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Abstract
We consider a repeatedly played generalized Nash equilibrium game. This induces a multi-agent
online learning problem with joint constraints. An important challenge in this setting is that the
feasible set for each agent depends on the simultaneous moves of the other agents and, therefore,
varies over time. As a consequence, the agents face time-varying constraints, which are not adver-
sarial but rather endogenous to the system. Prior work in this setting focused on convergence to a
feasible solution in the limit via integrating the constraints in the objective as a penalty function.
However, no existing work can guarantee that the constraints are satisfied for all iterations while
simultaneously guaranteeing convergence to a generalized Nash equilibrium. This is a problem of
fundamental theoretical interest and practical relevance. In this work, we introduce a new online
feasible point method. Under the assumption that limited communication between the agents is
allowed, this method guarantees feasibility. We identify the class of benign generalized Nash equi-
librium problems, for which the convergence of our method to the equilibrium is guaranteed. We
set this class of benign generalized Nash equilibrium games in context with existing definitions and
illustrate our method with examples.

1. Introduction

In this work, we study multi-agent systems with shared constraints. Our goal is to understand the
guarantees with respect to the convergence to an equilibrium and the feasibility of the repeated
interactions between strategic and independent players. If satisfying the shared constraint is in-
dispensable, it is necessary that the agents cooperate. To enable this cooperation, we consider a
setting where limited communication between agents is possible. For each player, this induces an
interesting trade-off between strategic myopic optimization of the losses and cooperation to guar-
antee feasibility. More precisely, we consider the repeated interaction of n-players on a generalized
Nash-equilibrium problem (GNEP) introduced by Arrow and Debreu (1954), see Definition 1. The
difference to a standard Nash equilibrium problem is that the players share joint constraints. Hence,
in an n-player game, the feasibility of the ith-players action x(i) may depend on the choices of
all other players x(−i) = [x(1), . . . , x(i−1), x(i+1), . . . x(n)]. We define a protocol for the repeated
interaction of n-players which allows for some limited communication between the players. More
specifically, before committing to the next iterate x(i)t+1, players are allowed to communicate a de-

sired set S(i)
t+1. These sets indicate a region within which the players want to play. For each iteration

t, and each player i:
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1. Selects a desired set S(i)
t , and sends it to all other players. Receives their sets S

(j)
t for j ∈

[n] \ {i},

2. Chooses iterate x(i)t depending on S
(i)
t and S

(j)
t ’s,

3. Suffers loss with respect to the loss function. If the shared constraints are violated, pay +∞.

In this work, we give an algorithm for the updates of the desired sets S(i)
t and the iterates x(i)t . Our

contributions are as follows:

1. We introduce the online feasible point method (online FPM): a new distributed algorithm
for computing approximate GNEs. Under the assumption that each player uses the online
FPM in a repeated generalized game, we show in Theorem 7 that feasibility is guaranteed
for each iteration. This online FPM follows a fundamentally different approach from existing
methods.

2. We identify a subclass of GNEP, which we name strongly benign GNEP, for which conver-
gence of the iterates to an equilibrium is guaranteed. This is shown in Theorem 8. Further-
more, we illustrate the class of strongly benign GNEP with examples and set it into context
with common assumptions from the literature.

3. In Section 5, Theorem 9, we derive regret bounds for each player and set these results in
context with existing results on online learning with varying constraints. We note that for
online problems with varying constraints, strong guarantees are possible if the constraints are
not adversarial but endogenous to the system.

4. We illustrate the behavior of the online FPM with various examples of strongly benign GNEP.
Furthermore, we demonstrate with experiments that our algorithm convergence to the GNEP
without constraint violation for GNEP beyond strongly benign GNEP.

Practical Relevance. A practically relevant example of a GNEP where feasibility is desirable is
the repeated interaction of agents (sellers and buyers) in the electricity market. Most power grids,
e.g., the European power grid, impose strong restrictions on the fluctuation of the Hertz frequency
to avoid risking a blackout. Since a nationwide blackout comes at a very high cost for all agents,
providing feasibility guarantees is indispensable (see Saad et al. (2012) for more details). Further
application examples where feasibility guarantees are desirable can be found in pollution control or
economic models (see Facchinei and Kanzow (2007) for more details).

Related Work. The generalized Nash-equilibrium problem was first introduced by Arrow and
Debreu (1954). Learning of generalized Nash Equilibria (GNE) so far relied on a primal-dual
approach in which Lagrangian-based splitting schemes are constructed. This was pioneered by Yi
and Pavel (2019), and further studied in a distributed setting (Liakopoulos et al., 2019; Cao and Liu,
2019; Jordan et al., 2023; Franci et al., 2020). Penalty methods are a further toolbox that enforces
the feasibility of the limit solution (Facchinei and Kanzow, 2010; Kanzow et al., 2019; Sun and
Hu, 2021). However, these methods do not necessarily guarantee the feasibility of all iterates in a
distributed setting and thus differ in techniques and theoretical guarantees. Our work is also related
to the flourishing literature on online learning in games (Rakhlin and Sridharan, 2013; Daskalakis
et al., 2021, 2011). For zero-sum games without shared constraints, Rakhlin and Sridharan (2013)
provide convergence guarantees for optimistic online methods. In the context of online learning,
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there is a growing interest in regret guarantees for online learning problems with non-stationary
constraints (Neely and Yu, 2017; Liu et al., 2021; Kolev et al., 2023). In contrast to this work, we
consider moving constraints that are endogenous to the system rather than adversarially chosen.
This makes our setting strictly easier and hence permits us to provide stronger guarantees. The
analysis of the online FPM builds on an inexact gradient descent analysis and is, therefore, related to
results on inexact gradient methods from the mathematical optimization literature Nesterov (2015);
Bertsekas and Tsitsiklis (2000); Khanh et al. (2024).

Outline. In Section 2, we introduce the main objective of our work: the generalized Nash equi-
librium problem. We furthermore introduce the subclass of strongly benign and benign generalized
Nash-equilibrium problems and set this subclass in context to existing subclasses of generalized
games. In Section 3, we introduce our algorithm: an online feasible point method. We illustrate
the convergence behavior of this algorithm via experiments on several benign and non-benign gen-
eralized games. In Section 4, we analyze the convergence of the online feasible point method.
For benign generalized Nash equilibrium problems, we show convergence of the iterates to the
equilibrium while preserving feasibility for all iterations. In Section 5 we relate our findings to
regret analysis: we derive regret bounds for the individual players with respect to the loss and the
constraint violations. Hence providing robustness guarantees with respect to the incentive of an
individual player to deviate from its strategy. We also discuss the limitations of these guarantees
together with further research directions in Section 6.

Notation. Throughout the paper, we denote indices for iterates by subscripts, e.g., xt or St, and
indices for players by superscripts in brackets, e.g., x(i) or S(i). Following standard notation we
denote [a, b] = {a, a+1, . . . , b} and [b] = {1, . . . , b} for a, b ∈ N with a ⩽ b. Thus, for an n-player
game [n] = {1, . . . , n} denotes the set of indices for all players. For sets A,B, we let A+Bdenote
the Minkowski addition, that is, A+B= {a + b : a ∈ A, b ∈ B}. Following common notational
convention, we denote the players’ choices of all except the ith player by x(−i) and similarly the
product over all sets except the ith by S(−i) =

∏
j∈[n]\{i} S

(j). Similarly, we denote the product

space over all n players by S
[×[n]]
t =

∏
i∈[n] S

(i)
t . Throughout the paper, we let ∥ · ∥ denote the

Euclidean norm. For any compact set Z⊂ Rn, we denote the diameter of a set as Diameter
(
Z
)
=

maxx,y∈Z∥x− y∥ and the distance of any u ∈ Rn to Zas dist(Z, u) = minx∈Z∥x− u∥. Further,
for compact sets Z, A⊂ Rn, we let dist(Z,A) = minu∈Adist(Z, u). Following standard notation
convention, we let ∆k ⊆ Rk denote the k-dimensional standard simplex, that is ∆k = {x ∈ Rk :
xi ⩾ 0,

∑k
i=1 xi = 1}. Further, for any x ∈ Rd and a > 0, we let B2(x, a) := {z ∈ Rd :

∥x− z∥2 ⩽ a} denote the Euclidean ball with radius a and center x.

2. Generalized Nash Equilibrium Problem

In this section, we formally introduce our main objective. Namely, the generalized Nash-equilibrium
problem and the subclass of benign generalized Nash-equilibrium problems.

2.1. Setting

In a repeatedly played generalized Nash-equilibrium problem, each player i ∈ [n] has control over
a variable x(i) ∈ Rd(i) , where d(i) ∈ N denotes the dimension of the action space of player i.
We denote d([n]) =

∑
i∈[n] d

(i), and d(−i) = d([n]) − d(i). We let C ∈ Rd([n])
denote the shared
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constraint set for the players. That is, we require that [x(1), . . . x(n)]⊤ ∈ C. Hence, for player i, the
set of feasible actions, given the choice of actions of the other players, is

X(i)
(
x(−i)

)
:=
{
x(i) ∈ Rd(i) |

(
x(i), x(−i)

)
∈ C

}
.

The objective of each player i ∈ [n] is to minimize their loss ν(i) : Rd(i) ×Rd(−i) → R. With this
notation, we introduce the generalized Nash equilibrium problem. The aim of each player i ∈ [n]
in a Generalized Nash Equilibrium Problem (GNEP) is to minimize its loss. That is

min
x(i)

ν(i)
(
x(i), x(−i)

)
s.t. x(i) ∈ X(i)(x(−i)).

Throughout the paper, we assume boundedness and convexity of the constraint set and strong
convexity of the loss functions:

Assumption 2.1

1. C is non-empty, compact and convex.

2. For all i ∈ [n] and x(−i) ∈ Rd(−i)
, the function ν(i)( · , x(−i)) : Rd(i) → R is differentiable

on Rd(i) and µ-strongly convex for µ > 0. That is, for any x(−i) ∈ Rd(−i)
it holds for all

x(i), x̃(i) ∈ X(i)(x(−i)) that

ν(i)
(
x(i), x(−i)

)
− ν(i)

(
x̃(i), x(−i)

)
⩽
〈
∇x(i)ν(i)

(
x(i), x(−i)

)
, x(i) − x̃(i)

〉
− µ

2

∥∥∥x(i) − x̃(i)
∥∥∥2 .

3. For all i ∈ [n] and x(i) ∈ Rd(i) , the function ν(i)(x(i), · ) : Rd(−i) → R is continuous.

4. For all i ∈ [n], the gradient ∇x(i)ν(i)
(
x(i), x(−i)

)
is bounded for all (x(i), x(−i)) ∈ C, i.e.,∥∥∇x(i)ν(i)

(
x(i), x(−i)

)∥∥ ⩽ G. We further assume that G is known to the players.

