Under review as a conference paper at ICLR 2025

COMPARISONS ARE ALL YOU NEED FOR
OPTIMIZING SMOOTH FUNCTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

When optimizing machine learning models, there are various scenarios where gra-
dient computations are challenging or even infeasible. Furthermore, in reinforce-
ment learning (RL), preference-based RL that only compares between options has
wide applications, including reinforcement learning with human feedback in large
language models. In this paper, we systematically study optimization of a smooth
function f: R™ — R only assuming an oracle that compares function values at
two points and tells which is larger. When f is convex, we give two algorithms
using O(n/¢) and O(n?) comparison queries to find an e-optimal solution, respec-
tively. When f is nonconvex, our algorithm uses O(n /€?) comparison queries to
find an e-approximate stationary point. All these results match the best-known
zeroth-order algorithms with function evaluation queries in n dependence, thus
suggesting that comparisons are all you need for optimizing smooth functions us-
ing derivative-free methods. In addition, we also give an algorithm for escaping
saddle points and reaching an e-second order stationary point of a nonconvex f,
using O(n' /€>5) comparison queries.

1 INTRODUCTION

Optimization is pivotal in the realm of machine learning. For instance, advancements in stochas-
tic gradient descent (SGD) such as ADAM (Kingma & Ba, 2015), Adagrad (Duchi et al., 2011)),
etc., serve as foundational methods for the training of deep neural networks. However, there exist
scenarios where gradient computations are challenging or even infeasible, such as black-box adver-
sarial attack on neural networks (Papernot et all, 2017; Madry et al., [2018; [Chen et al., 2017) and
policy search in reinforcement learning (Salimans et al), 2017; |Choromanski et all, 2018). Conse-
quently, zeroth-order optimization methods with function evaluations have gained prominence, with
provable guarantee for convex optimization (Duchi et all, 2015; [Nesterov & Spokoiny, 2017) and
nonconvex optimization (Ghadimi & Lan, 2013; [Fang et al., [2018; Jin et al., [20184; Ji et all, 2019;
Zhang et al.,[2022;|Vlatakis-Gkaragkounis et all,2019; [Balasubramanian & Ghadimi, 2022).

Furthermore, optimization for machine learning has been recently soliciting for even less informa-
tion. For instance, it is known that taking only signs of gradient descents still enjoy good perfor-
mance (Liu et all, 2019; [Li et all, 2023; Bernstein et all, 2018). Moreover, in the breakthrough of
large language models (LLMs), reinforcement learning from human feedback (RLHF) played an
important rule in training these LLMs, especially GPTs by OpenAl (Ouyang et al., |2022). Com-
pared to standard RL that applies function evaluation for rewards, RLHF is preference-based RL
that only compares between options and tells which is better. There is emerging research interest
in preference-based RL, where various works have established provable guarantees for learning a
near-optimal policy from preference feedback (Chen et alJ,[2022;Saha et all,2023;[Novoseller et al.,
202(0; Xu et all, [2020; Zhu et al., 2023; [Tang et all, 2023). Furthermore, [Wang et al. (2023) proved
that for a wide range of preference models, preference-based RL can be solved with small or no
extra costs compared to those of standard reward-based RL.

In this paper, we systematically study optimization of smooth functions using comparisons. Specif-
ically, for a function f: R" — R, we define the comparison oracle of f as O?‘)mp: R™ x R* —
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{—1,1} such that

L if f(x) = f(y)
OComP X,y) = { ] . (1)
PRI s < ()
(When f(x) = f(y), outputting either 1 or —1 is okay.) We consider an L-smooth function
f: R™ — R, defined as

IVf(x) =Vl < Lix-yll Yx,yeR"
Furthermore, we say f is p-Hessian Lipschitz if

IV2f(x) = V2l < pllx =yl Vx,y €R".
In terms of the goal of optimization, we define:

* x € R"is an e-optimal point if f(x) < f* + ¢, where f* = infx f(x).
* x € R™ is an e-first-order stationary point (e-FOSP) if |V f(x)|| < e.
e x € R" is an e-second-order stationary point (e-SOSP) if ||V f(x)|| < € and Apmin (V2f(x)) >

—/pell -
Our main results can be listed as follows:

* For an L-smooth convex f,[Theorem 2] finds an e-optimal point in O(nL/elog(nL/e)) compar-

isons.
« For an L-smooth convex f,Theorem 3lfinds an e-optimal point in O(n? log(nL/¢€)) comparisons.
* For an L-smooth f,[Theorem 4! finds an e-FOSP using O(Ln logn/€?) comparisons.

* For an L-smooth, p-Hessian Lipschitz f, finds an e-SOSP in O(n'®/€2®) compar-
isons.

Intuitively, our results can be described as comparisons are all you need for derivative-free meth-
ods: For finding an approximate minimum of a convex function, the state-of-the-art zeroth-order
methods with full function evaluations have query complexities O(n/+/€) (Nesterov & Spokoiny,
2017) or O(n?) (Lee et all,2018), which are matched in n by our [Theorem 2] and [Theorem 3 using
comparisons, respectively. For finding an approximate stationary point of a nonconvex function,
the state-of-the-art zeroth-order result has query complexity O(n/€?) (Fang et all, 2018), which is
matched by our[Theorem 4]up to a logarithmic factor. In other words, in derivative-free scenarios for
optimizing smooth functions, function values per se are unimportant but their comparisons, which
indicate the direction that the function decreases.

Among the literature for derivative-free optimization methods (Larson et all, 2019), direct search
methods by [Kolda et al! (2003) proceed by comparing function values, including the directional di-
rect search method (Audet & Dennis J1, 2006) and the Nelder-Mead method (Nelder & Mead, 1965)
as examples. However, the directional direct search method does not have a known rate of conver-
gence, meanwhile the Nelson-Mead method may fail to converge to a stationary point for smooth
functions (Dennis & Torczon, [1991]). As far as we know, the most relevant result is by [Bergou et al.
(2020), which proposed the stochastic three points (STP) method and found an e-optimal point of
a convex function and an e-FOSP of a nonconvex function in O(n/e€) and O(n/€®) comparisons,
respectively. STP also has a version with momentum (Gorbunov et al., [2020). Our
and can be seen as rediscoveries of these results using different methods. In addition,
literature on dueling convex optimization also achieves O(n /€) for finding an e-optimal point of
a convex function (Saha et all, 2021); 2022). However, for comparison-based convex optimization
with poly(log 1/¢) dependence, Jamieson et al. (2012) achieved this for strongly convex functions,
and the state-of-the-art result for general convex optimization by |[Karabag et al! (2021)) takes O(n4)
comparison queries. Their algorithm applies the ellipsoid method, which has O(n?) iterations and
each iteration takes O(n?) comparisons to construct the ellipsoid. This O(n*) bound is noticeably
worse than our [Theorem 31 As far as we know, our is the first provable guarantee for
finding an e-SOSP of a nonconvex function by comparisons.

IThis is a standard definition among nonconvex optimization literature for escaping saddle points and reach-
ing approximate second-order stationary points, see for instance (Nesterov & Polyak, [2006; |Curtis et al.,|2017;
Agarwal et al),2017;/Carmon et all,12018;Jin et all,2018b;|Allen-Zhu & Li,2018;Xu et al),2018;/Zhang et al.,
2022;Zhang & Gu, 2023).
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Techniques. Our first technical contribution is[Theorem 1l which for a point x estimates the direc-
tion of V f(x) within precision . This is achieved by [Algorithm 2] named as Comparison-GDE
(GDE is the acronym for gradient direction estimation). It is built upon a directional preference
subroutine (Algorithm TJ), which inputs a unit vector v € R™ and a precision parameter A > 0, and
outputs whether (V f(x),v) > —A or (V f(x),v) < A using the value of the comparison oracle

for O](cjomp (x + 22v,x). Comparison-GDE then has three phases:

* First, it sets v to be all standard basis directions e; to determine the signs of all V; f(x) (up to A).
o It then sets v as %(ei — e;), which can determine whether |V; f(x)| or |V; f(x)| is larger (up to

A). Start with e; and e and keep iterating to find the ¢* with the largest |8%V f(x)] (up to A).
1

2
ag

* Finally, for each 7 # ¢*, It then sets v to have form

(c;e;+ — ;) and applies binary search

to find the value for a; such that o; |V~ f(x)| equals to |V, f(x)| up to enough precision.

Comparison—GDE outputs a/|la| for GDE, where o (a1,...,a,)". It in total uses
O(nlog(n/d)) comparison queries, with the main cost coming from binary searches in the last
step (the first two steps both take < n comparisons).

