020 0.800 0.678 ±0.147 0.898 0.703 ±0.133 0.936 0.736 ±0.092 0.855 0.703 ±0.110

SVM 0.604 0.572 ±0.015 0.592 0.550 ±0.014 0.635 0.532 ±0.018 0.623 0.581 ±0.018 0.793 0.674 ±0.114 0.891 0.698 ±0.093 0.928 0.698 ±0.093 0.880 0.669 ±0.078

MLP 0.600 0.583 ±0.020 0.622 0.607 ±0.018 0.607 0.583 ±0.012 0.608 0.578 ±0.020 0.827 0.755 ±0.103 0.923 0.769 ±0.090 0.934 0.720 ±0.094 0.886 0.713 ±0.096

Tree
Ensemble
Methods

Random Forest 0.570 0.530 ±0.019 0.587 0.563 ±0.023 0.641 0.534 ±0.022 0.635 0.561 ±0.025 0.846 0.752 ±0.077 0.932 0.832 ±0.096 0.938 0.834 ±0.095 0.911 0.800 ±0.058

LightGBM 0.637 0.589 ±0.014 0.625 0.601 ±0.019 0.671 0.590 ±0.021 0.660 0.590 ±0.015 0.851 0.768 ±0.075 0.929 0.831 ±0.094 0.940 0.833 ±0.096 0.918 0.786 ±0.054

XGBoost 0.637 0.591 ±0.018 0.625 0.605 ±0.018 0.678 0.586 ±0.023 0.664 0.596 ±0.017 0.852 0.786 ±0.072 0.942 0.812 ±0.088 0.939 0.833 ±0.095 0.920 0.771 ±0.052

DRO
Methods

χ2-DRO 0.613 0.613 ±0.019 0.599 0.579 ±0.015 0.540 0.514 ±0.031 0.606 0.583 ±0.017 0.824 0.754 ±0.099 0.922 0.721 ±0.121 0.933 0.747 ±0.091 0.883 0.704 ±0.095

CVaR-DRO 0.621 0.612 ±0.017 0.628 0.603 ±0.015 0.574 0.565 ±0.025 0.639 0.613 ±0.021 0.825 0.742 ±0.094 0.924 0.731 ±0.111 0.936 0.740 ±0.090 0.888 0.716 ±0.092

χ2-DORO 0.509 0.501 ±0.011 0.619 0.612 ±0.018 0.530 0.505 ±0.013 0.540 0.508 ±0.014 0.815 0.707 ±0.104 0.920 0.760 ±0.089 0.927 0.734 ±0.092 0.874 0.727 ±0.080

CVaR-DORO 0.533 0.524 ±0.011 0.625 0.578 ±0.019 0.521 0.500 ±0.008 0.510 0.477 ±0.016 0.825 0.748 ±0.090 0.922 0.732 ±0.110 0.934 0.738 ±0.092 0.887 0.729 ±0.094

Group DRO 0.588 0.567 ±0.018 0.566 0.528 ±0.020 0.564 0.536 ±0.019 0.595 0.555 ±0.021 N/A N/A N/A N/A N/A N/A N/A N/A

Imbalanced
Learning
Methods

SUBY 0.657 0.628 ±0.017 0.649 0.603 ±0.017 0.674 0.621 ±0.016 0.678 0.629 ±0.019 0.854 0.839 ±0.073 0.933 0.834 ±0.095 0.938 0.833 ±0.095 0.915 0.821 ±0.066

RWY 0.657 0.627 ±0.017 0.647 0.610 ±0.014 0.678 0.621 ±0.017 0.677 0.633 ±0.018 0.856 0.845 ±0.076 0.930 0.834 ±0.097 0.940 0.833 ±0.095 0.920 0.790 ±0.055

SUBG 0.635 0.589 ±0.016 0.624 0.601 ±0.020 0.672 0.595 ±0.020 0.658 0.592 ±0.018 0.847 0.790 ±0.073 0.925 0.826 ±0.094 0.937 0.833 ±0.095 0.906 0.784 ±0.057

RWG 0.637 0.587 ±0.018 0.621 0.584 ±0.016 0.676 0.582 ±0.018 0.663 0.596 ±0.018 0.855 0.775 ±0.074 0.929 0.825 ±0.089 0.938 0.833 ±0.095 0.919 0.768 ±0.051