For the benefit of readability, we denote ∇x(i)ν(i)
(
x(i), x(−i)

)
by ∇iν

(i)
(
x(i), x(−i)

)
. As for stan-

dard games, our focus is on computing equilibria. To address approximate generalized equilibria,
we adopt the following definition from Rosen (1965).

Definition 1 (Approximate Generalized Nash Equilibrium (GNE))
We call x̄ = [x̄(1), . . . , x̄(n)] ∈ Rd([n])

with x̄(i) ∈ Rd(i) an ϵ–approximate Generalized Nash Equi-
librium if for all i ∈ [n]:

ν(i)
(
x(i), x̄(−i)

)
⩾ ν(i)(x̄(i), x̄(−i))− ϵ ∀x ∈ X(i)(x̄(−i)).

If this inequality holds for ϵ = 0, we call x̄ a Generalized Nash Equilibrium.

Due to Theorem 1 in Rosen (1965), Assumption 2.1 ensures the existence of a GNE. Note that com-
puting the GNE reduces to standard Nash-equilibrium computation if for all i ∈ [n] the constraints
are independent of the opponents choice, that is X(i)(x̄(−i)) = X(i) for all x(−i). Then C reduces to
the product space

∏
i∈[n] X

(i). We call any constraint set C which can be defined as a product space
uncoupled, conversely, if this does not hold, we call it coupled.
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Benign GNEP. Let ϕ > 0. To define the classes of benign and strongly benign GNEP, we define
for any (x(i), x(−i)) the set

B̂
(i)
2 (x(i), ϕ) := B

(i)
2 (x(i), ϕ) ∩ X(i)(x(−i)) ,

that is, B̂2(x
(i), ϕ) gives the ϕ-neighborhood around x(i), intersected with the set of feasible ac-

tions1. Based on this set, we define the parameter D(i)
min(ϕ) as

D
(i)
min(ϕ) := max

{
α | ∀x ∈ C, ∀x(i)+ ∈ B̂2(x

(i), ϕ) +

{
−α

∇iν
(i)
(
x(i), x(−i)

)∥∥∇iν(i)
(
x(i), x(−i)

)∥∥
}

:
(
x
(i)
+ , x(−i)

)
∈ C

}

and define Dmin(ϕ) = mini∈[n]D
(i)
min(ϕ). The interpretation of Dmin(ϕ) is that it gives us the

maximal quantity for which the ϕ-neighborhood around any point in C can be shifted in the direction
of the (normalized) gradients and still stays inside C. Based on these definitions, we introduce the
class of strongly benign and benign GNEP.

Definition 2 (Strongly Benign GNEP) For ϕ, δ > 0, we call a GNEP (ϕ, δ)-strongly benign if

1. The GNEP has a unique GNE u = (u(1), . . . , u(n)) ∈ relintC such that for any i ∈ [n] and
x(−i) ∈ X(−i), we have

∥∥∇iν
(i)
(
u(i), x(−i)

)∥∥ = 0;

2. For all players i ∈ [n] and all (x(i), x(−i)) ∈ C with x ̸= u, it holds that ∇iν
(i)
(
x(i), x(−i)

)
is sufficiently aligned with the vector x(i) − u(i), i.e., there exists δ > 0 such that〈

∇iν
(i)
(
x(i), x(−i)

)
, x(i) − u(i)

〉
⩾ δ

∥∥∥∇iν
(i)
(
x(i), x(−i)

)∥∥∥ ∥∥∥x(i) − u(i)
∥∥∥ ;

3. Dmin(ϕ) > 0.

Note that for
∥∥∇iν

(i)
(
x(i), x(−i)

)∥∥ ̸= 0 and x(i) ̸= u(i), we can rewrite Condition 2 as〈
∇iν

(i)
(
x(i), x(−i)

)
, x(i) − u(i)

〉∥∥∇iν(i)
(
x(i), x(−i)

)∥∥ ∥∥x(i) − u(i)
∥∥ ⩾ δ ,

that is, we rewrite it as an angular condition on the vectors ∇iν
(i)
(
x(i), x(−i)

)
and x(i) − u(i).

Therefore, we will refer to it as the benign angular condition.

Definition 3 (Benign GNEP) For ϕ, δ,∆ > 0, we call a GNEP (ϕ, δ,∆)-benign if it satisfies
Conditions 2 and 3 from Definition 2, and, in addition,

1. The GNEP has a unique GNE u = (u(1), . . . , u(n)) ∈ relintC such that for any i ∈ [n] and
x(−i) ∈ X(−i), we have

∥∥∇iν
(i)
(
x(i), x(−i)

)∥∥ ⩾ ∆
∥∥x(i) − u(i)

∥∥.

1. Recall from Section 1 that B2(x, ϵ) defines the ℓ2 ball around the point x with radius ϵ.
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2.2. Relation to Common Existing Assumptions

In this section, we set our assumption in context with existing common assumptions. First, note that
under Assumption 2.1, any (ϕ, δ)-strongly benign GNEP is (ϕ, δ,∆)-benign with ∆ = µ. To see
this, note that due to Assumption 2.1, the utilities are µ-strongly convex. Hence, for any strongly
benign GNEP〈

∇iν
(i)
(
x(i), x(−i)

)
−∇iν

(i)
(
u(i), x(−i)

)
, x(i) − u(i)

〉
⩾ µ

∥∥∥x(i) − u(i)
∥∥∥2

⇒
∥∥∥∇iν

(i)
(
x(i), x(−i)

)
−∇iν

(i)
(
u(i), x(−i)

)∥∥∥ ∥∥∥x(i) − u(i)
∥∥∥ ⩾ µ

∥∥∥x(i) − u(i)
∥∥∥2 .

Reordering the terms and using that for strongly benign GNEP
∥∥∇iν

(i)
(
u(i), x(−i)

)∥∥ = 0 gives the
claim. To introduce further relations, we recall the definition of quasi-variational inequalities.

Definition 4 (Quasi Variational Inequality) Let F : Rd → Rd and consider a set valued mapping
C : Rd → 2R

d
. For a quasi-variational inequality problem we want to find x⋆ ∈ C(x⋆) such that

⟨F (x⋆), x⋆ − y⟩ ⩾ 0 ∀y ∈ C(x⋆).

We denote this problem by QVI(F,C)

Suppose C is closed and convex and for all x(−i) ∈ Rd(−i)
, ν(i)( · , x(−i)) is convex, continuous

and differentiable, then computing a GNE is equivalent to solving a quasi-variational inequality
(QVI) with F (x) = [∇ν(1)( · , x(−1)), . . . ,∇ν(n)( · , x(−n))] and C(x) =

∏
i∈[n] X

(i)(x(−i)). This
relation was first discovered by Bensoussan (1974). For more details see for example Section 2 in
Pang and Fukushima (2005) or Theorem 2 in Facchinei and Kanzow (2007).

Consider a convex set C and suppose for all x ∈ C, C(x) = C, then QVI(F,C) reduces to a
variational inequality problem VI(F,C):

find x⋆ ∈ C, such that ⟨F (x⋆), x⋆ − y⟩ ⩾ 0 ∀y ∈ C .

Note that solving a standard Nash-equilibrium problem (NEP) without shared constraints is equiv-
alent to solving a variational inequality problem. Hence, assuming that C(x) = C, reduces the
GNEP to a standard NEP. However, there exist sufficient conditions under which the solutions of
a QVI are equal to the solutions of a VI. One such condition is due to a result by Harker (1991):
If A ⊂ C such that ∀x ∈ A, x ∈ C(x) ⊂ A, then any solution to the VI(F,A) is a solution to
the QVI(F,C). However, as noted by Facchinei et al. (2007), in the case of a QVI arising from
a GNEP, this condition only allows for uncoupled sets. Hence, under this condition, the problem
reduces to an NEP. Note that the strongly benign condition allows for problems that do not satisfy
Harker’s condition. (See Section 2.3 for examples and more details.)

A common assumption for variational inequalities is the strong monotonicity assumption: An
operator F : X→ X is µ-strongly monotone if ∀x, y ∈ X

⟨F (x)− F (y), x− y⟩ ⩾ µ ∥x− y∥2 ,

and strictly monotone if ⟨F (x) − F (y), x − y⟩ > 0. Strong and strict monotonicity are common
assumptions in the context of monotone operator theory or variational inequalities.2 In the con-
text of QVI, strong monotonicity is considered in Nesterov and Scrimali (2006). In the special

2. In the context of game theory, strict monotonicity is also referred to as diagonal strict concavity (Rosen, 1965).
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case of games, strong monotonicity is for example considered in Duvocelle et al. (2023); Yan et al.
(2023) and referred to as strongly monotone games. In the case of µ-strongly convex loss func-
tions (cf. Assumption 2.1, 2.), the game is µ-strongly monotone. We note that under the additional
assumption that ∇iν

(i)( · , x−i) are injective and their inverse is L−1-Lipschitz continuous (a.k.a.
L-bi-Lipschitz), (ϕ, δ)-strongly benign GNEP are δ

L -strongly monotone. Conversely, if the loss
functions are µ-strongly convex and L-smooth and for GNE u ∈ C, ∇iν

(i)
(
u(i), x(−i)

)
= 0 then

the benign angular condition is satisfied. This is formalized by the following Proposition:

Proposition 5

1. Consider a GNEP with µ-strongly convex loss functions. Further, suppose ν(i)( · , x−i) are
L-smooth and there exists a GNE u ∈ C such that ∇iν

(i)
(
u(i), x(−i)

)
= 0 for all x ∈ C. Then

the benign angular condition is satisfied with δ = µL.

2. Consider a strongly benign GNEP (cf. Definition 2) and assume that the ∇iν
(i)( · , x−i) are

L-bi-Lipschitz. Then the game is (δ/L)-strongly monotone.

For a proof, see Appendix A.

2.3. Examples of Strongly Benign GNEP

The conditions for benign and strongly benign GNEP are strong and exclude many instances of
GNEP. However, it is a nontrivial subclass of GNEP as we illustrate in the following examples. The
first example serves as an illustration of the definitions and is relatively trivial. The reason is that
the example is one-dimensional. This enables us to illustrate it via plots (see Section 3.2). However,
conditions such as the benign angular conditions constrain us to trivial uncoupled loss functions in
one dimension.