We then leverage Comparison—-GDE for solving various optimization problems. In convex op-
timization, we develop two algorithms that find an e-optimal point separately in and
[Section 321 Our first algorithm is a specialization of the adaptive version of normalized gradient
descent (NGD) introduced in|Levy (2017), where we replace the normalized gradient query in their
algorithm by Comparison—-GDE. It is a natural choice to apply gradient estimation to normalized
gradient descent, given that the comparison model only allows us to estimate the gradient direction
without providing information about its norm. Note that [Bergou et al. (2020) also discussed NGD,
but their algorithm using NGD still needs the full gradient and cannot be directly implemented by
comparisons. Our second algorithm builds upon the framework of cutting plane methods, where we
show that the output of Comparison—GDE is a valid separation oracle, as long as it is accurate
enough. Moreover, we note that|Cai et al! (2022) also studied gradient estimation by comparisons
and combined that with inexact NGD, but their complexity O(d/e!-?) is suboptimal compared to
ours.

In nonconvex optimization, we develop two algorithms that find an e-FOSP and an e-SOSP, respec-
tively, in[Section 4.1land[Section 4.2] Our algorithm for finding an e-FOSP is a specialization of the
NGD algorithm, where the normalized gradient is given by Comparison-GDE. Our algorithm for
finding an e-SOSP uses a similar approach as corresponding first-order methods by |Allen-Zhu & Lji
(2018); Xu et all (2018) and proceeds in rounds, where we alternately apply NGD and negative cur-
vature descent to ensure that the function value will have a large decrease if more than 1/9 of the
iterations in this round are not e-SOSP. The normalized gradient descent part is essentially the same
as our algorithm for e-FOSP in The negative curvature descent part with comparison
information, however, is much more technically involved. In particular, previous first-order methods
(Allen-Zhu & 1.i,12018; Xu et all, 2018; Zhang & Li,12021)) all contains a subroutine that can find a
negative curvature direction near a saddle point x with Apin (V2 f(x) < —,/p€). One crucial step

in this subroutine is to approximate the Hessian-vector product V2 f(x) -y for some unit vector
y € R™ by taking the difference between V f(x + ry) and V f(x), where r is a very small pa-
rameter. However, this is infeasible in the comparison model which only allows us to estimate the
gradient direction without providing information about its norm. Instead, we find the directions of
Vf(x), Vf(x+ry),and Vf(x — ry) by Comparison—-GDE, and we determine the direction of
Vf(x+ry)— f(y) using the fact that its intersection with V f(x) and V f(x + ry) as well as its
intersection with V f(x) and V f(x — ry) give two segments of same length (see[Figure T).

Open questions. Our work leaves several natural directions for future investigation:

* Can we give comparison-based optimization algorithms based on accelerated gradient descent
(AGD) methods? This is challenging because AGD requires carefully chosen step sizes, but
with comparisons we can only learn gradient directions but not the norm of gradients. This
is also the main reason why the 1/e dependence in our [Theorem 2] and [Theorem 3| are worse
than [Nesterov & Spokoiny (2017) and Zhang & Gu (2023) with evaluations in their respective
settings.
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Figure 1: The intuition of |Algorithm 10|for computing Hessian-vector products using gradient directions.
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* Can we improve our result for finding second-order stationary points in nonconvex optimiza-
tion? Compared to gradient-based methods that choose the step size in negative curvature find-
ing (Allen-Zhu & Li,12018;Xu et all,2018), our comparison-based perturbed normalized gradient
descent can only utilize gradient directions but have no information about gradient

norms, resulting in a fixed and conservative step size and in total O(,/n/e) iterations.

* Can we apply our algorithms to machine learning? [Tang et al! (2023) made attempts on preference-
based RL, and it is worth further exploring whether we can prove more theoretical results
for preference-based RL and other machine learning settings. It would be also of general in-
terest to see if our results can provide theoretical justification for quantization in neural net-
works (Gholami et al., 2022).

Notations. We use bold letters, e.g., X, y, to denote vectors and capital letters, e.g., 4, B, to
denote matrices. We use || - || to denote the Euclidean norm (¢2-norm) and denote S"~! to be the
n-dimensional sphere with radius 1,i.e., S"7! := {x € R" : ||x|| = 1}. We denote Br(x) = {y €
R™: |ly —x|| < R} and [T] := {0,1,...,T}. For a convex set L C R", its diameter is defined as
D = supy yex |Ix — y|| and its projection operator I is defined as

M (x) = argming¢c[[x — yl[, Vxe€R™

2 ESTIMATION OF GRADIENT DIRECTION BY COMPARISONS

First, we show that given a point x € R™ and a direction v € R™, we can use one comparison query
to understand whether the inner product (V f(x), v) is roughly positive or negative. Intuitively, this
inner product determines whether x + v is following or against the direction of V f(x), also known
as directional preference (DP) in Karabag et al.! (2021)).

Lemma 1. Given a point x € R", a unit vector v € B1(0), and precision A > 0 for directional

preference. Then[Algorithm 1|is correct:
. IfOJ(‘-Jomp(x + 28v,x) = 1, then (V f(x),v) >

~A.
s FOT™P(x + 22v, x) = —1, then (V f(x),v) < A
f L I - 4 I — .

Algorithm 1: DP(x,v,A)
Input: Comparison oracle Ogomp of f: R" = R, x € R™, unit vector v € B1(0), A >0
if Ofomp(x + 28y, x) = 1 then

| return “(V f(x),v) > —A"

else (in this case Ocomp(x + QLA v,x) = —1)
| return “(V f(x),v) < A"
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Proof. Since f is an L-smooth differentiable function,
1
) = f() = (Vf(x),y = x)| < 5Ly — x|
for any x,y € R”. Take y = x + 2 v this gives

1)~ 160 - 229 00.3)| < 51 (QLA) _ 2

Therefore, if Ogomp(y,x) =1,ie., f(y) > f(x),

2
22 VI00.%) 2 22 V50,9 + 60— fl) 2 - 22

and hence (V f(x),v) > —A. On the other hand, if Ofomp(y, x) = —1,ie., f(y) < f(x),

A A2 9A?
ZI00v) < J(y) - S0+ T < T
and hence (V f(x),v) < A. O

Now, we prove that we can use 0 (n) comparison queries to approximate the direction of the gradient
at a point, which is one of our main technical contributions.

Theorem 1. For an L-smooth function f: R® — R and a point x € R", outputs
an estimate g(x) of the direction of V f(x) using O(nlog(n/d)) queries to the comparison oracle

O?mp of f (Eq. (1)) that satisfies

Jo - e =
ool

if we are given a parameter v > 0 such that ||V f(x)| > 7.

Proof. The correctness of ) and (@) follows directly from the arguments in [Line 2] and [Cine 3|
respectively. For[Cine 6 since a; < 1 for any ¢ € [n], the binary search can be regarded as having

bins with interval lengths /1 + a?A < v/2A, and when the binary search ends Eq. (@) is satisfied.
Furthermore, Eq. (@) can be written as

- V2A - 2A\/ﬁ.

9= 0

i —

gir

This is because ||V f(x)|| = [[(91,---,9n) || > v implies max;e(n) g; > 7/+/n, and together with
@) we have g;« > v/v/n — V2A > v/+/2n because A < v/4/n.

. ~ Vf(x Vf(x % ~
We now estimate Hg( va X)H H Note HVﬁxgH = ”vﬁnggﬁ 7 and g(x) = a/||a||. Moreover
Ha_Vf(x) Sza g §2A\/ﬁ(n—1).
gix P 9ix v

By[Lemma 3l for bounding distance between normalized vectors) and the fact that ||a|| > 1,

N (x)/gi- H 4An®/?
’g( IIVf ||H Han IIVf /el =

Thus the correctness has been established. For the query complexity, [Line 2] takes n queries, [Cine 3]
takes n — 1 queries, and throughout the for loop takes (n — 1)[logy(v/v/2A) + 1]
O(nlog(n/d)) queries to the comparison oracle, given that each «; is within the range of [0,

and we approximate it to accuracy v/2A /g« > +/2A /~. This finishes the proof.