JTT 0.639 0.594 ±0.014 0.616 0.574 ±0.013 0.660 0.589 ±0.019 0.639 0.584 ±0.017 0.843 0.786 ±0.074 0.922 0.823 ±0.091 0.935 0.833 ±0.095 0.912 0.766 ±0.052

DWR 0.622 0.581 ±0.013 0.620 0.605 ±0.020 0.656 0.585 ±0.018 0.647 0.597 ±0.018 0.853 0.777 ±0.075 0.929 0.824 ±0.094 0.939 0.833 ±0.094 0.917 0.759 ±0.054

Fairness
Methods

DP 0.630 0.588 ±0.014 0.621 0.590 ±0.014 0.663 0.590 ±0.020 0.668 0.593 ±0.018 0.847 0.776 ±0.073 0.922 0.814 ±0.085 0.933 0.832 ±0.095 0.915 0.799 ±0.059

EO 0.632 0.590 ±0.018 0.625 0.602 ±0.019 0.665 0.593 ±0.022 0.662 0.597 ±0.020 0.846 0.771 ±0.077 0.926 0.831 ±0.091 0.938 0.833 ±0.096 0.917 0.772 ±0.051

EP 0.633 0.596 ±0.017 0.620 0.598 ±0.017 0.671 0.581 ±0.015 0.660 0.593 ±0.017 0.852 0.787 ±0.071 0.928 0.830 ±0.094 0.937 0.832 ±0.097 0.914 0.773 ±0.049

Exp 0.633 0.589 ±0.015 0.622 0.594 ±0.020 0.669 0.595 ±0.020 0.663 0.595 ±0.016 0.837 0.769 ±0.079 0.893 0.808 ±0.085 0.909 0.803 ±0.091 0.854 0.784 ±0.060

Threshold 0.629 0.587 ±0.013 0.620 0.596 ±0.019 0.661 0.571 ±0.019 0.658 0.597 ±0.022 0.820 0.755 ±0.069 0.870 0.782 ±0.074 0.885 0.787 ±0.086 0.809 0.730 ±0.045

Table 13. Average target domain Macro-F1 score of all algorithms on the Taxi, ACS Pub.Cov
(Temporal) and ACS Income (Synthetic) datasets. In Taxi and ACS Pub.Cov (Temporal), we test
all algorithms on the 3 target domains and report the mean and standard deviation across all 3 target
domains. The standard deviation here reflects the stability of performances across different target states.
In ACS Income (Synthetic), we simulate strong covariate shifts according to the "Age" feature, where
10% and 20% means the minor group ratio in training, respectively.

Dataset Taxi ACS Pub.Cov (Temporal) ACS Income (Synthetic)
Source BOG NYC NY CA 20% 10%

i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d

Base
Methods

LR 0.754 0.695 ±0.007 0.802 0.731 ±0.014 0.641 0.599 ±0.009 0.586 0.528 ±0.024 0.797 0.799 0.766 0.780
SVM 0.757 0.761 ±0.036 0.809 0.735 ±0.019 0.663 0.613 ±0.013 0.612 0.556 ±0.016 0.795 0.764 N/A N/A
MLP 0.757 0.684 ±0.012 0.823 0.719 ±0.008 0.692 0.652 ±0.012 0.674 0.587 ±0.030 0.817 0.796 0.792 0.762

Tree
Ensemble
Methods

Random Forest 0.760 0.762 ±0.032 0.840 0.718 ±0.018 0.692 0.648 ±0.016 0.663 0.571 ±0.032 0.810 0.797 0.782 0.777
LightGBM 0.866 0.717 ±0.029 0.841 0.701 ±0.011 0.711 0.668 ±0.016 0.683 0.595 ±0.027 0.817 0.813 0.787 0.788
XGBoost 0.839 0.695 ±0.015 0.846 0.723 ±0.017 0.715 0.679 ±0.014 0.689 0.591 ±0.034 0.815 0.801 0.787 0.788