Example 1 ((ϕ, δ)-strongly benign GNEP) Consider a two-player game where d(1) = d(2) =
1. For simplicity, we denote the players action by x ∈ R and y ∈ R instead of x(1) and x(2).
Furthermore, we denote the sets S(1)

t ,S
(2)
t by S

(x)
t ,S

(y)
t . Define the shared constraint set

C = {(x, y) ∈ R2 : 8 ⩾ x ⩾ −1, 8 ⩾ y ⩾ −1, x+ y ⩽ 10}.

The players want to minimize their losses with respect to C. That is

min
x∈R

ν(x)(x, y) s.t. (x, y) ∈ C

min
y∈R

ν(y)(y, x) s.t. (x, y) ∈ C .

The loss function for the x-player is ν(x)(x, y) = x2 − y2 and for the y-player it is ν(y)(y, x) =
y2 − x2.

We show that this problem is (1 − ϵ, 1)-strongly benign for any ϵ > 0. To avoid repetitive
arguments, we only verify all conditions for the x-player. Due to the symmetry of the problem, the
same argument can be applied to the y-player.

First note that the unique GNE is [u(x), u(y] = [0, 0] ∈ C and the gradient norm ∇xν
(x)(0, y) =

0 for any choice of y ∈ X(y)(0). Hence, condition (1) of Definition 2 is satisfied. Further, the benign
angular condition is satisfied with δ = 1 since〈

∇xν
(x)(x, y), x− u(x)

〉∥∥∇xν(x)(x, y)
∥∥∥∥x− u(x)

∥∥ =
⟨2x, x⟩
∥2x∥ ∥x∥

= 1.
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Hence, the benign angular condition in Definition 2 is satisfied. To verify that D(x)
min(1 − ϵ) > 0,

note that ∇xν(x)(x,y)

∥∇xν(x)(x,y)∥
= 2x

|2x| . Further, 2x
|2x| is equal to the sign of x, that is 2x

|2x| = −1 if x < 0 and
2x
|2x| = 1 for x > 0 and 2x

|2x| = 0 for x = 0. We denote this by sign(x). Consider any [x, y] ∈ C.

We verify that relintX(x)(y) ∋ 0. Moreover, the distance between bdX(x)(y) and 0 is always a
constant. Together with the observation that 2x

|2x| = sign(x), this implies that Dmin(1− ϵ) > 0 for
any ϵ > 0. Hence, we conclude that the problem is (1−ϵ, 1)-strongly benign. We note that Harker’s
condition is not satisfied for this example since the constraints are coupled.

The following example is an illustration of a strongly benign GNEP beyond one dimension.

Example 2 ((ϕ, δ)-strongly benign GNEP) We consider a two-player GNEP and use the same
notation simplification as in Example 1.

min
x∈R2

max
y∈R2

∥x∥2 − ∥y∥2 +
(
x⊤Py

)2 s.t. (x, y) ∈ C .

Where P ∈ R2×2 is a positive definite matrix and for ϵ > 0

C = {(x, y) ∈ R2×2 : x ∈ [−1, 1]2, y ∈ [−1, 1]2, x1 + y1 + ϵx2 + ϵy2 ⩽ 1}.

We note that the unique GNE is at (0, 0). Similar to the previous example, we can check that the
conditions for strongly benign GNEP are satisfied.

3. Online Feasible Point Method: Algorithm

In this section, we introduce an online FPM with alternating coordination: the players coordinate
by making sure that they update their desired set every n turns. The goal of this algorithm is to
guarantee convergence to the GNE while preserving feasibility for all iterates. In Section 4, we
show that this is guaranteed for an interesting class of games under the assumption that all players
use the introduced algorithm. Throughout this section, we assume that Assumption 2.1 is satisfied.
Recall that the parameter G denotes an upper bound on the gradient norm of the loss functions.
Further, we let D = Diameter(C) and assume D is known to the players.

A Naive Algorithm: Waiting for Your Turn. A first method that fits our framework is to have
the players update their iterates one player at a time, with every player using an optimization method
such as (projected) gradient descent. Formally, player i, sends the desired set S(i)

t = {x(i)t } at every
turn, and changes the iterate x(i)t only at timesteps i+ kn for k ⩾ 0.

While this method technically fits our framework, having the players wait for their turn is waste-
ful as it does not profit from the fact that players may update their plays more often if they declare
larger sets S(i)

t . In the rest of this paper, we design and analyze a full algorithm in which the players
update they play simultaneously while maintaining the joint feasibility thanks to the prior declara-
tion of the desired sets.

3.1. Online Feasible Point Method with Alternating Coordination

Throughout this section, we assume that all players have access to first-order information, i.e.,
to gradients g(i)t = ∇iν

(i)(x
(i)
t , x

(−i)
t ). Furthermore, to guarantee feasibility, the players define

8
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and communicate the desired sets S
(i)
t+1 at the end of each round t. In the next round, all players

i ∈ [n] \ {j} choose their iterate x(i)t+1 from S
(i)
t+1. The jth player is allowed to update the set S(j)

t+1

and chooses its iterate from this set. To guarantee that all players can make sufficient progress, the
player who moves its set varies every iteration. We assume that for each player i ∈ [n], the online
FPM is initialized with x(i)1 , and closed and bounded convex set S(i)

1 such that x(i)1 ∈ relintS
(i)
1 and

S
×[n]
1 ⊂ C.

Algorithm 1 Online Feasible Point Method with Alternating Coordination

Input: Convex set S(i)
1 ⊂ Rdi , x

(i)
1 ∈ relintS

(i)
1

set pstart(1) = 1 and k = 1
for t = 1, . . . , T do

if Termination Criterion (TC) not satisfied then
play x(i)t , suffer loss and receive gradient g(i)t

update x(i)t+1 according to (Update)

update S
(i)
t+1 according to (Vupdate)

send S
(i)
t+1 to all players j ∈ [n] \ {i} and receive S

(j)
t+1 from all j ∈ [n] \ {i}

end
if Termination Criterion (TC) satisfied then

set x(i)t+1 = x
(i)
t

shrink S
(i)
t such that x(i)t ∈ relintS

(i)
t+1 and Diameter

(
S
(i)
t+1

)
= 1

2Diameter
(
S
(i)
t

)
set pend(k) = t and pstart(k + 1) = t+ 1 and increment k by one

end
end

The online FPM proceeds in phases. The kth-phase starts at pstart(k) and ends at pend(k). We
note that pstart(k) ⩽ pend(k) and denote Pk = {pstart(k), . . . , pend(k)}. It remains to specify the
termination criterion (TC) and the updates of the iterates x(i)t and S

(i)
t , (Update) and (Vupdate) re-

spectively. The termination criterion is triggered if none of the players can make sufficient progress
or if it was not triggered for 2k iterations. That is,

max
i∈[n]

dist
(
S
[×[n]]
t−i ,S

[×[n]]
t−i+1

)
⩽

D√
T

or t− pstart(k) ⩾ 2k. (TC)

To define the updates of x(i)t and S
(i)
t , we let η > 0 denote a fixed step size to be defined later. The

updates are done with respect to the minimum between η and the parameters ιt ⩾ 0 and η̄t/2 > 0

to guarantee feasibility. To define ιt, set Z(i)
t = {z : z ∈ argmin

z∈S(i)
t
⟨g(i)t , z⟩}. Define

ι
(i)
t = min dist(Z

(i)
t ×S

(−i)
t ,bd(C)).

That is, ι(i)t is the minimal distance with respect to the gradient direction g(i)t of the set S×[n]
t to the

boundary of C. For the updates of the set S(i)
t , we set

S
(i)
t+1 =

{
S
(i)
t if t mod n ̸= i− 1

S
(i)
t +{v(i)t } if t mod n = i− 1

, (Vupdate)

9
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where v(i)t = −min(η, ι
(i)
t )g

(i)
t . Further, we set η̄(i)t = max(α ⩾ 0 : (x

(i)
t − αg

(i)
t ) ∈ S

(i)
t ), that is,

η̄
(i)
t is the maximal step into the direction of g(i)t while staying within S

(i)
t . Define the update

x
(i)
t+1 =

{
x
(i)
t −min(η, η̄

(i)
t /2) g

(i)
t if t mod n ̸= i− 1

x
(i)
t + v

(i)
t if t mod n = i− 1

, (Update)

where v(i)t is defined as before.

Remark 6 (Computational complexity) The computational complexity of each iteration depends
on computing ι(i)t , which requires evaluating min dist(Z

(i)
t ×S

(−i)
t , bd(C)). The shared constraint

set C is problem-dependent and typically defined via k ∈ N convex functions hi : Rd[n] → R as
C = {x ∈ Rd[n]

: ∀i ∈ [k] : hi(x
(1), . . . , x(n)) ⩽ 0}. In contrast, S(i)

t is part of the algorithm
definition. While we do not impose any assumptions on S

(i)
t beyond convexity, it is beneficial for

computational efficiency to define it as a convex polytope with a small number of vertices, e.g., set
S
(i)
1 as a d(i)-dimensional nonstandard simplex. In this case, S(i)

t ×S
(−i)
t contains d[n] +n vertices

and hence ι(i)t can be computed via (d[n] + n)k line searches. In particular, if the functions hi are
affine, i.e., C is also a polytope, then the computation of ι(i)t requires solving (d[n] + n)k linear
equations. In both cases, the computational complexity is polynomial in the number of edges of
S
(i)
t ×S

(−i)
t .

3.2. Illustrating Examples for the Alternating Coordination online FPM

To provide a better intuition for our algorithm, we illustrate its computations with an example.

Example 3 (Example 1 continued) In the following we continue with Example 1. Figure 1 shows
the execution of the first steps for the online FPM defined in Algorithm 1. The initial iterates are
x1 = 2, y1 = 6 and S

(x)
1 = [1, 3], S(y)

1 = [5, 7]. We note that x1 ∈ S
(x)
1 and y1 ∈ S

(y)
1 . Further,

S
(x)
1 ×S

(y)
1 ⊆ C. For better visualization, we only plot every second step. The red dot indicates the

combined players’ iterates, i.e., the vector [xt, yt]. The boxes denote the product sets S
(x)
t ×S

(y)
t .

The color highlights the algorithm’s progress: the first step is in dark red, and the last iterate in
dark blue.

4. Online Feasible Point Method: Feasibility and Convergence

In this section, we show that the online FPM is guaranteed to preserve feasibility. Furthermore,
we show that for strongly being GNEP with L-smooth and µ-strongly convex loss functions (cf.
Assumption 2.1), convergence to the GNE is guaranteed.

Theorem 7 [Feasibility] Suppose all players are following Algorithm 1. Then for all iterations
t ∈ [T ], we have S

[×[n]]
t ⊆ C; this implies in particular that [x(1)t , . . . , x

(n)
t ] ∈ C.