<6

o=
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Algorithm 2: Comparison-based Gradient Direction Estimation (Comparison-GDE(x, 6, Y))

Input: Comparison oracle Ogomp of f: R™ — R, precision ¢, lower bound vy on ||V f (x)||
Set A + 6v/4n3/2. Denote Vf(x) = (g1, .-, 9n) "

Call [ATgorithm 1) with inputs (x, e, A), ..., (x, e,, A) where ¢; is the i standard basis with
i coordinate being 1 and others being 0. This determines whether g; > —A or g; < A for
each i € [n]. WLOG

gi > —A Vi€ |[n] )

(otherwise take a minus sign for the i™ coordinate)

We next find the approximate largest one among g1, . . . , g,. Call[Algorithm I with input
(x, %(el —e3),A). This determines whether g; > go — v/2A or go > g1 — V/2A. If the

former, call[Algorithm | with input (x, %(el —e3), A). If the later, call[Algorithm T|with

input (x, %(62 — e3), A). Iterate this until e,,, we find the i* € [n] such that

g~ > max g; — V2A 3)

i€[n]

fori =1to? =n (excepti =1*) do

Initialize o; < 1/2

Apply binary search to «; in [log,(7/A) + 1] iterations by calling [Algorithm 1| with input
(%, ﬁ(aiei* —e;), A). For the first iteration with o;; = 1/2, if ;g — g; > —V2A
we then take o; = 3/4; if o gi- — g; < V2 we then take a; = 1/4. Later iterations are
similar. Upon finishing the binary search, «; satisfies

gi — V2A < aigi- < gi +V2A 4)

return g(x) =

”%” where o = (g, ..., )", ; (i # i*) is the output of the for loop,

3 CONVEX OPTIMIZATION BY COMPARISONS

In this section, we study convex optimization with function value comparisons:

Problem 1 (Comparison-based convex optimization). In the comparison-based convex optimization
(CCO) problem we are given query access to a comparison oracle Ogomp (D) for an L-smooth

convex function f: R™ — R whose minimum is achieved at x* with ||x*|| < R. The goal is to
output a point X such that |X|| < Rand f(X) — f(x*) < ¢, i.e, X is an e-optimal point.

We provide two algorithms that solve[Problem 1l In[Section 3.1l we use normalized gradient descent
to achieve linear dependence in n (up to a log factor) in terms of comparison queries. In[Section 3.2]
we use cutting plane method to achieve log(1/¢€) dependence in terms of comparison queries.

3.1 COMPARISON-BASED ADAPTIVE NORMALIZED GRADIENT DESCENT

In this subsection, we present our first algorithm for [Problem Il [Algorithm 3} which applies
Comparison-GDE (Algorithm 2)) with estimated gradient direction at each iteration to the adap-
tive normalized gradient descent (AdaNGD), originally introduced by [Levy (2017).

Theorem 2. [Algorithm 3| solvesProblem Il using O(nLR?/elog(nLR?/€)) queries.

The following result bounds the rate at which decreases the function value of f.
Lemma 2. In the setting of|Problem 1| |Algorithm 3| satisfies

Hl[in}] f(x¢) — f* < 2L(2RV2T + 2T6R)* /T3,
te




-
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Algorithm 3: Comparison-based Approximate Adaptive Normalized Gradient Descent
(Comparison-AdaNGD)
Input: Function f: R™ — R, precision ¢, radius R
T+ 64LR 5<— /55 Y 55 X0 < 0
fort = O —1do
o <—ComparisonfGDE(xt, 0,7)
e < R\/ 2/t
xt+1 = g (0) (xt — m&t)
tout < argminte[T]f (xt)
return x;

out

if at each step we have

-

The proof of is deferred to We now prove [Theorem 2] using [Cemma 21

— L < F< 1.
b IVfd(x ||H

Proof of Theorem 2] We show that[Algorithm 3|solves[Problem Ilby contradiction. Assume that the

output of [Algorithm 3]is not an e-optimal point of f, or equivalently, f(x;) — f* > ¢ forany ¢t € [T].
This leads to
fxe) = f* €
IV f(xe)]| > T T 2 2R vt € [T]
given that f is convex. Hence, [Theorem 1l promises that
g, — VIx1) ’ <5<,
IV f (<) |

With these approximate gradient directions, by we can derive that

m[% f(x¢) — f* <2L(2RV2T + 2TSR)*/T? < ¢,
te

contradiction. This proves the correctness of The query complexity of

only comes from the gradient direction estimation step in[Line 3} which equals

T - O(nlog(n/s)) = O (”L€R2 log (”LERQD .

3.2 COMPARISON-BASED CUTTING PLANE METHOD

In this subsection, we provide a comparison-based cutting plane method that solves [Problem 11 We
begin by introducing the basic notation and concepts of cutting plane methods, which are algorithms
that solves the feasibility problem defined as follows.

Problem 2 (Feasibility Problem, Jiang et al. (2020); |Sidford & Zhang (2023)). We are given query
access to a separation oracle for a set K C R"™ such that on query x € R"™ the oracle outputs a
vector ¢ and either ¢ = 0, in which case x € K, or ¢ # 0, in which case H = {z: c'z< CTX} D
K. The goal is to query a point x € K.

Jiang et al. (2020) developed a cutting plane method that solves [Problem 2] using O(nlog(nR/7))
queries to a separation oracle where R and r are parameters related to the convex set /C.

Lemma 3 (Theorem 1.1, Jiang et al! (2020)). There is a cutting plane method which solves
[Problem 2 using at most C' - nlog(nR/r) queries for some constant C, given that the set K is
contained in the ball of radius R centered at the origin and it contains a ball of radius .
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Nemirovski (1994); [Lee et all (2015) showed that, running cutting plane method on a Lipschitz
convex function f with the separation oracle being the gradient of f would yield a sequence of
points where at least one of them is e-optimal. Furthermore, [Sidford & Zhang (2023) showed that
even if we cannot access the exact gradient value of f, it suffices to use an approximate gradient
estimate with absolute error at most O(e/R).

In this work, we show that this result can be extended to the case where we have an estimate of the
gradient direction instead of the gradient itself. Specifically, we prove the following result.

Theorem 3. There exists an algorithm based on cutting plane method that solves using
O(n?log(nLR?/€)) queries.

Note that improves the prior state-of-the-art from O(n*) by [Karabag et al! (2021) to
O(n?).

Proof of (Theorem 31 The proof follows a similar intuition as the proof of Proposition 1 in
Sidford & Zhang (2023). Define IC, /5 to be the set of ¢/2-optimal points of f, and K¢ to be the
set of e-optimal points of f. Given that f is L-smooth, K./, must contain a ball of radius at least

rx = +/€/L since for any x with ||x — x*|| < r we have
f(x) = f(x) < Llx = x"[?/2 < ¢/2.
We apply the cutting plane method, as described in to query a point in K/, which

is a subset of the ball Boz(0). To achieve this, at each query x of the cutting plane method,
we use Comparison-GDE(X,d, ), our comparison-based gradient direction estimation algorithm

(ATgorithm 2)), as the separation oracle for the cutting plane method, where we set
1 €
=—\/= 2Le.
16R ‘

We show that any query outside of K. to Comparison-GDE(x,d,) will be a valid separation
oracle for K /5. In particular, if we ever queried Comparison-GDE(x,d,7) atany x € Bag(0) \
K with output being g, for any y € K /o we have

v x V() N . Vfx .
&y ><<Vf< TornY ™ >+ g ||fo||H Iy = x|
F0) =160 o VIO e e
<Vl BT Vi ||H Iy =xll < =5 + 157 4R <0,

where

IV = (f(x) = )/ lIx =<7 = (f(x) = /) /(2R)
given that f is convex. Combined with[Theorem 1l it guarantees that

€

Hence,

IIVf IIH 16R
6y —x) < f(Y)a/"(X)+

ot 8 v ||H by =< =5 \E me 4R <0,

indicating that g is a valid separation oracle for the set K. /3. Consequently, by [Lemma 3| after
Cnlog(nR/ry) iterations, at least one of the queries must lie within X, and we can choose the
query with minimum function value to output, which can be done by making Cn log(nR/rx) com-
parisons.

Note that in each iteration O(n log(n/§)) queries to Ogomp (D are needed. Hence, the overall query
complexity equals

Cnlog(nR/rx) - O(nlog(n/8)) + Cnlog(nR/rx) = O (n®log (RLR*/e)) .
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Algorithm 4: Comparison-based Approximate Normalized Gradient Descent (Comparison-
NGD)
Input: Function f: R™ — R, A, precision €
T+ 88 x5+ 0
fort=0,...,7—1do
g: «Comparison-GDE(xt,1/6,€/12)
L Xp = X1 — €8t/ (3L)

s Uniformly randomly select X, from {xq, ..., X7}
6 return X,

4 NONCONVEX OPTIMIZATION BY COMPARISONS

In this section, we study nonconvex optimization with function value comparisons. We first de-
velop an algorithm that finds an e-FOSP of a smooth nonconvex function in Then in
we further develop an algorithm that finds an e-SOSP of a nonconvex function that is
smooth and Hessian-Lipschitz.