DRO
Methods

χ2-DRO 0.776 0.693 ±0.016 0.830 0.726 ±0.009 0.675 0.633 ±0.016 0.663 0.580 ±0.031 0.820 0.788 0.790 0.783
CVaR-DRO 0.767 0.744 ±0.032 0.835 0.732 ±0.010 0.668 0.625 ±0.014 0.654 0.586 ±0.025 0.820 0.799 0.791 0.783
χ2-DORO 0.750 0.752 ±0.027 0.816 0.732 ±0.009 0.568 0.540 ±0.014 0.531 0.501 ±0.010 0.810 0.796 0.778 0.766
CVaR-DORO 0.756 0.724 ±0.023 0.829 0.730 ±0.006 0.652 0.610 ±0.017 0.618 0.556 ±0.021 0.812 0.781 0.778 0.763
Group DRO N/A N/A N/A N/A 0.682 0.655 ±0.010 0.667 0.605 ±0.020 0.814 0.798 0.795 0.763

Imbalanced
Learning
Methods

SUBY 0.859 0.669 ±0.014 0.835 0.708 ±0.014 0.706 0.690 ±0.009 0.678 0.660 ±0.010 0.774 0.699 0.716 0.562
RWY 0.811 0.737 ±0.033 0.840 0.713 ±0.017 0.716 0.703 ±0.009 0.693 0.656 ±0.019 0.795 0.780 0.768 0.765
SUBG 0.858 0.712 ±0.032 0.837 0.701 ±0.013 0.707 0.692 ±0.013 0.687 0.588 ±0.033 0.816 0.802 0.788 0.783
RWG 0.802 0.731 ±0.035 0.840 0.720 ±0.018 0.713 0.654 ±0.015 0.686 0.601 ±0.034 0.816 0.810 0.798 0.791
JTT 0.842 0.686 ±0.003 0.830 0.704 ±0.017 0.677 0.654 ±0.011 0.676 0.641 ±0.016 0.801 0.780 0.772 0.750
DWR 0.845 0.671 ±0.016 0.813 0.673 ±0.015 0.713 0.675 ±0.017 0.685 0.604 ±0.029 0.817 0.812 0.785 0.785

Fairness
Methods

DP 0.842 0.696 ±0.020 0.843 0.702 ±0.014 0.712 0.671 ±0.016 0.689 0.600 ±0.031 0.815 0.813 0.785 0.795
EO 0.813 0.727 ±0.028 0.846 0.706 ±0.015 0.713 0.670 ±0.018 0.686 0.586 ±0.031 0.814 0.798 0.782 0.789
EP 0.801 0.728 ±0.027 0.835 0.710 ±0.018 0.712 0.671 ±0.016 0.687 0.597 ±0.031 0.814 0.815 0.786 0.786
Exp 0.797 0.724 ±0.034 0.838 0.702 ±0.015 0.712 0.648 ±0.018 0.685 0.597 ±0.033 0.814 0.798 0.783 0.783
Threshold 0.806 0.660 ±0.003 0.812 0.536 ±0.027 0.711 0.670 ±0.018 0.688 0.605 ±0.030 0.785 0.786 0.752 0.761
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Table 14. Worst target domain Macro-F1 Score of all algorithms on the ACS Income and ACS
Pub.Cov datasets. In each setting, we test all algorithms on the 50 American states and report the worst
Macro-F1 Score among all 50 target states.

Dataset ACS INCOME ACS PUB.COV
Source State CA CT MA SD FL TX NE IN

i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d

Base
Methods

LR 0.804 0.610 0.807 0.597 0.809 0.599 0.714 0.644 0.652 0.478 0.644 0.432 0.653 0.468 0.698 0.514
SVM 0.795 0.539 0.790 0.505 0.793 0.521 0.698 0.599 0.663 0.493 0.665 0.475 0.698 0.457 0.696 0.559
MLP 0.814 0.574 0.814 0.591 0.816 0.578 0.734 0.669 0.709 0.527 0.713 0.518 0.698 0.496 0.716 0.569

Tree
Ensemble
Methods

Random Forest 0.809 0.608 0.812 0.599 0.814 0.595 0.687 0.600 0.715 0.503 0.727 0.484 0.729 0.492 0.746 0.573
LightGBM 0.811 0.595 0.821 0.584 0.823 0.586 0.732 0.644 0.730 0.545 0.739 0.501 0.745 0.474 0.750 0.601
XGBoost 0.814 0.602 0.819 0.588 0.822 0.591 0.723 0.632 0.723 0.547 0.730 0.489 0.755 0.525 0.747 0.580