This result is a straightforward consequence of the definition of the algorithms, for a formal
proof see Appendix C. Furthermore, for strongly benign and benign GNEP, the online FPM con-
verges to the unique GNE.
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Online FPM for a Two Player GNEP

Figure 1: The first 24 iterations of the online FPM Algorithm 1 on the GNEP defined in Example 1.

Theorem 8 [Convergence] Suppose Assumption 2.1 is satisfied and assume all players are follow-
ing Algorithm 1 with step size η = min( D

G
√
T
, δ
L). Assume we have a (ϕ, δ)-strongly benign GNEP.

Set

t0 = max

(
4D

ϕ
+ 1,

(
D

2Dmin

)2

,

(
DL

2Gδ

)2
)
.

Then for all players i ∈ [n] and any t ∈ [t0, T ]

∥∥∥x(i)t − u(i)
∥∥∥ ⩽ Ξ

∥∥∥x(i)1 − u(i)
∥∥∥(1− µδD

4G
√
T

) t+1
n

+
2D

δ
√
T
,

where Ξ =
(
1− µδD

4G
√
T

)− t0
n .

For a complete proof and a similar result for benign GNEP, see Appendix D. Our proof relies
on a special case of an inexact gradient descent. That is, a gradient descent scheme of the form
xt+1 = xt − ηtgt where gt does not necessarily correspond to the gradient, but is a vector that is
sufficiently aligned with the real gradient. Hence, the benign angular condition is essential for this
analysis since it ensures that the gradients of the loss function are relatively well aligned with the
gradients of the function f(x) = 2δ−1 ∥x− u∥. See Section D.1 in the Appendix for more details
and Remark 17 for comments on related results.
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4.1. Comparison to Alternating Gradient Descent

As mentioned in Section 3, an alternative approach to the online FPM (Algorithm 1) would be an
alternating gradient descent method. That is, for each step t ∈ [T ], each player i ∈ [n] sets

x
(i)
t+1 =

{
x
(i)
t − ηtg

(i)
t if t mod n = i− 1

x
(i)
t otherwise.

(Alt-GD)

This method has the clear advantage of being easier to implement and requiring no extra storage
for the sets S(i)

t . Note that the feasibility of the iterates can be guaranteed if the parameter Dmin(0)

is available for stepsize tuning or all x(j)t of all players j ∈ [n] \ {i} are known to player i ∈ [n].
Indeed, in the latter case, feasibility can be guaranteed by a projection onto X(i)(x

(−i)
t ) and in the

former case, feasibility with η = Dmin(0)/(
√
TG) follows from the definition. Thus, assuming that

either of these parameters is available can also guarantee feasibility for this algorithm. However,
note that alternation is essential for this argument; therefore, a player can only make progress every
nth-iteration. Conversely, note that with the online FPM, Algorithm 1, the players update their
iterates every iteration while guaranteeing feasibility. While this does not always help, in some
cases of practical interest it can lead to a significant speedup as the following example shows:

Example 4 Consider a GNEP with C =
∏

i∈[n]∆d and ν(i)
(
x(i), x(−i)

)
such that there exists a

unique GNE (x̄(1), . . . , x̄(n)) in the strict interior of C. Comparing the online FPM (Algorithm 1)
with the alternating gradient descent method (Alt-GD), we note that the players can update their
iterates in the online FPM every iteration, while for (Alt-GD), they only make progress every nth

iteration. Furthermore, for this specific problem, given that x̄ ∈ int
(
S
(×[n])
t

)
every player makes

progress towards the GNE with a step size of at least min(Diameter
(
S
(i)
t

)
/(2G), η). Given that

Diameter
(
S
(i)
t

)
is a constant, each player makes constant progress towards the GNE. Specifically

in the case when the number of players is large, e.g., proportional to
√
T , this speed-up can be

significant and of practical interest.

Another advantage of the online FPM is its robustness beyond the theoretical guarantees. As
our experiments show (cf. Appendix B), the online FPM can work well beyond the theoretical
guarantees. In particular, it always guarantees feasibility and convergence to GNE for instances
beyond the class of benign GNEP. Capturing the described advantages of the online FPM in a
rigorous analysis constitutes an interesting future research direction (see Section 6 for more details).

5. Relation to Regret Minimization

In this section, we highlight the relation of our algorithm to no-regret algorithms in repeated games.
From the perspective of a single player, interacting in a game with shared constraints can be viewed
as a convex online learning problem with time-varying constraints. Note that in contrast to standard
online learning problems, where the constraint is fixed, online learning with time-varying constraint
sets is a fundamentally more challenging setting. In recent years this setting received more interest
in the online learning community (see e.g. Neely and Yu (2017); Liu et al. (2021); Kolev et al.
(2023)).

Consider the following online learning protocol with time-varying constraints: For each round
t ∈ [T ], the learner receives side information Ĉt ⊂ X and chooses an iterate xt ∈ X. Next, she

12
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receives a convex loss function ft : X→ R and a convex constraint set Ct = {x ∈ X | ht(x) ⩽
0} ⊂ X with ht : X → R and suffers instantaneous loss with respect to ft(xt) plus a cost for
violating the constraint Ct. A common evaluation criterion for the performance of an algorithm for
an online learning problem is the regret. For any u ∈ X, define

RegfT(u) :=

T∑
t=1

ft(xt)−
T∑
t=1

ft(u). (1)

An online algorithm is said to be a no-regret algorithm if for any u ∈ X, RegfT(u) grows sub-
linearly in T . Since the algorithm faces time-varying constraints, we also want to measure the
performance with respect to the constraint violations. There exist several definitions of regret for
constraint violation in the literature. For example, Mahdavi et al. (2012) use the regret definition∑T

t=1(ht(xt)−ht(u)) and Yuan and Lamperski (2018) define the stronger version
∑T

t=1(ht(xt))+−
(ht(u))+)

3 to measure the constraint violations. There also exist last step requirement like hT (xT ) ⩽
O(1/

√
T ) as used in Kolev et al. (2023).

To capture the requirement of feasibility of every iterate, we introduce a definition of regret,
which is based on the indicator function. That is, let χCt : X→ R∪{+∞} denote the characteristic
function with χCt(x) = 0 if x ∈ Ct and +∞ otherwise. Define the regret with respect to constraint
violations

RegcT =
T∑
t=1

χCt (xt) . (2)

Note that RegcT is equal to the dynamic regret
∑T

t=1 χCt (xt) − χCt (ut) where ut ∈ Ct. Further-
more, RegcT ∈ {0,+∞}. Hence, requiring an algorithm to be a no-regret algorithm with respect
to RegcT is equivalent to requiring RegcT = 0. We note that for any sequence (xt)t∈[T ] ∈ XT and
u ∈ X

T∑
t=1

χCt (xt) ⩾
T∑
t=1

(ht(xt))+ − (ht(u))+).

Hence, if an algorithm is no-regret with respect to RegcT, then
∑T

t=1(ht(xt))+ − (ht(u))+) is non-
positive. Note that the converse is not necessarily true. Furthermore, if RegcT = 0, this immediately
implies that ht(xt) ⩽ 0 for all t ∈ [T ]. Hence, we immediately obtain the last step requirement
hT (xT ) ⩽ c 1√

T
from Kolev et al. (2023).

From Theorem 8 we derive sublinear regret bounds. We adapt the notation to be consistent with
the previous notation: the convex loss functions are ν(i)( · , x(−i)

t ), the constraint sets are X(i)(x
(−i)
t )

and the side information the learner receives is S(−i)
t . Note that ν(i)( · , x(−i)

t ) and X(i)(x
(−i)
t ) are

time-varying due to the choice of x(−i)
t .

Theorem 9 Suppose Assumption 2.1 is satisfied and assume we have a (ϕ, δ)-strongly benign
GNEP. Let Ξ and t0 be defined as in Theorem 8. If all players are following Algorithm 1, then for

3. Note that if ∅ ̸= ∩t∈[T ] Ct ∋ u, this reduces to
∑T

t=1(ht(xt))+.

13
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all players i ∈ [n]

T∑
t=1

χ
X(i)(x

(−i)
t )

(
x
(i)
t

)
= 0,

and for all T ∈ N

T∑
t=1

ν(i)
(
x
(i)
t , x

(−i)
t

)
−

T∑
t=1

ν(i)
(
u(i), x

(−i)
t

)
⩽ DG

(√
T

(
2Ξn

G

µD
+

2

δ

)
+ t0

)
.

This result is a direct consequence of the convexity of the losses and Theorem 8. For a proof, see
Appendix E. The regret bound provides a limited robustness guarantee for strongly benign GNEP:
Given all players follow Algorithm 1, then no player has the incentive to unilateral deviate from this
strategy.

From a single-player perspective, the online learning problem with time-varying constraints in-
duced by a GNEP is fundamentally easier than an online learning problem with adversarially time-
varying constraints. The following three aspects are essential: (1) the constraints are not adversarial
but endogenous to the system, (2) before committing to the next iterate, the player has access to side
information S

(i)
t ⊆ X(i)(x

(−i)
t ), and (3) the distance between u(i) and S

(i)
t is decreasing. We note

that if the time-varying constraints are chosen adversarially, it is not possible for any online algo-
rithm to guarantee that RegcT is bounded4. Based on these insights, we deduce an online learning
protocol where the learner receives a set St ⊆ Ct as side information before he has to choose his
next iterate. The protocol is as follows: In each round t ∈ [T ], the learner receives a set St ⊆ Ct

and then chooses the iterate xt. Next, the player learns ft and Ct and suffers a loss with respect to
ft. If the player violates the constraint Ct, he suffers a loss of ∞.

By choosing its iterates xt ∈ St, the learner can guarantee that the constraints Ct are never
violated. However, it is not necessarily possible to simultaneously guarantee sub-linear regret for
RegfT(u). For illustration, we consider the following simple example: Suppose the relative interior
of ∩T

t=1 Ct is non-empty and take any x, y ∈ ∩T
t=1 Ct with dist(x, y) > 0 a constant. Suppose the

learner is provided St = {x} for t ⩽ T/2 and St = {y} otherwise. Let u ∈ ∩T
t=1 Ct and define

ft(x) = at ∥x− u∥2 for any at > 0. Then RegfT(u) is linear in T whenever the player chooses
xt ∈ St to avoid constraint violations. Based on these insights, we derive the following result:
Suppose the learner obtains sets St ̸= ∅ with St ⊂ Ct. Assume that the distance dist(St, u) ⩽ c√

t

and the distance between the sets St and St+1, i.e., maxa∈St dist(St+1, a), is uniformly bounded
for all t ∈ [T ]. Assume the functions ft : Rd → R are convex and differentiable. Then the regret
for projected online gradient descent, i.e., xt+1 = ProjSt+1

(xt − ηt∇ft(xt)), is sublinear while the
constraints are never violated. That is,

RegfT(u) ⩽ C
3D + 10c

2
G
√
T and

T∑
t=1

χCt (xt) = 0,

where D ⩾ Diameter
(
St

)
, G ⩾ ∥∇ft(xt)∥ and C > 0 denotes a constant independent of T . See

Lemma 19 in Appendix E.1 for more details.