4.1 FIRST-ORDER STATIONARY POINT COMPUTATION BY COMPARISONS

In this subsection, we focus on the problem of finding an e-FOSP of a smooth nonconvex function
by making function value comparisons.

Problem 3 (Comparison-based first-order stationary point computation). In the Comparison-based
first-order stationary point computation (Comparison-FOSP) problem we are given query access
to a comparison oracle Ofomp (D) for an L-smooth (possibly) nonconvex function f: R" — R
satisfying f(0) — infy f(x) < A. The goal is to output an e-FOSP of f.

We develop a comparison-based normalized gradient descent algorithm that solves [Problem 3

Theorem 4. With success probability at least 2/3, solves [Problem 3| using
O(LAnlogn/e?) queries.

The proof of [Theorem 4lis deferred to

4.2 ESCAPING SADDLE POINTS OF NONCONVEX FUNCTIONS BY COMPARISONS

In this subsection, we focus on the problem of escaping from saddle points, i.e., finding an e-SOSP of
a nonconvex function that is smooth and Hessian-Lipschitz, by making function value comparisons.

Problem 4 (Comparison-based escaping from saddle point). In the Comparison-based escaping
from saddle point (Comparison-SOSP) problem we are given query access to a comparison oracle
Ogomp (D) for a (possibly) nonconvex function f: R™ — R satisfying f(0) — infy f(x) < A rthat
is L-smooth and p-Hessian Lipschitz. The goal is to output an e-SOSP of f.

Our algorithm for[Problem 4 given in is a combination of comparison-based normalized
gradient descent and comparison-based negative curvature descent (Comparison—NCD). Specif-
ically, Comparison—NCD is built upon our comparison-based negative curvature finding algo-

rithms, Comparison-NCF1 (Algorithm &) and Comparison-NCF2 (Algorithm 9) that work

when the gradient is small or large respectively, and can decrease the function value efficiently when
applied at a point with a large negative curvature.

Lemma 4. In the setting of [Problem 4 for any z satisfying Amin(V2f(x)) < —\/pe,

outputs a point Zqy, € R™ satisfying

1 /e
f(zout) - f(z) < _48\/:

L2n3/2
Cpe

2 nL

with success probability at least 1 — ( using O( cre

log ) queries.

9
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Algorithm 5: Comparison-based Perturbed Normalized Gradient Descent (Comparison-PNGD)

Input: Function f: R® — R, A, precision €
S+ 3:?;)4%; /5,0 L. x104 0
T 5peﬁlog3%,p<— %logS
fors=1,...,Sdo
fort=0,...,7 —1do
g+ < Comparison-GDE(Xs¢,d,7)
Vst < Xsp — €8/(3L)
Choose x5 ,+1 to be the point between {xs ;, ¥, } with smaller function value

< - 0, wp.1—-p
an Comparison-NCD(Xs +1,€,0), W.p. D

Choose Xs+1,0 among {Xs .0, . - -, Xs, 7, Xy gy - - - ,xg 7+ with the smallest function value.

< - 0, wp.1—p
s+1,0 Comparison-NCD(Xst1,0,€,0), W.p. p

Uniformly randomly select sou € {1,...,S} and tout € [T]
return x,_ . ;

out

Algorithm 6: Comparison-based Negative Curvature Descent (Comparison-NCD)

Input: Function f: R™ — R, precision ¢, input point z, error probability §
vy +Comparison-NCF1(z,¢€,J)
vy <+ Comparison-NCF2(z,e€,J)

— 1 € _ 1 € _ 1 € _ 1 €
Z1,+ = zZ + 5\/;V1, Z,,- =2 — 5\/;V1, Zy 4+ = Z + 5 ;VQ, Zy . =7 — 5\/;V2

return zo, € {21 4,21, —, 22 +, 22, } with the smallest function value.

The proof of Lemma 4lis deferred to Next, we present the main result of this subsec-
tion, which describes the complexity of solving [Problem 4|using [Algorithm 5}

Theorem 5. With success probability at least 2/3, [Algorithm 5| solves using an expected
2 3/2 .
O( ﬁll}‘zgs o log® \’/L,%) queries.

The proof of is deferred to
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A AUXILIARY LEMMAS

Al

DISTANCE BETWEEN NORMALIZED VECTORS

Lemma 5. [fv,v’' € R" are two vectors such that ||v|| > v and ||v — v'|| < 7, we have

v v/ ‘ 27
Tl <
vl v v
Proof. By the triangle inequality, we have
‘ v v/ v v/ ‘ n ’ v/ v/ ‘
vl (AR v (vl vl (vl
A=V I = I
vl v IV
T T 2T
<—4+-=—
Yo 8

O

Lemma 6. Ifvi,ve € R™ are two vectors such that ||v1]],||va| > v, and v, v} € R™ are another
two vectors such that ||v1 — Vi ||, [[va — V|| < 7 where 0 < T <+, we have

Vi V2

!
Vi

v 67

(

Proof. By the triangle inequality, we have

)

[l [[vell

(o)~ (i )
[vall” Tvall /7 NIV v
< <V17V2>_<V’17V’z
vall”Tvall /N Tvall” vl

N

N*K

)

5

v vi v

vall” ||V2> <||V’1||’ [[vall >’

On the one hand, by the triangle inequality and the Cauchy-Schwarz inequality,

Vi Vo V/1 V/2 1 / / /! /
_ < _ _
‘@mmm& wawﬂ < Tl Ve ve) = e vall + 1iveva) = (v, vail)
R T
< vl allvel
< Tyt

Y v

2

On the other hand, by the Cauchy-Schwarz inequality, [(v], v5)| < ||v{||||v5], and hence

\4] vh > < v v >’ . 1 1
) - ) = | Vi,V > -
’<||V1|| [[vall [vill™ [[vall Vi vzl [vallllvall ViVl
[vallllvall _1‘
| Ivalllvell
2
< (’y—kr) L
~
In all, dueto 7 < 7,
2
‘<V1V2><V1Vz>‘ T oD, (vw) T 6
[vall” [[v=] [vill™ [[vall gl v ¥ v ¥
O
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A.2 A FACT FOR VECTOR NORMS

Lemma 7. For any nonzero vectors v,g € R",

7>2
vrel' v/~ _ IV —gll
v—g

v V2 ’
e’ IV el

1_<V+g v

Proof. We have

v+g 2 2 2
L (e ) Iv+gl? _ v +sl® — v +e wp)
T = gl Vel v g )

(v+gvtg) —(|v]+ B2

vl

(v—gv-g - (|v|- &)

v 2
VI gl + 2(ve8) = (IVIP + 2(v, 8) + )
- v,g)2
IVIIZ+ llgll? = 2(v,g) — (IvI* — 2(v,g) + <\|ﬁ>2 )

= 1.

A.3 GRADIENT UPPER BOUND OF SMOOTH CONVEX FUNCTIONS

Lemma 8 (Lemma A.2, [Levyl (2017)). For any L-smooth convex function f: R" — R and any
x € R", we have

[VFx)|? < 2L(f(x) — f*).

B APPROXIMATE ADAPTIVE NORMALIZED GRADIENT DESCENT
(APPROX-ADANGD)

In this section, we prove technical details of the normalized gradient descent we use for convex opti-
mization. Inspired by [Levyl (2017) which condcuted a detailed analysis for the normalized gradient
descent method, we first introduce the Approximate Adaptive Gradient Descent (Approx-AdaGrad)
algorithm below:

Algorithm 7: Approximate Adaptive Gradient Descent (Approx-AdaGrad)

Input: # Iterations 7', a set of convex functions { f;}7_;, xo € R"™, a convex set K with
diameter D
fort=1,...,Tdo
Calculate an estimate g; of V f;(x¢—1)

nt%D/\/ﬂ

Xy = HIC(thl - ntgt)

Lemma 9. guarantees the following regret
T T
— mi < DV2T +TéD.
t_zlft(xt) xmel}cl;ft(x) < DV2T +

if at each step t we have

IVfx)ll =1, g — Vilxe)| <0, [lg:]l =1.
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Proof. The proof follows the flow of the proof of Theorem 1.1 in|Levy (2017). For any ¢ € [T] and
x € K we have
xe1 = x|* < [lxe — x| — 2m (8, ¢ — %) + 07 18]

and
(g Cx) < 1 o2 2 M js 12
8t Xt — X) < o (Iher =xI1* = llxesr = x[I%) + &
Since f; is convex for each ¢, we have
ft(Xt) - ft(X) < <Vft(Xt),Xt - X>
< (8t.xt —x) + |8 — Vfe(xo)[| - [[x¢ — x|
< (&, xt —x) + 4D,
which leads to