DRO
Methods

χ2-DRO 0.813 0.583 0.812 0.584 0.816 0.570 0.732 0.669 0.704 0.536 0.697 0.514 0.685 0.544 0.715 0.588
CVaR-DRO 0.808 0.583 0.812 0.591 0.820 0.584 0.730 0.643 0.693 0.517 0.706 0.509 0.668 0.603 0.700 0.549
χ2-DORO 0.801 0.588 0.804 0.535 0.812 0.543 0.717 0.662 0.526 0.476 0.518 0.431 0.526 0.449 0.516 0.419
CVaR-DORO 0.802 0.560 0.804 0.543 0.811 0.539 0.720 0.655 0.660 0.481 0.675 0.474 0.559 0.444 0.649 0.562
Group DRO 0.812 0.605 0.813 0.596 0.817 0.580 0.741 0.677 0.706 0.511 0.717 0.513 0.700 0.504 0.419 0.304

Imbalanced
Learning
Methods

SUBY 0.807 0.562 0.815 0.574 0.820 0.559 0.719 0.606 0.710 0.642 0.710 0.609 0.704 0.616 0.748 0.660
RWY 0.812 0.553 0.818 0.576 0.821 0.569 0.733 0.645 0.725 0.646 0.729 0.602 0.736 0.555 0.749 0.654
SUBG 0.813 0.603 0.816 0.588 0.820 0.584 0.726 0.637 0.719 0.566 0.731 0.552 0.739 0.517 0.742 0.542
RWG 0.814 0.597 0.819 0.593 0.822 0.588 0.726 0.659 0.723 0.542 0.733 0.485 0.748 0.515 0.746 0.591
JTT 0.777 0.576 0.781 0.601 0.790 0.602 0.710 0.649 0.711 0.618 0.726 0.574 0.727 0.525 0.718 0.548
DWR 0.812 0.595 0.816 0.597 0.821 0.579 0.733 0.658 0.721 0.540 0.731 0.492 0.732 0.562 0.741 0.608

Fairness
Methods

DP 0.807 0.585 0.810 0.582 0.817 0.593 0.716 0.658 0.727 0.569 0.729 0.507 0.750 0.488 0.742 0.587
EO 0.813 0.599 0.818 0.590 0.820 0.591 0.721 0.632 0.724 0.544 0.734 0.516 0.737 0.514 0.748 0.601
EP 0.811 0.596 0.819 0.588 0.821 0.580 0.723 0.646 0.724 0.561 0.731 0.487 0.747 0.539 0.748 0.589
Exp 0.808 0.586 0.810 0.579 0.818 0.585 0.706 0.626 0.724 0.551 0.729 0.484 0.738 0.476 0.741 0.611
Threshold 0.766 0.548 0.768 0.570 0.771 0.590 0.665 0.611 0.722 0.548 0.717 0.493 0.714 0.504 0.728 0.568

Table 15. Worst target domain Macro-F1 Score of all algorithms on the ACS Mobility and US
Accident datasets. In ACS Mobility, we test all algorithms on the 50 American states and report the
worst Macro-F1 Score among all 50 target states. And in US Accident, we choose 13 American states
with relatively high sample sizes in testing.

Dataset ACS Mobility US Accident
Source State NY CA MS PA CA FL TX MN

i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d i.d. o.o.d

Base
Methods

LR 0.451 0.397 0.462 0.399 0.531 0.450 0.527 0.449 0.800 0.437 0.898 0.489 0.936 0.573 0.855 0.528
SVM 0.604 0.544 0.592 0.527 0.635 0.489 0.623 0.539 0.793 0.505 0.891 0.568 0.928 0.542 0.880 0.540
MLP 0.600 0.530 0.622 0.560 0.607 0.551 0.608 0.535 0.827 0.592 0.923 0.595 0.934 0.567 0.886 0.548

Tree
Ensemble
Methods

Random Forest 0.570 0.482 0.587 0.514 0.641 0.492 0.635 0.510 0.846 0.613 0.932 0.579 0.938 0.584 0.911 0.642
LightGBM 0.637 0.554 0.625 0.545 0.671 0.531 0.660 0.559 0.851 0.617 0.929 0.582 0.940 0.584 0.918 0.639
XGBoost 0.637 0.557 0.625 0.566 0.678 0.521 0.664 0.560 0.852 0.620 0.942 0.582 0.939 0.585 0.920 0.636