4. For example, consider X = [−1, 1]. For any sequence of {xt}t∈[T ] there exists a sequence of adversarial time-
varying constraints {Ct}t∈[T ], Ct ⊂ X such that ∅ ̸= ∩T

t=1 Cs and at least one xt /∈ Ct. This follows due to the
density of the reals. Hence, for any u ∈ ∩T

t=1 Cs, RegcT(u) = ∞.
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6. Discussion and Future Work

Online FPM with Simultaneous Coordination. The alternating coordination in Algorithm 1
requires that the players are enumerated and know their identity i. Otherwise, it is impossible to
determine whether t mod n = i− 1. Furthermore, the progress of a player during iterations where
t mod n ̸= i − 1 can be negligible. Due to these limitations, we note that an online FPM with
simultaneous shifts of the sets S

(i)
t for all players i ∈ [n] might be of practical and theoretical

interest.

Extension of the Theoretical Analysis beyond Benign GNEP. As our experiments illustrate (see
Section B in the Appendix), the online FPM converges to a GNE for GNEP beyond the restrictive
class of benign GNEP. We leave it to future work to identify further subclasses of GNEP for which
convergence can be guaranteed. Identifying subclasses of GNEP with practical relevance and ex-
tending the analysis is an interesting future research direction.

Better Convergence Guarantees. Note that our convergence analysis does not reflect the progress
made by the players in every step t : t mod n = i−1. As we illustrated in Section 4.1 via an ad-hoc
argument, this progress can lead to better convergence in practice. However, this is not reflected in
our analysis. Improving the analysis such that it can capture these steps constitutes an interesting
future research direction.

Simultaneous cooperation and non-cooperation games. Requiring that the players never vio-
late a constraint in a repeated GNEP compels cooperation between the players. At the same time,
all players have a selfish interest in minimizing their losses. This can be interpreted as a simulta-
neous cooperation and competitive game: The competitive aspect of the game is captured by the
requirement to optimize the payoffs given by the loss function ν(i)

(
x(i), x(−i)

)
in every round. To

account for the cooperation aspect, we define a cooperation game based on the constraint violations.
A cooperation game with [n] players is defined via a characteristic function that gives the collective
payoff for a coalition between M players with M ⊂ [n]. Hence, we define a finite variant of the
indicator function χ̂C( · ) : X → R with χ̂C(x) = 0 if x ∈ C and otherwise χ̂C(x) = C where
C > 0 denotes a (large) constant. We let ψ : 2[n] → R with ψ(∅) = 0 and

ψ(M) = C − 1

|M|
∑
j∈M

χ̂
X(j)(x(−j))

(
x(j)
)
.

The players can guarantee that this characteristic function ψ is C by forming the grand coalition,
that is the coalition consisting of all players [n]. Choosing C sufficiently large guarantees that the
players have an incentive to form a grand coalition. Note, however, that ψ defines a very simplis-
tic cooperation game. Exploring this connection further might be an interesting future research
direction.

Stronger robustness guarantees and relation to regret: Our regret guarantees are limited to
strongly benign GNEP. Further, they are derived from convergence guarantees. It might be an
interesting future research direction to extend these guarantees beyond strongly benign GNEP and to
derive convergence guarantees (with respect to GNE) from no-regret guarantees for online learning
algorithms with time-varying constraints.
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Appendix A. Relations and Examples for Strongly Benign GNEP: Missing Proofs

Proposition 10

1. Consider a GNEP with µ-strongly convex loss functions. Further, suppose ν(i)( · , x−i) are
L-smooth and there exists a GNE u ∈ C such that ∇iν

(i)
(
u(i), x(−i)

)
= 0 for all x ∈ C. Then

the benign angular condition is satisfied with δ = µL.

2. Consider a strongly benign GNEP (cf. Definition 2) and assume that the ∇iν
(i)( · , x−i) are

L-bi-Lipschitz. Then the game is (δ/L)-strongly monotone.

Proof

1. Due to µ-strong convexity and L-smoothness, we have that for all players i ∈ [n]〈
∇iν

(i)
(
x(i), x(−i)

)
−∇iν

(i)
(
u(i), x(−i)

)
, x(i) − u(i)

〉
⩾ µ

∥∥∥x(i) − u(i)
∥∥∥2

⩾ µL
∥∥∥x(i) − u(i)

∥∥∥∥∥∥∇iν
(i)
(
x(i), x(−i)

)
−∇iν

(i)
(
u(i), x(−i)

)∥∥∥ .
Using that ∇iν

(i)
(
u(i), x(−i)

)
= 0 by assumption and reordering the terms gives the benign

angular condition with parameter µL.

2. Due to the benign angular condition, we have〈
∇iν

(i)
(
x(i), x(−i)

)
, x(i) − u(i)

〉
⩾ δ

∥∥∥∇iν
(i)
(
x(i), x(−i)

)∥∥∥ ∥∥∥x(i) − u(i)
∥∥∥ .

We note that for strongly benign GNEP there exists a unique GNE u ∈ C such that for all x ∈
C, we have ∇iν

(i)
(
u(i), x(−i)

)
= 0. Thus, ∥∇iν

(i)
(
x(i), x(−i)

)
∥ = ∥∇iν

(i)
(
x(i), x(−i)

)
−

∇iν
(i)
(
u(i), x(−i)

)
∥ and due toL-bi-Lipschitzness ∥∇iν

(i)
(
x(i), x(−i)

)
−∇iν

(i)
(
u(i), x(−i)

)
∥ ⩾

L−1∥x(i) − u(i)∥. Overall, we obtain〈
∇iν

(i)
(
x(i), x(−i)

)
−∇iν

(i)
(
u(i), x(−i)

)
, x(i) − u(i)

〉
⩾
δ

L

∥∥∥x(i) − u(i)
∥∥∥2 .

Summing over all players implies δ
L -strong monotonicity.
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Figure 2: The first 40 iterations of the online FPM Algorithm 1 on a GNEP that does not satisfy
Condition 1 in Definition 2. Details in Example 5.
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Figure 3: The first 30 iterations of the online FPM on the GNEP defined in Example 6 for two
different initializations.
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Appendix B. Additional Examples and Experiments beyond Benign GNEP

In this section, we collect further experiments that show that the online FPM converges to GNE
beyond its theoretical guarantees. All GNEP in this section are two-player games with d(1) =
d(2) = 1. As before, we denote the players’ actions by x, y ∈ R to eliminate the superscripts. We
only display the iterates for every second step in the plots for the benefit of clarity.

We start with an example that satisfies the benign angular condition and has a unique GNE, but
the GNE lies on the boundary. Hence, Condition 1 of Definition 2 is violated.

Example 5 (Non-benign GNEP) Consider

min
x∈R

max
y∈R

x2 − y2 s.t. [x, y] ∈ C,

with

C :=
{
[x, y] ∈ R2 : y ⩾ −2, 4x+ y ⩽ 0, −4x+ y ⩽ 0

}
.

The unique GNE is attained at [x̄, ȳ] = [0, 0]. Note that [x̄, ȳ] ∈ bdC, hence Condition 1 in
Definition 2 is not satisfied. However, as can be seen in Figure 2, the online FPM converges to the
unique GNE on the boundary.

Next, we have an example that does not satisfy Conditions 2 and 3 in Definition 2: that is,
there does not exist a ϕ such that Dmin(ϕ) > 0 and the angular condition is violated. However,
Condition 1 in Definition 2 is satisfied.

Example 6 (Non-benign GNEP) Consider the following GNEP

min
x∈R

max
y∈R

x2 − 10xy − 2y2 s.t. [x, y] ∈ C

with

C :=

{
[x, y] ∈ R2 : x ⩾ −5, y ⩽ 5, x− 1

3
y ⩽ 5, y − 1

3
x ⩾ −5

}
.

This problem has a GNE at [0, 0]. As can be seen in Figure 3, it might converge to the GNE for
some initial points. However, initializations exist for which the online FPM converges to a non-
equilibrium point as seen in the second plot.

Appendix C. Feasibility of the Online FPM: Missing Proofs

We first show the following propositions.

Proposition 11 [Coordination of Players] Suppose all players follow Algorithm 1. Then, for all
players i ∈ [n] and all iterations t ∈ [T ], all players are in the same phase Pk.

Proof This follows directly from the observation that the termination criterion TC is the same for
all players. Hence, it will be either satisfied for all players or for none.
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Theorem 7 [Feasibility] Suppose all players are following Algorithm 1. Then for all iterations
t ∈ [T ], we have S

[×[n]]
t ⊆ C; this implies in particular that [x(1)t , . . . , x

(n)
t ] ∈ C.

Proof Note that due to the definition of ι(i)t and Vupdate, S[×[n]]
t ⊆ C holds. To show the second

result, we show that x(i)t ∈ relintS
(i)
t for all i ∈ [n] and all t ∈ [T ]. This follows via induction.

More specifically, consider the two cases of the Update:

1. Iterations with (t mod n)+1 ̸= i. Note that in this case the ith player has not updated its set,
hence S(i)

t = S
(i)
t−1. Since x(i)t−1 ∈ S

(i)
t−1, the definition of η̄(i)t guarantees that x(i)t ∈ relintS

(i)
t .

2. Iterations with (t mod n) + 1 = i. In this case, the ith player has translated its set, thus
S
(i)
t ̸= S

(i)
t−1. Note that due to the definition of Vupdate and Update, the iterate x(i)t is

translated by the same vector as the set S(i)
t , i.e., x(i)t = x

(i)
t−1 + v

(i)
t and S

(i)
t = S

(i)
t−1+{v(i)t }.

Since x(i)t−1 ∈ S
(i)
t−1, the claim follows.

Appendix D. Convergence of the Online FPM: Missing Proofs

D.1. Technical Results

We first introduce several technical lemmata. We note that most of these results are small variations
of existing results. Hence, the following lemmata are primarily included for the convenience of the
reader.

Definition 12 (Moreau envelope) Given a function f : Rd → R, its Moreau envelope is the func-
tion fγ : Rd → R defined by fγ(x) = infy∈Rd f(y) + 1

2γ ∥y − x∥2.

Some basic properties of the Moreau envelope.

1. fγ is (1/γ)-smooth.