- - - ||xtfxu2 ST
Stk =D A £ 32 P (---)+ > sl + 79D,
t=1 t=1 - —1

where we denote 1y = oo. Further we can derive that

T T T T |-
D2 <1 1 ) D [EA
X —— + +T6D
tzzlft( ' 2:: Zl N M1 2\/5,52::1 Vi
D> D &1
< —+ —= — +T6D,
2 2V/2 ; NG
Moreover, we have
T
> - <oVT,
=1 Vi
which leads to
T T
X¢) — X —+T6D
t:zlft( ) tzzlft( ) < QWT 2\[2
< DV2T'+TéD

Now, we can prove which guarantees the completeness of

Proof ofILemma 2] The proof follows the flow of the proof of Theorem 2.1 in [Levy (2017). In

particular, observe that[ATgorithm 3]is equivalent to applying Approx-AdaGrad (Algorithm 7) to the
following sequence of functions
P (Vf(xt), %)
fi(x) = ~=—-L VtelT].
' IVf(x0)l
Then by for any x € K we have
Z fot—x> < DV2T + T$D,
= V&)

where
f(xe) = f(x) < (Vf(xe),xe —x), VtelT]
given that f is convex, and D = 2R is the diameter of Bz (0). Hence,
T *
min f) < Dl )~ IVIVIl . 2RV2T +2ToR
telT] >t VIV ()| i1 VIV
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Next, we proceed to bound the term ZtT:1 1/[|[Vf(x¢)|| on the denominator. By the Cauchy-
Schwarz inequality,

<ZT: 1/|V f(x ||> <Z IV £ (% ||> > 72,

t=1
which leads to

T 1 T2
> b
t; IVF)l — S IV (x|

where

T T
IV£(x2) ||2
v -
IR s

&)
—
; ||fot ||
(Vf(xt),x: —x*)
<2LZ aEa]

< 2L(2R\/2T +2T6R),

where the first inequality is by [Lemma 8l the second inequality is by the convexity of f, and the
third inequality is due to Further we can derive that

. SRVT +2TSR _ 2L(2RV2T + 2T6R)?
min f(x;) — f* < —% < ( T2 ) )
telr) 21 VIV ()]

C PROOF DETAILS OF NONCONVEX OPTIMIZATION BY COMPARISONS

C.1 PROOF OF[THEOREM 4]
Proof of [Theorem 41 We prove the correctness of [Theorem 4] by contradiction. For any iteration
€ [T] with ||V f(x¢)|| > ¢, by Theorem 1l we have

s~ T < -
STV IN

indicating
L
F(xer1) = f(xe) SV F(xe), Xe1 — %) + §||Xt+1 —x4|?

< o (V)8 (i)2

3L
€ €2 2¢?
< —— — < = .

That is to say, for any iteration ¢ such that x; is not an e-FOSP, the function value will decrease at
2 . . . . . .
least 2= in this iteration. Furthermore, for any iteration ¢ € [T] with -5 < ||V f(x:)|| < ¢, by

Mheoren Tl ’ i
we have

gt —

Vf(xt) H P
v G| =
indicating
F(xer1) = f(xe) <V F(xe), Xe41 — Xe) + £||Xt+1 —x|?

€2

—7\\Vf(xt)||(1— )+187L*0 ©)
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For any iteration ¢ € [T'] with ||V f(x;)|| < €/12, we have
L 2
Fxerr) = flxe) < (VF(xe), X1 = %) + 5 o1 — x|

L €
< V(x| xeqr1 — xel| + = || xep1 — x> < —.
S IVFGll ey = xell + S lxers —xell” < 157
Combining (3) and the above inequality, we know that for any iteration ¢ such that x; is an e-FOSP,
the function value increases at most €2 /(12L) in this iteration. Moreover, since

f(0) = f(xr) < f(0) — f* <A,

we can conclude that at least 2/3 of the iterations have x; being an e-FOSP, and randomly outputting
one of them solves [Problem 3l with success probability at least 2/3.

The query complexity of only comes from the gradient direction estimation step in
[Line 3l which equals

T - O(nlog(n/s)) = O (LAnlogn/e?).

C.2 NEGATIVE CURVATURE FINDING BY COMPARISONS

In this subsection, we show how to find a negative curvature direction of a point x satisfying
Amin(V2f(x)) < —.,/pe Observe that the Hessian matrix V2 f(x) admits the following eigen-
decomposition:

n
Vif(x) = Z Auu, ©)
i=1
where the vectors {u;}?_; forms an orthonormal basis of R™. Without loss of generality we assume
the eigenvalues A1, Ao, ..., A, corresponding to uy, us, ..., U, satisfy
Alg)\QS"'S)\na (7)

where \; < —,/pe. Throughout this subsection, for any vector v € R", we denote
vy =v—(v,u)u
to be the component of v that is orthogonal to u;.

C.2.1 NEGATIVE CURVATURE FINDING WHEN THE GRADIENT IS RELATIVELY SMALL

In this part, we present our negative curvature finding algorithm that finds the negative curvature of
a point X with Apin (V2f(x)) < —,/pe when the norm of the gradient V f(x) is relatively small.

Algorithm 8: Comparison-based Negative Curvature Finding 1 (Comparison-NCF1)

Input: Function f: R” — R, x, precision ¢, error probability §

384L3 @ 1 36nL # 1 L m8(pe)' 4V or  JEDE
T 3pe log \/E,(“— 87 7A\ T Ti8pmz YT 16V n

yo < Uniform(S"~1)

fort=0,...,7 —1do
g <+ Comparison—-GDE(x + ryy, 5, v)
Vit1 <yt — ﬁ\/%Tét
Yir1 < Yir1/|[yerall

return é < yo

18
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Lemma 10. In the setting of[Problem 4) for any x satisfying

2
97601 < 2 (g ) (5 (V2100 <~V

[Algorithm 8outputs a unit vector € satisfying
e7V2f(x)é < —\/pe/4,

with success probability at least 1 — 0 using
L2 3/2 L
0] " log? i
dpe d\/pe

To prove [Lemma 10l without loss of generality we assume x = 0 by shifting R™ such that x is
mapped to 0. We denote z; := 7y, /||y:| for each iteration ¢ € [.7] of

. Lo . 3. s
Lemma 11. In the setting of Problem 3 for any iteration t € [T of[Algorithm 8with |ys 1| > §./%,

we have
or [mwpe
> — ==,
IVl = S0y /22

queries.

Proof. Observe that
IV f(zi)ll = V1S (2k)]
= [V1f(0) + (V2 f(0)zk)1 + Vi f(zr) — V1f(0) — (V2 f(0)zk )1
> [(V2£(0)zk)1| — [V1f(0)] = [Vif(z) = V1f(0) = (V2 f(0)zp)]-

Given that f is p-Hessian Lipschitz, we have

VA 2 T2
V1 f ()~ V1 £(0) — (V2 (O)my)s| < AE 227 07 fTec

Moreover, we have

]
[(V2£ (0] = Vpellznal = T/ 72,

which leads to

IVF(z)l = [V1f(z)]

> |[(V2f(0)zi)1] = [V1f(0)] = [V1f(zr) = Vif(0) — (V2 f(0)zk):]
or [mwpe

> — N

— 16 n

where the last inequality is due to the fact that

7or(pe)t/*V/L < or [mpe

IV150)] < VA0 < =R < o [T

Lemma 12. In the setting of [Probleni 4 for any iteration t € 7] of[Algorithm 8 we have

0 |~
>_. /2
[yea| > 8\/; 8)

if lyo.al = §+/7 and |VF(0)]| < §5/725.