DRO
Methods

χ2-DRO 0.613 0.571 0.599 0.539 0.540 0.374 0.606 0.539 0.824 0.596 0.922 0.534 0.933 0.573 0.883 0.534
CVaR-DRO 0.621 0.551 0.628 0.557 0.574 0.512 0.639 0.518 0.825 0.591 0.924 0.572 0.936 0.582 0.888 0.561
χ2-DORO 0.509 0.464 0.619 0.568 0.530 0.474 0.540 0.481 0.815 0.540 0.920 0.592 0.927 0.569 0.874 0.590
CVaR-DORO 0.533 0.500 0.625 0.531 0.521 0.479 0.510 0.443 0.825 0.607 0.922 0.569 0.934 0.575 0.887 0.571
Group DRO 0.588 0.516 0.566 0.480 0.564 0.491 0.595 0.508 N/A N/A N/A N/A N/A N/A N/A N/A

Imbalanced
Learning
Methods

SUBY 0.657 0.590 0.649 0.548 0.674 0.565 0.678 0.568 0.854 0.623 0.933 0.585 0.938 0.582 0.915 0.635
RWY 0.657 0.574 0.647 0.573 0.678 0.557 0.677 0.576 0.856 0.618 0.930 0.581 0.940 0.582 0.920 0.637
SUBG 0.635 0.546 0.624 0.542 0.672 0.525 0.658 0.552 0.847 0.627 0.925 0.578 0.937 0.582 0.906 0.635
RWG 0.637 0.542 0.621 0.553 0.676 0.521 0.663 0.539 0.855 0.614 0.929 0.588 0.938 0.583 0.919 0.635
JTT 0.639 0.555 0.616 0.546 0.660 0.536 0.639 0.528 0.843 0.611 0.922 0.581 0.935 0.583 0.912 0.635
DWR 0.622 0.553 0.620 0.550 0.656 0.513 0.647 0.561 0.853 0.623 0.929 0.576 0.939 0.583 0.917 0.627

Fairness
Methods

DP 0.630 0.555 0.621 0.556 0.663 0.536 0.668 0.557 0.847 0.618 0.922 0.590 0.933 0.582 0.915 0.630
EO 0.632 0.552 0.625 0.547 0.665 0.549 0.662 0.543 0.846 0.614 0.926 0.584 0.938 0.583 0.917 0.634
EP 0.633 0.550 0.620 0.552 0.671 0.529 0.660 0.563 0.852 0.621 0.928 0.587 0.937 0.583 0.914 0.636
Exp 0.633 0.544 0.622 0.551 0.669 0.531 0.663 0.544 0.837 0.613 0.893 0.580 0.909 0.564 0.854 0.619
Threshold 0.629 0.551 0.620 0.550 0.661 0.528 0.658 0.551 0.820 0.605 0.870 0.583 0.885 0.560 0.809 0.601

Table 15. For other settings, we do not report the worst-case results because there are not many target
domains there and the mean/standard deviation results could reflect the generalization performance
well.

For the results of Macro-f1 Score reported in Tables 11, 12, 13, 14 and 15, we find similar conclusion
patterns to the accuracy score, while we usually witness a wider gap between o.o.d. and i.i.d. model
performance.
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D.10 Agreement and Maintenance Plan

Hosting Platform. We will use Github as the hosting platform of our code. We provide detailed
preprocessing Python scripts to guide users to replicate and process data from scratch. We also
illustrate methodologies to run full experiment results in the code. We also list the license for each
dataset and user guidance in the Readme file in that Github.

Dependencies. The benchmark is built upon Python 3.8+ and depends on PyTorch, aif360, fairlearn,
xgboost, lightgbm. Besides, it uses numpy, scipy, and pandas for basic data manipulation.

Maintenance Plan. The datasets provided here will be maintained by the authors of the paper,
which can be contacted by raising an issue on GitHub or by contacting the first authors directly.
Our benchmark and a simple open-sourced Python package based on that may be updated at the
discretion of authors in the future, which includes more refined algorithm implementations, datasets,
and framework with improved efficiency.

Author Statements. To the best of our knowledge, the proposed benchmark is based on existing
datasets and does not violate any existing licenses non contain personally identifiable or privacy-
related information. And we claim all the responsibility in case of a violation of rights if such a
violation were to exist.
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