2. If argminx∈Xf(x) exists, then argminx∈Xf
γ(x) = argminx∈Xf(x).

See, Bauschke and Combettes (2011, Proposition 12.29, and 12.30). We use the Moreau envelope
for the norm distance function. For completeness, we add the following derivations:

Proposition 13 Fix u ∈ Rd and a > 0, and consider the function f : Rd → R defined by
f(x) = a ∥x− u∥. Then, for any γ > 0,

fγ(x) =

{
a ∥x− u∥ − γ

2a
2 if aγ ⩽ ∥x− u∥

1
2γ ∥x− u∥2 if aγ > ∥x− u∥

,

and −γ
2a

2 ⩽ fγ(x)− f(x) ⩽ 0 for all x ∈ Rd.
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Proof By definition of the Moreau envelope,

fγ(x) = min
y∈Rd

{
a ∥y − u∥+ 1

2γ
∥y − x∥2

}
.

We will use that the minimizing y always lies on the line segment {(1 − λ)x + λu : λ ∈ [0, 1]}
between x and u. To see this, consider any y not on this line segment. Then we can find a y′ that
does lie on the line segment with smaller value, by minimizing the second term ∥y′ − x∥2 subject
to not increasing the first term: ∥y′ − u∥ ⩽ ∥y − u∥. This y′ will be the projection of x onto a ball
around u of radius ∥y − u∥, and will hence lie on the line segment between x and u. It follows that

fγ(x) = min
λ∈[0,1]

{
a
∥∥((1− λ)x+ λu

)
− u
∥∥+ 1

2γ

∥∥((1− λ)x+ λu
)
− x
∥∥2}

= a ∥x− u∥+ min
λ∈[0,1]

{
λ2

2γ
∥x− u∥2 − aλ ∥x− u∥

}
.

The minimizer in λ of this quadratic is

λ⋆ =

{
aγ

∥x−u∥ if aγ ⩽ ∥x− u∥,

1 otherwise.

Plugging these expressions in, the first part of the proposition follows. For the second part, we
observe that the claim is satisfied for any x such that aγ ⩽ ∥x− u∥. If ∥x− u∥ < aγ, then
fγ(x) − f(x) + γ

2a
2 = 1

2γ ∥x− u∥2 − a ∥x− u∥ + γ
2a

2 = γ
2 (∥x − u∥ − a)2 ⩾ 0. In the second

case, i.e., whenever aγ > ∥x−u∥, we have fγ(x)−f(x) = 1
2γ ∥x−u∥

2−a ∥x− u∥ ⩽ aγ
2γ ∥x− u∥−

a∥x− u∥ = −1
2a∥x− u∥ ⩽ 0.

The following lemma is a key technical lemma for our convergence guarantees. We note that
the step size requirements are dependent on potentially unknown quantities. However, we show in
Corollary 15 and 16, that for all cases of interest, the step size requirements are satisfied and can be
tuned based on known parameters.

Lemma 14 (Inexact Gradient Descent) Suppose f̃t : Rd → R is µ̃-strongly convex and differen-
tiable. Assume that there exist u ∈ Rd and δ ∈ (0, 1] such that for any t ∈ [T ]〈

∇f̃t(xt), xt − u
〉
⩾ δ

∥∥∥∇f̃t(xt)∥∥∥ ∥xt − u∥ . (Angular Condition)

Consider the update xt+1 = xt − ηgt such that gt = ∇f̃t(xt) and η > 0 denotes the stepsize.
Assume ∥gt∥ ⩽ G. Consider f : Rd → R with f(x) = 2δ−1∥x− u∥. Let µ̂t ⩽

δ∥gt∥
∥xt−u∥ . Let C > 0

be any constant. Then for any t ∈ N and η ⩽ min( C
G
√
T
, δ∥xt−u∥

∥gt∥ )

f(xt)− f(u) ⩽
(
f(x0)− f(u)

) t−1∏
j=1

(
1− µ̂jη

2

)
+

C

δ2
√
T
. (3)
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Proof Set γ = C
2
√
T

and let fγ denote the Moreau envelope with parameter γ of f (See Proposition
13.). Note that due to the basic properties of the Moreau envelope fγ is (1/γ)-smooth and fγ(u) =
f(u) = 0. Further, by Proposition 13,

f(xt) ⩽ fγ(xt) +
γ

2

4

δ2
= fγ(xt) +

C

δ2
√
T
.

Because fγ(x0) ⩽ f(x0) (again by Proposition 13) and f(u) = 0 it is sufficient to show that

fγ(xt+1) ⩽ fγ(xt)
(
1− µ̂tη

2

)
. (4)

The result follows by applying (4) recursively. Towards proving (4), we first use (1/γ)-smoothness
of fγ to obtain:

fγ(xt+1) ⩽ fγ(xt) + ⟨∇fγ(xt), xt+1 − xt⟩+
1

2γ
∥xt+1 − xt∥2

= fγ(xt)− η ⟨∇fγ(xt), gt⟩+
η2

2γ
∥gt∥2

=

(
1− ηµ̂t

2

)
fγ(xt)−η ⟨∇fγ(xt), gt⟩+

η2

2γ
∥gt∥2 +

ηµ̂t
2
fγ(xt).︸ ︷︷ ︸

:=B

Next, we show that B ⩽ 0. We distinguish two cases.

Case ∥xt − u∥ ⩾ 2γ
δ . In this case, we have fγ(xt) = 2δ−1 ∥xt − u∥ − 2γ

δ2
⩽ 2δ−1 ∥xt − u∥ by

Proposition 13. It follows that B ⩽ 0 is guaranteed when

− η ⟨∇fγ(xt), gt⟩+
η2

2γ
∥gt∥2 +

ηµ̂t
2

2δ−1 ∥xt − u∥ ⩽ 0

⇔ η

2γ
∥gt∥2 ⩽ ⟨∇fγ(xt), gt⟩ − µ̂tδ

−1 ∥xt − u∥ .

We note that ∇fγ(xt) = ∇f(xt) = 2(xt−u)
δ∥xt−u∥ . Hence,

⟨∇fγ(xt), gt⟩ = ⟨∇f(xt), gt⟩ =
2

δ ∥xt − u∥
⟨xt − u, gt⟩

(1)

⩾
2

δ ∥xt − u∥
δ ∥gt∥ ∥xt − u∥ = 2 ∥gt∥ ,

where we have used the (Angular Condition) for inequality (1) (Recall gt = ∇̃ft(xt).). Therefore,
to show that B ⩽ 0, it is suffices to show that

η

2γ
∥gt∥2 ⩽ ∥gt∥+ ∥gt∥ − µ̂tδ

−1 ∥xt − u∥︸ ︷︷ ︸
:=A

The term A is positive for µ̂t small enough:

∥gt∥ − µ̂tδ
−1 ∥xt − u∥ ⩾ 0 ⇔ ∥gt∥ δ

∥xt − u∥
⩾ µ̂t,

which is satisfied due to the assumption that µ̂t =
δ∥gt∥

∥xt−u∥ . It remains to show that

η

2γ
∥gt∥2 ⩽ ∥gt∥

which is satisfied since by assumption η ⩽ 2γ
G . Thus, we conclude that B ⩽ 0.
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Case ∥xt − u∥ < 2γ
δ . Then fγ(xt) = 1

2γ ∥xt − u∥2 (c.f. Proposition 13). Hence, B ⩽ 0 is
guaranteed when

− η ⟨∇fγ(xt), gt⟩+
η2

2γ
∥gt∥2 +

ηµ̂t
2

1

2γ
∥xt − u∥2 ⩽ 0

⇔ η

2γ
∥gt∥2 ⩽ ⟨∇fγ(xt), gt⟩ −

ηµ̂t
4γ

∥xt − u∥2 .

Further, using that ∇fγ(xt) = 1
γ (xt − u) gives

⟨∇fγ(xt), gt⟩ =
1

γ
⟨xt − u, gt⟩

(1)

⩾
δ

γ
∥gt∥ ∥xt − u∥ ,

where inequality (1) is due to the (Angular Condition). Therefore, to show thatB ⩽ 0, it is suffices
to show that

η

2γ
∥gt∥2 ⩽

δ

2γ
∥gt∥ ∥xt − u∥+ δ

2γ
∥gt∥ ∥xt − u∥ − µ̂

4γ
∥xt − u∥2︸ ︷︷ ︸

:=A

.

Then,

A ⩾ 0 ⇔ δ ∥gt∥ −
µ̂t
2
∥xt − u∥ ⩾ 0 ⇔ 2 ∥gt∥ δ

∥xt − u∥
⩾ µ̂t,

which is satisfied since µ̂t =
δ∥gt∥

∥xt−u∥ . It remains to show that

η

2γ
∥gt∥2 ⩽

δ

2γ
∥gt∥ ∥xt − u∥ ⇔ η ⩽

δ ∥xt − u∥
∥gt∥

, (5)

which is satisfied by assumption. This implies B ⩽ 0.
Applying (4) recursively gives the claim.

The step size in Lemma 14 seems unusual. However, it reduces to the minimum between C
G
√
T

and δ
L if the f̃t’s are L-smooth and u is their common minimizer. We note that in this case gut =

∇f̃t(u) = 0, hence

∥gt∥ = ∥gt − gut ∥
(1)

⩽ L ∥xt − u∥ .
Thus,

δ ∥xt − u∥
∥gt∥

⩾
δ ∥xt − u∥
L ∥xt − u∥

=
δ

L
.

Note that the step size δ
L differs by the constant δ from the optimal step size of 1

L for deterministic
gradient descent and C

G
√
T

reduces to the standard (constant) step size choice for online gradient
descent whenever C = D.

Furthermore, we note that for gut = 0, setting µ̂ = δµ̃ implies that µ̂t ⩽ δ∥gt∥
∥xt−u∥ is satisfied.

Indeed, due to strong convexity, we have

µ ∥xt − u∥2 ⩽ ⟨gt − gut , xt − u⟩ = ⟨gt, xt − u⟩ ⩽ ∥gt∥ ∥xt − u∥ .

Thus, ∥xt − u∥ ⩽ ∥gt∥ /µ.
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Corollary 15 Suppose all assumptions of Lemma 14 are satisfied. Assume that in addition for all
t ∈ N, f̃t are L-smooth and u = argminx∈X f̃t(x) for all t ∈ N. Set µ̂ = δµ̃. Let C > 0 denote a
constant and set η = min( C

G
√
T
, δ
L). Then

(
f(xt)− f(u)

)
⩽
(
1− q

)(t−1)(
f(x0)− f(u)

)
+

C

δ2
√
T
,

where q = min
(

µ̃δC

2G
√
T
, δ

2µ̃
L

)
.