19
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Proof. We use recurrence to prove this lemma. In particular, assume

t
[Ye1] > é i (1 _ 1) ©9)

is true for all ¢ < k for some k, which guarantees that

| |>5\/? 1_it
Yol = 4\ 5 27

Then for ¢t = k£ + 1, we have

_ _ é pe
Yit+1,L = Yk, L — 16L gk 1,
and
_ 1) pE VJ_f Zk PE || ~ VJ_f Zk
< _ 10
s = =55 e+ e o ol 09
Since || f(z;)|| > % /72 by[Lemma 11l we have
0 fpell. V1 f(zk) pe || . pe g
16L 8kt TV f ()| '—16LV &k~ HVf \|"16LV -6¢?vﬁ

by [Theorem 1l Moreover, observe that
Vif(zr) = (V2f(0)zi) L + VLf(0) + (VLf(zr) = VLF(0) = (V£(0)zr) L)
= V2 f(0)zk,L + VLF(0) + (VLf(2k) = VLF(0) = (V2f(0)zk)1),  (1D)
where the norm of
ok =V if(z) = VLF(0) = (V2f(0)zx) L
is upper bounded by

2 256n7 - 128n.7 — 16

2 1/4 1/4
prt L 7or(pe)t/*\/L - 7or(pe)t/*\/L < or [mpe

given that f is p-Hessian Lipschitz and ||V £(0)|| < 3%/™2%. Next, we proceed to bound the first
term on the RHS of (I0), where

oo~ O fpe Nuflz) o0 WEEgEQ
T 1LV n [V f(z)ll ~16L IV f(z)|l
6 [pe V2f(0)zg, 1 0 [pe Ok, L
=Yl = 6V TV ol 16LV 7

16L IVf(z)|  16L IV f(ze)ll”
where
V2F(0)ze L =Y Ailze s, widw; =1 Y Ailyr 1w,
i=2 =2
and
§ [pe V2f(0)zs ~ ( rd peA)
- A Ak S 1-—— , W)U
Vel = 6L\ Vi) 2\ 6T AGea] SL
Given that
ré PENi
1< — <
T 16V (ze)| Vo n L T
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is always true, we have

‘ 1) pPE sz(O)Zk’J_

YL T 6L 0 V()|

- répe
2 (1 * 16|Vf<zk>wﬁ) i, Lo s

=2

<<1+ rope )yun
<\ V@i ) P

T5p6 ) H (5 O'kJ_ H
1+ +
’ ( 61V @)L ) e va V@l

< (1+ ol ) Insll + e
=\ T 160V @) [ Lya) T g

and
i \F VS ()
T~ 16L IV f(zx)ll

Combined with (I0)), we can derive that

_ 6 [pe Vif(zk) \/E 5 Vif(z)
) B Vi f(zr) 12
[NZS [ ‘yxu 16L\/> IV f(zn)| H 16L Nz
rope )
<(1+ T B
= < 16[|V f (z)[[ Lv/n 329‘ vn "
Similarly, we have
_ o Vif(zx) \/7 - Vif(ze)
e _ 14
[Ukt1,1] > |Yk,1 16L\/7 IVf| | 16L Ik 1 IV f(z) o

where the second term on the RHS of (I4)) satisfies

R Vi f(zx) < 9 ey Vf(zr) pe J
=160V n |IBF T V@) 16L _64§f

0 Jpel. Vaf(zk)
162V n |7 T V)]

by whereas the first term on the RHS of (T4) satisfies
Yot — 5\/? Vif(zi) e — 5 [pe ulVf(O)wiys, 9§ \F Ok,1
T 16L IVf(oll 7 16L IV f(z)|l 16L IV f(z)|l
B rdpe 1) \/E Ok 1
- ( 16||Vf<zk>||Lf> ML V@Ol
where the absolute value of

or1 = Vif(zr) — Vif(0) — (V2£(0)zx):

is upper bounded by
pirz n 7or(pe)t/ 4L < 7or(pe)t/*\/L < or |mpe
2 256n7 - 128n.7 — 16
given that f is p-Hessian Lipschitz and

IVF(0)] < M
- 256nT ’
Combined with (14}, we can derive that
7 > 0 [pe Vif(zk) Vif(zr)
e T A AT eI 16L \/ I = I fa)

< ( n répe ) 6
- 16|V f(zr)|| Ly/1 323\/77
Combined with (I2)), we have

Y11l Yks1al

1V kr1,1 [Pk, Ll

rdp B
(1 * m) k| = 327 vn
- ____rdpe s
(1 + 16\|Vf(zk)\|L\/ﬁ> lye,ol + BTV

21



Under review as a conference paper at ICLR 2025

Hence, if [yx,1| > 3, (@) is also true for ¢ = k + 1. Otherwise, we have ||y, || > v/3/2 and

rdpe _
[Ykt1,1] (1 + 16\|Vf<zk>\|wﬁ) [Yr.1] 32%/5

HYkJrl,J_H

v

rdp )
+ e rS ) e Ll + 5t

rdpe 1
( SO 89‘) [Yk,1|

répe 1V YE,L
16\\Vf(zk>uLf+89) ..

k+1
> (1_1) Y1 ] > 77(1_1) _
(M| n 27
Thus, we can conclude that @) is true for all ¢ € [.7]. This completes the proof. O

Lemma 13. In the setting ofProblem @ for any i with \; > — Y25, the T -th iteration of{Algorithm 8|

satisfies

yral _ (o)

< 15)
lyza1l = 4v/nL
if lyo| > §/% and [VF(0)]| < 55 /7.
Proof. Forany t € .7 — 1], similar to (T4) in the proof of Cemma 12 we have
0 pe
Yt+1,0 = Yt,i — 16L gt 79
and
_ 6 [pe  Vif(zk) g Vif(zk)
il <Yt — 77 i 16
Gesdl < oei = L\ o T )] 16LV TNl | o

By[LCemma 121 we have |y;,1| > 3./% for each ¢ € [.7], which combined with Lemma 11l leads to
IV f(z¢) H > 9. /TP Thus, the second term on the RHS of (I6) satisfies

5\/EA_W(Zt) <6\/EA vat \/7 1/4\/7
6LV w | T N ol | = T6LV n |8 T VAl = 16L 1287n

by [Theorem 1l Moreover, the first term on the RHS of (I6) satisfies

8 fpe Vif(m) & [pe u/VP(O)wy, & [pe oy,
YT T6L\ V() YT 16L IV f ()] 162V n V()]

<(1+ "5P6 ) 0 fpe  oni
=\ T B2V )LV ) P T 6L n N (o]
where the absolute value of

o= Vif(z) — Vif(0) — (V2 f(0)z);
is upper bounded by

ﬁ L 7or(pe)t/*V/L < 7or(pe)t/*V/L
2 256nT - 128n7
given that f is p-Hessian Lipschitz and
IVf(0)] <

Combined with (T8)), we can derive that

) pe f(ze) pe
Yti — —
16LV n HVf(zt I 16L V n

< 1+L | |+ o)/
=\ RV @)LV ) 649

7or(pe) /L
256n.7

|Te+1,5] < Jti —

IIVf ||’

a
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Considering that |y, 1| > g\/g,
N 5\/E. Vif(z) | _
Y17 6L\ 7 V(20|

rdpe
. <1 * 16||Vf<zt>||wﬁ>

. Vif(z:)

0 pe
6LV n |7 T V()|
R
649n \ L
rdpe )
> 1+ ==
( 24|V f(2¢)|| L\/n

where the last inequality is due to the fact that |y 1| > %\/g by [Lemma 12l Hence, for any ¢ €
[7 — 1] we have

[Te+1,1] >

Werral _ G414l
e+11]

(1 + i) vl + & V3
(1 + MHW@%) [Ye,1]

- (1 + mrresrees) el (e

" (U S bl 87VRE
rdpe lyeil | (pe)'/*

< (1= + :
( 192||Vf(Zt)IL\/ﬁ) lyeal  87VnL
Since f is L-smooth, we have

IVF(z)ll < IVFO)[l + Lijz|| < 2L,

IN

which leads to

Y41, < <1_ rdpe > |y, i (pe)'/*
wenal =\ 192[V fz)l Ly N
. 1/4
< (1_ 5p26 )yt,z| L )
384L%\/n ) |ytal 87 V/nL
Thus,
T 7 1/4 T—t
EX <(1_ dpe ) [v0,i +Z (pe) 1 dpe )
ly7al = 384L%/n ) yoal 4 67vnL 384L%\/n
- (1_ ope )'“" voil , (0 _ (p0)'*
B 384L2\/n ) lyoal  8/nL ~ 4v/nL '

Equipped with[Cemma 13| we are now ready to prove [Lemma 10

Proof ofILemma 10| We consider the case where |yo 1| > %\/f , which happens with probability

n—2
Pr SOl 8 fm WlSTE) s
2V n 2V n Vol(§*1)

In this case, by Cemma 13 we have

2 n ) 2 -1 —\ —1
ol = st 1+Z< 7 ) > (” pe) s VP
Zz’:l |y il =2 lyo 1l 16L 8L
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and

NG

||y<7,i_||2 =1- |yk7,1|2 < 8L
Let s be the smallest integer such that A; > 0. Then the output € = y & of satisfies
e’ Vif(x)é = |yzi[*u] VZf(x)u; + y},LVQf(X)yy,L

d
< —vpe-lyzalP+ LY llyzill?
pe
< vzl + Ly al? <~
The query complexity of only comes from the gradient direction estimation step in
[Cine 4] which equals
R L2 3/2 L
Q-O(nlog(n,/(S)) =0 n log? n .
dpe d\/pe

C.2.2 NEGATIVE CURVATURE FINDING WHEN THE GRADIENT IS RELATIVELY LARGE

In this part, we present our negative curvature finding algorithm that finds the negative curvature of
a point x with Apin (V2 f(x)) < —/p€ when the norm of the gradient V f(x) is relatively large.