The assumption that all f̃t’s share a common minimizer is quite strong. Hence, we show a sim-
ilar corollary under a different assumption: Suppose that for all t ∈ N,

∥∥∥∇f̃t(xt)∥∥∥ ⩾ ∆ ∥xt − u∥.
Then we obtain the following corollary. Note that we obtain an additive ϵ term in the bound and the
step size and convergence rate are dependent on ϵ.

Corollary 16 Suppose all assumptions of Lemma 14 are satisfied. Let u ∈ Rd denote the vector
for which the Angular Condition of Lemma 14 is satisfied. Assume that in addition for all t ∈ N, f̃t
are L-smooth and that there exists a ∆ > 0 such that

∥∥∥∇f̃t(xt)∥∥∥ ⩾ ∆ ∥xt − u∥. Set µ̂ = ∆δ. Let

C > 0 denote a constant and for any ϵ > 0 set ηt = min( C
G
√
T
, δϵG ). Then

(
f(xt)− f(u)

)
⩽
(
1− q

)(t−1)(
f(x0)− f(u)

)
+

C

δ2
√
t
+ 2δ−1ϵ,

where q = min
(

∆δC
2G

√
T
, δ

2∆ϵ
G

)
.

Proof First, note that µ̂t = δ∆ ⩽ δ∆∥xt−u∥
∥xt−u∥ ⩽ ∥gt∥δ

∥xt−u∥ due to the assumption ∥∇f̃t(xt)∥ ⩾ ∆∥xt −
u∥. Hence, µ̂t ⩽ ∆δ implies that the assumptions on µ̂t of Lemma 14 are satisfied. Furthermore,
we note that for any xt which is not an ϵ-solution, ∥xt − u∥ ⩾ ϵ. Thus, δ∥xt−u∥

∥gt∥ ⩾ δϵ
G ⩾ η which

implies that the step size assumption of Lemma 14 is satisfied. The claim follows by noting that for
any ϵ-solution the bound holds.

Remark 17 (Related Results) Although the convergence result for inexact gradient descent is a
technical result tailored to our specific application of benign GNEP, it is interesting to compare
it to existing results. Specifically, Khanh et al. (2024) showed convergence for inexact gradient
descent under a related condition (cf. (3.1)), capturing the alignment of the inexact gradient and the
real gradient with respect to norm differences. While they allow for a more general, non-smooth
setting, their gradient approximation needs to converge to the real gradient as t→ ∞. Conversely,
our analysis explicitly integrates the discrepancy between the real and the inexact gradient in the
convergence result, allowing for a problem-dependent convergence result tailored to the application
of benign GNEP.

D.2. Convergence Results

We apply the technical lemmata from the previous subsection to show the convergence of the iterates
to a GNE.
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Theorem 18 (Extended version of Theorem 8) Suppose Assumption 2.1 is satisfied and assume
all players are following Algorithm 1 with step size η = min( D

G
√
T
, δ
L). Assume we have a (ϕ, δ)-

strongly benign GNEP. Set

t0 = max

(
4D

ϕ
+ 1,

(
D

2Dmin

)2

,

(
DL

2Gδ

)2
)
.

Then for all players i ∈ [n] and any t ∈ [t0, T ]∥∥∥x(i)t − u(i)
∥∥∥ ⩽ Ξ

∥∥∥x(i)1 − u(i)
∥∥∥(1− µδD

4G
√
T

) t+1
n

+
2D

δ
√
T
,

where

Ξ =

(
1− µδD

4G
√
T

)− t0
n

Suppose we have a (δ, ϕ,∆)-benign GNEP. Let ϵ > 0 and set

t0 = max

(
4D

ϕ
+ 1,

(
D

2Dmin

)2

,

(
D

2ϵδ

)2
)
.

Then for all players i ∈ [n] and any t ∈ [t0, T ]∥∥∥x(i)t − u(i)
∥∥∥ ⩽ Ξ

∥∥∥x(i)1 − u(i)
∥∥∥(1− δ∆D

2G
√
T

) t+1
n

+
1

δ

(
2D√
T

+ 2ϵ

)
,

where

Ξ =

(
1− δ∆D

2G
√
T

)−t0
n

Proof We show the convergence result in two steps:

1. We first show that the conditions of Lemma 14 and Corollary 15 (respectively Corollary 16
for benign GNEP) are satisfied, and apply it to the loss function of one player. That is, we
apply Lemma 14 with f̃t( · ) = ν( · , x(i)t ). This gives a bound of the form

2δ−1
∥∥∥x(i)t − u(i)

∥∥∥ ⩽ 2δ−1
∥∥∥x(i)1 − u(i)

∥∥∥ t∏
s=1

(1− ϵs) +
D

δ2
√
T
.

2. In the second step, for any t ⩾ t0, we show thatϵt is sufficiently large to guarantee conver-
gence.

We start by showing that all assumptions of Lemma 14 are satisfied, and then show that the ad-
ditional assumptions of Corollary 15 and 16 are satisfied for strongly benign and benign GNEP
respectively. First, note that due to Assumption 2.1, ν(i)( · , x−i) are µ-strongly convex. Hence, for
f̃t( · ) = ν( · , x(i)t ), the strong convexity assumption of Lemma 14 is satisfied.5 Next, recall that for

5. For the benefit of consistency with respect to the notation used in Assumption 2.1, we keep the notation for the strong
convexity parameter of the loss functions ν( · , x(i)

t ) as µ (not µ̃). When applying Lemma 14, it corresponds to the
strong convexity parameter of the function f̃ .
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benign and strongly benign GNEP the equilibrium is assumed to be unique. Thus, let (u(1), . . . u(n))
denote this unique GNE. For this unique GNE, by definition, the benign angular condition is satis-
fied (c.f. Definition 2). That is, there exists a δ > 0 such that〈

∇ν(i)
(
x(i), x(−i)

)
, x(i) − u(i)

〉∥∥∇ν(i)(x(i), x(−i)
)∥∥ ∥∥x(i) − u(i)

∥∥ ⩾ δ.

Thus, the Angular Condition of Lemma 14 is satisfied. Next, recall that η = min( D
G
√
T
, δ
L) and

by the definition of the Update step, a player either takes a gradient descent step with step size
min(η, η̄

(i)
t /2) or min(η, ι

(i)
t ). In both cases the step size is bounded by min( D

G
√
T
, δ
L). Setting

γ = D
2
√
T

, this implies that for strongly benign GNEP, the step size conditions of Corollary 15 are
satisfied and consequently also the step size requirements of Lemma 14. Further, for a strongly
benign GNEP,

∥∥∇ν(i)(u(i), x(−i)
)∥∥ = 0. Thus, the assumptions for Corollary 15 are satisfied.

Setting µ̂t = µδ
2 for all t ∈ N gives for any k ∈ N and t ∈ Pk

2δ−1
∥∥∥x(i)t − u(i)

∥∥∥ ⩽ 2δ−1
∥∥∥x(i)1 − u(i)

∥∥∥ t∏
s=1

(
1− µδϵ

(i)
s

4

)
+

D

δ2
√
T
, (6)

where ϵ(i)s = min(η, η̄
(i)
t /2) if s mod n ̸= i− 1 and ϵ(i)s = min(η, ι

(i)
t ) otherwise. This establishes

the first step of the proof.
Next, we show that some of the ϵ(i)t ’s are sufficiently large, i.e., in the order of 1/

√
T . We

emphasize that this cannot be shown for every iteration, but only for the iteration where t mod n =

i− 1 and t ⩾ t0. Recall that these are the rounds where the ith player shifts its set S(i)
t . We proceed

by inferring that for these iterations, the player’s step size can be guaranteed to be in the order of
1/

√
T .

Consider any t ⩾ t0, i ∈ [n] and x(i)t ∈ S
(i)
t . We denote g(i)t = ∇ν(i)

(
x
(i)
t , x

(−i)
t

)
. Then, due to

the definition of Dmin(ϕ)

x̂
(i)
t+1 := x

(i)
t − Dmin(ϕ)∥∥∥g(i)t

∥∥∥ g
(i)
t ∈ X(i)(x(−i)).

Since the set X(i)(x(−i)) is convex, and since x(i)t ∈ X(i)(x(−i)), we know that for any stepsize

η ⩽ Dmin(ϕ)/
∥∥∥g(i)t

∥∥∥, x(i)t − ηg
(i)
t ∈ X(i)(x(−i)). Due to t0 ⩾ (D/(2Dmin(ϕ)))

2, we know that

for any t ⩾ t0, η = min( δL ,
D

G
√
T
) ⩽ D

G
√
t
⩽ Dmin(ϕ)

2G . Hence, x(i)t+1 = x
(i)
t − ηg

(i)
t ∈ X(i)(x(−i)). It

remains to show that S(i)
t −{ηg(i)t } ⊆ X(i)(x(−i)). For this, note that

t0 ⩾
4D

ϕ
+ 1 ⩾

⌈
log2

D
ϕ

⌉∑
j=1

2j .

Set k0 = ⌈log2(D/ϕ)⌉ and recall that due to TC, the diameters of the sets S(i)
t are decreased by 1

2
at least every 2k iterations. Thus, for any t ⩾ t0,

Diameter
(
S
(i)
t

)
⩽

D

2k0
⩽ ϕ,
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and due to the definition of Dmin(ϕ), S
(i)
t −{ηg(i)t } ⊆ X(i)(x(−i)). This gives that for any t ⩾ t0

2δ−1
∥∥∥x(i)t − u(i)

∥∥∥ ⩽ 2δ−1
∥∥∥x(i)1 − u(i)

∥∥∥ t∏
s=t0

(
1− µ̂sη

4

)
+

D

δ2
√
T

(1)

⩽ 2δ−1
∥∥∥x(i)1 − u(i)

∥∥∥ t∏
s=t0

(s mod n)+1=i

(
1− µδD

4G
√
T

)
+

D

δ2
√
T

⩽ 2δ−1
∥∥∥x(i)1 − u(i)

∥∥∥(1− µδD

4G
√
T

) t+1−t0
n

+
D

δ2
√
T

= Ξ2δ−1
∥∥∥x(i)1 − u(i)

∥∥∥(1− µδD

4G
√
T

) t+1
n

+
D

δ2
√
T
.

Where inequality (1) follows since for any t ⩾ t0 the minimum for the step size definition min
(

D
G
√
T
, δ
L

)
is attained at D

G
√
T

. Further, we used here that µ̂s = µδ
2 .

For the second part of the result, we note that the conditions of Corollary 16 are satisfied.
Indeed, the only difference is the assumption that gradient norms satisfy

∥∥∇ν(i)(u(i), x(−i)
)∥∥ ⩾

∆
∥∥∥x(i)t − u(i)

∥∥∥, which is satisfied due to the assumptions for benign GNEP. Set µ̂ = δ∆. Then
analogously to (6),

2δ−1
∥∥∥x(i)t − u(i)

∥∥∥ ⩽ 2δ−1
∥∥∥x(i)1 − u(i)

∥∥∥ t∏
s=1

(
1− δ∆η

2

)
+

4GD

δ2
√
T

+ 2
ϵ

δ
. (7)

Noting that the rest of the argument is analogous and differs only with respect to the constants, gives
the second result.

Appendix E. Regret Bounds

Theorem 9 Suppose Assumption 2.1 is satisfied and assume we have a (ϕ, δ)-strongly benign
GNEP. Let Ξ and t0 be defined as in Theorem 8. If all players are following Algorithm 1, then for
all players i ∈ [n]

T∑
t=1

χ
X(i)(x

(−i)
t )

(
x
(i)
t

)
= 0,

and for all T ∈ N

T∑
t=1

ν(i)
(
x
(i)
t , x

(−i)
t

)
−

T∑
t=1

ν(i)
(
u(i), x

(−i)
t

)
⩽ DG

(√
T

(
2Ξn

G

µD
+

2

δ

)
+ t0

)
.
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Proof Due to convexity and since by assumption ∥∇ν(i)(x(i)t , x
(−i)
t )∥ ⩽ G, we have

ν(i)
(
x
(i)
t , x

(−i)
t

)
− ν(i)

(
u(i), x

(−i)
t

)
⩽
〈
∇ν(i)

(
x
(i)
t , x

(−i)
t

)
, x

(i)
t − u(i)

〉
⩽
∥∥∥∇ν(i) (x(i)t , x

(−i)
t

)∥∥∥∥∥∥x(i)t − u(i)
∥∥∥

⩽ G
∥∥∥x(i)t − u(i)

∥∥∥ .
Summing over t0 to T rounds, we obtain

T∑
t=t0

ν(i)
(
x
(i)
t , x

(−i)
t

)
− ν(i)

(
u(i), x

(−i)
t

)
⩽
δG

2

T∑
t=t0

2δ−1
∥∥∥x(i)t − u(i)

∥∥∥ .
Next, we apply Theorem 8 to all terms with t ⩾ t0. This gives

T∑
t=t0

ν(i)
(
x
(i)
t , x

(−i)
t

)
−ν(i)

(
u(i), x

(−i)
t

)
⩽
δG

2

(
DΞ

T∑
t=t0+1

(
1− δµD

4G
√
T

) t+1
n

+
2D

√
T

δ

)

⩽
δGDΞ

2

∫ T

t0

(
1− δµD

4G
√
T

)x+1
n

dx+DG
√
T

=
δGDΞ

2

n
((

1− δµD

4G
√
T

) t0+1
n −

(
1− δµD

4G
√
T

)T+1
n

)
− log

(
1− δµD

4G
√
T

)
+DG

√
T

(1)

⩽
δGDΞ

2

(
n
4G

√
T

δµD

)
+DG

√
T .

Where we applied that for all x > −1 it holds that log(1 + x) ⩽ x. Furthermore, recall that
t0 is a constant independent of T . Hence, we bound the first t0 rounds using convexity and the
Cauchy-Schwarz inequality:

t0∑
t=1

ν(i)
(
x
(i)
t , x

(−i)
t

)
− ν(i)

(
u(i), x

(−i)
t

)
⩽

t0∑
t=1

〈
∇ν(i)

(
x
(i)
t , x

(−i)
t

)
, x

(i)
t − u(i)

〉
⩽

t0∑
t=1

∥∥∥∇ν(i) (x(i)t , x
(−i)
t

)∥∥∥∥∥∥x(i)t − u(i)
∥∥∥

⩽ t0GD,

which shows the claim.

E.1. Sublinear Regret for Constrained Online Convex Optimization

Lemma 19 Let St ⊂ Rd, t = 1, 2, . . . be closed, non-empty, convex sets of diameter at most
Diameter

(
St
)
⩽ D and such that the maximum distances between consecutive sets are small:

max
a∈St

dist(St+1, a) ⩽ ωt+1
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for some ω2, ω3, . . .Consider online gradient descent with x1 ∈ S1 and xt+1 = ProjSt+1
(xt − ηtgt).

If the gradients gt = ∇ft(xt) are uniformly bounded by ∥gt∥ ⩽ G, the functions ft : Rd → R are
convex and the step-sizes η1 ⩾ · · · ⩾ ηT > 0 are non-increasing. Then, for any u ∈ Rd,

RegfT(u) ⩽
1

2ηT
(D+max

t⩽T
dist(St, u))

2+G2
T∑
t=1

ηt
2
+

T−1∑
t=1

(ωt+1

ηt
+G
)
dist(St+1, u)−

1

2ηT
∥xT+1−u∥2.

In particular, if dist(St, u) ⩽ c√
t
, ηt = D+c

G
√
t

and ωt+1 ⩽ c′Gηt, then

RegfT(u) ⩽
3D + (6 + 4c′)c

2
G
√
T .

If the functions ft : Rd → R are also µ-strongly convex and the step-sizes ηt = 1
tµ , then, for any

u ∈ Rd,

RegfT(u) ⩽
G2

µ
log T +

T−1∑
t=1

(ωt+1

ηt
+G

)
dist(St+1, u)−

1

2ηT
∥xT+1 − u∥2.

Proof The proof follows the standard OGD analysis, except that we need to be more careful when
applying the Pythagorean inequality, because it may be the case that u ̸∈ St. Let x̃t+1 = xt − ηtgt
be the unprojected update, and let ut = ProjSt

(u). Then

∥x̃t+1 − u∥2 = ∥x̃t+1 − ut+1 + ut+1 − u∥2

= ∥x̃t+1 − ut+1∥2 + ∥ut+1 − u∥2 + 2 ⟨x̃t+1 − ut+1, ut+1 − u⟩
⩾ ∥x̃t+1 − xt+1∥2 + ∥xt+1 − ut+1∥2 + ∥ut+1 − u∥2 + 2 ⟨x̃t+1 − ut+1, ut+1 − u⟩
= ∥x̃t+1 − xt+1∥2 + ∥xt+1 − u∥2 − 2 ⟨xt+1 − ut+1, ut+1 − u⟩+ 2 ⟨x̃t+1 − ut+1, ut+1 − u⟩
= ∥x̃t+1 − xt+1∥2 + ∥xt+1 − u∥2 + 2 ⟨x̃t+1 − xt+1, ut+1 − u⟩
⩾ ∥x̃t+1 − xt+1∥2 + ∥xt+1 − u∥2 − 2∥x̃t+1 − xt+1∥∥ut+1 − u∥
⩾ ∥xt+1 − u∥2 − 2∥x̃t+1 − xt+1∥∥ut+1 − u∥,

where the first inequality follows by the Pythagorean inequality, and the second one by Cauchy-
Schwarz. Observing that

∥x̃t+1 − xt+1∥ ⩽ ∥x̃t+1 − ProjSt+1
(xt) ∥ = ∥xt − ProjSt+1

(xt)− ηtgt∥
⩽ ∥xt − ProjSt+1

(xt) ∥+ ηt∥gt∥ ⩽ ωt+1 + ηt∥gt∥,

we conclude that

∥x̃t+1 − u∥2 ⩾ ∥xt+1 − u∥2 − 2(ωt+1 + ηt∥gt∥) dist(St+1, u).
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It follows that

T∑
t=1

ft(xt)− ft(u) ⩽
T∑
t=1

⟨xt − u, gt⟩

=

T∑
t=1

1

2ηt

(
∥xt − u∥2 − ∥x̃t+1 − u∥2

)
+

T∑
t=1

ηt
2
∥gt∥2

⩽
T∑
t=1

1

2ηt

(
∥xt − u∥2 − ∥xt+1 − u∥2 + 2(ωt+1 + ηt∥gt∥) dist(St+1, u)

)
+

T∑
t=1

ηt
2
∥gt∥2

=

T∑
t=1

1

2ηt

(
∥xt − u∥2 − ∥xt+1 − u∥2

)
+

T∑
t=1

(ωt+1

ηt
+ ∥gt∥

)
dist(St+1, u) +

T∑
t=1

ηt
2
∥gt∥2

=
1

2η1
∥x1 − u∥2 − 1

2ηT
∥xT+1 − u∥2 +

T∑
t=2

( 1

2ηt
− 1

2ηt−1

)
∥xt − u∥2

+
T∑
t=1

(ωt+1

ηt
+ ∥gt∥

)
dist(St+1, u) +

T∑
t=1

ηt
2
∥gt∥2

⩽
(D +maxt⩽T dist(St, u))

2

2ηT
− 1

2ηT
∥xT+1 − u∥2

+

T∑
t=1

(ωt+1

ηt
+G

)
dist(St+1, u) +G2

T∑
t=1

ηt
2
.

Since ST+1 is not used in the algorithm, we assume that ST+1 = Rd without loss of generality, so
that dist(ST+1, u) = 0. The first result of the theorem then follows.

For the second result we plug in the extra assumptions, which gives

RegfT(u) ⩽
(D + c)G

2

√
T +

(D + (3 + 2c′)c)G

2

T∑
t=1

1√
t
.

Using that
∑T

t=1
1√
t
⩽ 2

√
T − 1 ⩽ 2

√
T , the second result then follows.
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Next, we show the regret bound for strongly convex functions. As usual, we use that 1
2ηt

− µ
2 =

1
2ηt−1

. Note that for t = 1, this is zero.

T∑
t=1

ft(xt)− ft(u) ⩽
T∑
t=1

⟨xt − u, gt⟩ −
µ

2
∥xt − u∥2

⩽
T∑
t=1

(( 1

2ηt
− µ

2

)
∥xt − u∥2 − 1

2ηt
∥xt+1 − u∥2

)
+

T∑
t=1

(ωt+1

ηt
+ ∥gt∥

)
dist(St+1, u) +

T∑
t=1

ηt
2
∥gt∥2

=
T∑
t=2

1

2ηt−1
∥xt − u∥2 −

T∑
t=1

1

2ηt
∥xt+1 − u∥2

+
T∑
t=1

(ωt+1

ηt
+ ∥gt∥

)
dist(St+1, u) +

T∑
t=1

ηt
2
∥gt∥2

= − 1

2ηT
∥xT+1 − u∥2 +

T∑
t=1

(ωt+1

ηt
+ ∥gt∥

)
dist(St+1, u) +

T∑
t=1

ηt
2
∥gt∥2.

Together with the bound
∑T

t=1
ηt
2 ∥gt∥2 ⩽ G2

µ log T and assuming again without loss of generality
that ST+1 = Rd, the last result follows.
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