Algorithm 9: Comparison-based Negative Curvature Finding 2 (Comparison-NCF2)

Input: Function f: R® — R, x, precision e, error probability §

384L%/n 36nL ¢ 1 L wér(pe)/*VL 5 /T
T dpe 10g N 0 87 (pe)t/2\/ > Tx 256N Yy g\/%
yo < Uniform(S™"~1)

sfort=0,...,7 —1do

N

o w

;N

—

g: «+Comparison-Hessian—-Vector(X,yy, 5,7x,7y)
Yir1 <Yt — w%\/%Tét
yi+1 < Yert/|[yesall

return é < yo

The subroutine Comparison-Hessian-Vector in [Lined| of Zélgorlthm 9 is given as
whose output approximates the Hessian-vector product V* f(x) - y+.

Algorithm 10: Comparison-based Hessian-vector product (Comparison-Hessian-Vector)

Input: Function f: R” — R, x,y € R, precision 4, lower bound 7, on ||V f(x)|, lower
bound ~yy, on |y |

Ix Vv ’Yx(§ ’ng\/g}

TIx
T00L > T00p° 20,/p° 20v/p

Set g < min {

2 2
go < Comparison-GDE(X, ’;7—0, Vx), &1 «—Comparison-GDE(x + roy, /Z—O,'yx/2),

2
g1 «Comparison-GDE(x — roy, 52, 7x/2)

3 Setg=+/1—(& 1,80)%81 — /1 —(81,80)%8 1

IS

return g = g/||g||

Lemma 14. In the setting of[Problem 4 for any x,y € R satisfying
VI = Amin(V2F(X) < =voe,  yll=1, [51] =,

outputs a vector g satisfying
2 . N
L Y
IV2f(x) -yl

using O(n log (anQ/’yxvf,eSQ)) queries.
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Proof ofILemma 14 Since f is a p-Hessian Lipschitz function,

V£ Ge+ r0y) = V() = 1oV I (x) -y | < Er: a7
1756 = r0y) = V(x) + 10V2f () -y | < E13. (18)
Therefore,
IVF(x +r0y) + Vf(x = roy) = 2V f(x)|| < pr; (19)
927605 = g (V7Gx ) = 97— )| < o 20
Furthermore, because ry < ﬁ and f is L-smooth,
IVF G+ roy) [ V£ =m0yl 2 9 = L 1o = 0.9
We first understand how to approximate V2f(x) - y by normalized vectors

Vf(x) V f(x+r0y) Vf(x=roy)
IVFGON IV Fetroy)ll? IV F(x=roy)ll°
£€0,81,8 1, respectlvely By[Lemma 7| we have

[Vf(x) = roV*f(x) -y

2||Vf I - ([T, i >2
(TS oo

IVf(x) +roV2f(x) -y

2va i Vf(x) roV2i(x)y  VI(x) >2
\Vf(x —roV2f(z)yll? V&)

and then analyze the approximation error due to using

=: q, 21

i.e., we denote the value above as . Because f is p-Hessian Lipschitz, ||roV2f(x) - y|| < rop.

Since ro < 757, [roV? f(x) - y|| < {5. Also note that by Lemma 6 we have

Vi) +roV2i(x) y Vi) VI(x) =1V (x) -y V()
(7ot v o) 22 (IS0 reweo T To7oaT) = 22

This promises that

0.99
a> — > 1. 22
T 2v/1-0.942 — @2)

In arguments next, we say a vector u is d-close to a vector v if |ju — v|| < d. We prove that the
vector

L VI ¢1_< Vix-roy)  Vf(x) > VF(x + 10y)
Vi — o) IV FGOI/ TV Fx + roy)]

S ATE]]
Cy_/ Vixtrey) VI \® VE(x = roy)
\/1 (T o) ||Vf<x—roy>|> @)

2
is 75 :0 -close to a vector proportional to V f(x + rgy). This is because (I7), (I8), and
imply that

ViGctroy) o VHG0 40T -y
IVf(x+roy) [Vf(x)+7roV2f(x) -yl
are O-g:ﬁvx -close to each other,
%_ < Vix—roy) VI(x) > VS (x+roy) o
IVFx=roy)I" IV / IV F(x+roy)ll
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is proportional to V f(x + 79y ), and the definition of « implies

V(%) _a¢1_< V) +roVix)y Vi) > VI(x) = 10V f(x) -y
ViG] V760 +roV2 i) -y IVIGN /) TV F(x) = roV2f(x) -yl
VI() + 1oV f(x) -y

— . 25
NI )

The above vector is £ e -close to % by (D:ZI), and the error in above steps cumulates by at

Lemmad b £ra < T
most099 using [Lemm Intotal0997 + 5 < 55

2
Furthermore, this vector proportional to V f(x + roy) that is 772 -close to (23) has norm at least

(1—-0.01)/2 = 0.495 because the coefficient in 24) is positive, while in the equality above we have
[roV? f(x) - y|| < 15 Therefore, applying[Cemma 3| the vector g; in (23) satisfies

Vf(x+roy) H < 29013 26)

H”gl” IV f(x+roy)ll

Following the same proof, we can prove that the vector

IC N ( \/1_ < Vix—ry) Vi) > Vf(x +roy)
[

g1 = V() [Vf(x—7roy)ll” IVF(x) [V f(x+roy)ll
_ \/1 (Yt Vi) >2 Vi=ry) \ oy
IV +roy)| IV (IVF(x—roy)ll
satisfies

/LS PE N
H el Vi —ronl|| = 29

Furthermore, (23) implies that g1 — g_1is 2 - 75—13 = 1‘;L:g—close to

Vix)+roVif(x)-y Vf(x)—roV2f(x)-y o 2

_ = \V4 -y, 29
e IIES] orcon ¥ Sy @

Because Amin (V2 f(x)) < —y/p€ and |y1] > 7y, [|[V2f(x) - y|| > \/peyy. Therefore, the RHS of
(29) has norm at least mvﬂ, and by Cemma 3l we have

g V2f(x) - 14pr2 o 147
Hn e H po/ofy_ P G

VR -yl ™ Vew

Finally, by [Theorem 1] and our choice of the precision parameter, the error coming from running
Comparison—GDE is:

Go — H Vf(x+roy) - Vf(x—roy) H<P7”(2) 31)
|Vf )|l IVF(x +roy) IV f(x = roy)]
Combined with 26) and 28], we know that the vector g we obtained in[Algorithm 10]is
29pr¢ " 2901t 43, ﬁ _ 61prd (32)
Tx Tx Tx Tx
close to (g1 — §—1)/2a. Since a > 1 by @2), bywe have
< o 1
I te—el = 5 @
el lI&1 — &1
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In total, all the errors we have accumulated are (30) and (33):

H V2f(x H 61p7“0 141"0\/5
lsl — 1V2f(x YH G

: _ : Ix o Ix NV ’Yx(S ’Yy‘;\[ 1 Iy
Our selection of ryp = min { T00L* T00p° 20,/ 20yp ( S0 guarantee that (34)) is at most 6.

(34)

In terms of query complexity, we made 3 calls to Comparison-GDE. By [Theorem 1land that our
precision is

g 0 YxVa€0?

Y pL? )’

the total query complexity is O (n log (an2 / fyx'yf, € 2) ) O

Based on[Cemma 14] we obtain the following result.
Lemma 15. In the setting of[Problem 4) for any x satisfying

w T 5
> — . < —
V) > L (2567%7) \/;7 Amin (V= f (%)) < —/pe,
[Algorithm 9 outputs a unit vector & satisfying
e V2 f(x)é < —/pe/4,

with success probability at least 1 — 6 using
2 3/2 L
O " log? n
dpe d./pe

The proof of [Lemma 15]is similar to the proof of [Lemma [0l Without loss of generality we assume
x = 0 by shifting R™ such that x is mapped to 0. We denote g; := V2 f(0) - y; for each iteration

7] of Algorthim )
Lemma 16. In the setting of[Problem 4 for any iteration t € 7] of[Algorithm 9 we have

6 |m
>_. /2
lyea| > 8\/; (35)

iflyon| = §+/7 and [VF(0)]| < 55/7F%.

queries.

Proof. We use recurrence to prove this lemma. In particular, assume
5 1Y\
lyecll =2V n 27
is true for all ¢ < k for some k, which guarantees that
0 |m 1\*
>/ —(1-=
|yt,1|_4\/;< 29>
_ _ o [pe
Ye+1,L = Yk,L — 6L "8k, 1,

o [pe gk 1 o [pe
R Ty e o T A s

27

Then for ¢t = k + 1, we have

and

- 8k, L
8k, 1 —
&l

(37

1Fe+1, 0l < ‘
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where

i pe gk, L <5\/E & \/E<5
16L el =162V 7 |8 Hng = 16 647 /i

by Cemma 14l Next, we proceed to bound the first term on the RHS of (37)). Note that

8k, 1 — k —

gr1 = V2f(0)yr L = Z i (Y, 1, w)ug,
i—2

5 [pe gr. - ( 5 pe)\ )
_ - [ — = 1— , Ug)Uy,
YeL =360V 0 gl 2 161l kL)

=2

and

where

0 |m
Hng > |gk,1| > \//T€|yk,1| > sV
Consequently, we have
IR (.
16]|gx [ V 7 L
which leads to

‘YkJ__é [PE 8k, L
161 llgk | pa

dpe )
< |1+ ye,L]-
( 16|gx||Lv/n
Combined with (37)), we can derive that
. 8k, L

oo — O [Pe 8RO fpells
T 16L YV no gkl 6LV n |77 (gl
5/)6 §
< _— . 39

Uk J PE  Jk,1
17 227\ 7
6LV n gkl

) pe
— A — |9k1 T |
6LV n |70 el
where the second term on the RHS of (0) satisfies
) pE | . k1

—— /= | < 5\/'06 & — \/*<L
16L\ n 7% Jigkll| ~ 16L \gku = T6L = 647’
by[Cemma 14l Combined with @0Q)), we can derive that

Vi=1,...,n,

- Spe )
]. -l— T ——— 7lli u;
Z( Tolge [T ) Vet

(38)

¥ k41, < ‘

Similarly, we have

A 9k

|Tkt1,1] > (40)

|Ukt1,1] > yk1—5\/ﬁ' k1 —i\/ﬁ §k1—7gk’1
ST 6LV o lgkll| 6LV [T [lgkll
> (14— % _ 0
16]ge| LV 647/
Consequently,
|Yk+1.1] _ |Yrt1,1]
Ikt (¥l

9
(1 + 16T ] |Lf> k1l — g1z m
— 6 .
(1 + wngknLI) 1y, L1l + g5 m
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Thus, if |yy,1| > 5., (B6) is also true for t = k + 1. Otherwise, we have [lyj, . || > v/3/2 and

S pe o o)
[ZESRIINS (” wqu‘(zk)uL\/ﬁ) el — g7 gm

> 5 5
(NS (1 + m) Iyl + g7

1
N (1 16HngLf ) Iyl
) kLl

(1 + Terediys T
k+1
>(1_1) ly.1] > w<1_1>*
o lye, .|| n 27

Thus, we can conclude that (36) is true for all ¢ € [7]. This completes the proof.

Lemma 17. In the setting of[Problem 4) for any i with \; > —

satisfies
_ 1/4
vzl _ () an
ly7 1l 4v/nL

if lyo| > %\/§

Proof. Foranyt € [ — 1], similar to @0) in the proof of [Lemma 16| we have

o 1) pe
Yt+1,0 = Yt,i — 16L “ Gt
and
_ o PE Gt o PE | Gt
[Get1il < |Yti — w2\ T | T T Jti— 0| 42)
6LV n gl 16L gl
where the second term on the RHS of #@2) satisfies
1) €| i 1) e |l 1/4
9 /pe G — 9ti <= pe & — 8t < <
6L\ n leg| =162V 7 Teell 16L 12&%1
by [Cemma 14l Moreover, the first term on the RHS of (#2) satisfies
) € i ) € uTV2 0 W; Yt i dpe
g O fee o o 0 foe wIV2I(Ou <1+ﬂ>ym.,
6LV n gl 16L Y n gl 32||gel| Lv/n

Consequently, we have

dpe
|Gev1,4] < ( P ) |Yt,i
32||g¢l| Lv/n

Y1 o PE  Gt1
t,1 = T o1 -
6LV n [|g

dpe )
> 1+ Yt,
< 16||gt||L\f
Spe )
> (1+ ,
( eI AT

29

Meanwhile,

S(pe)/* [
1289 n \ L~
A gt,1

1) pE
‘umJn%J‘mt
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Ger1,1] >




Under review as a conference paper at ICLR 2025

where the last inequality is due to the fact that |y, 1| > 2./Z by Hence, for any ¢ €
[.7 — 1] we have

Yt s1,il _ Yt 11,i]
lyerral  Tev1al

§( pe)
(1 * szugtan) veil + Toszm VI
(1 + 24|\gf,uwﬁ) [Ye.1]

- (1 + wzs) v L e’
(1 + W) lyea| 8T VnL

(1 Y lns, o
192||g¢llLvn ) |yeal  8.7+nL

Since f is L-smooth, we have
lgell < +Llly:l < L,
which leads to
|Yt+1,i] < (1_ ope ) |Yt,i + (pe)*/*
lye+1,1] — 192||gil|Lv/n ) |yeal 87 nL
) 1/4
< (1_ 6/)26 ) |yt,l| + (pE) )
192L2\/n ) |y1|  87+/nL

Thus,

\yy,z‘|

(1 dpe ) 7 +Z (pe)t/4 (1 dpe >‘9—t
lyzal ~ 19202/} lyoa| = 4 67vnL 192L2\/n

T
(1_ Jpe ) lyoul , (p)!™ _ (pe)'
192L2\/n lvo,1l  8vnL ~ 4vnL

A

IN

Equipped with[Cemma 7] we are now ready to prove [Lemma 1]

Proof of ILemma T3] We consider the case where |yo 1| > %\/g , which happens with probability

(S T (5 T VOl(Sn_Q)
S KU R Y S C D I
Pr{yo,l 2 2\/;} =1 2\/; Vol(s71) = ! ’

In this case, by Cemma 17 we have

|y9 1|
lyzal’ = =——3 1+
Zz 1 ‘y Z

V) )

Yz, 1| 8L’
and
2 2 o VP
=1- < .
lyz. .l ly7al® < 7
Let s be the smallest integer such that A; > 0. Then the output & = y 7 of satisfies

&'V f(x)e = |ys[*u V2 f(x)u +y5 V2 f(x)ys,L

d
—Vpe-lyzal® + LZ ly 7.l

=5

—vpe-lyzal’ + Lilyz |I> < -

IN

IA

~[%
e
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The query complexity of only comes from the Hessian-vector product estimation step
in[Cine 4l which equals

L*n®2  , nL >

T - O(nlog (an2/'yxfy§,a§2)) =0 ( 7 og N

C.3 PROOF OF[LEMMA 4]
Proof. By[Lemma 10l and [Lemma T3] at least one of the two unit vectors vy, v is a negative cur-

vature direction. Quantitatively, with probability at least 1 — 4, at least one of the following two
inequalities is true:

€ €
VITVQf(Z)Vl < —%T'F, V2TV2f(z)V2 < _%Tp»'

WLOG we assume the first inequality is true. Denote n = %\/% . Given that f is p-Hessian Lipschitz,

we have
f(z1) < (2) + (T F(z), v1) + / ! ( / ' (\/f N pb) db> da
= 1) + (V@) - [
and
flar) < £(2) — (Y F(@).v1) + / ! ( Oa (—Vf N pb> db) da
= £(@) - n(V(2).v1) — 418\5
Hence,
f(zrs) + flz1) E
+ 9 = f(Z) - @ ;7

which leads to

f(Zowt) < min{f(z14), f(z1,-)} < f(z) — 418\/5

By[Cemma 10/and [Cemma 131 the query complexity of equals

2,3/2
0 L*n log? nL .
dpe 0./pe

C.4 ESCAPE FROM SADDLE POINT VIA NEGATIVE CURVATURE FINDING

Lemma 18. In the setting of [IProblem 4\ if the iterations X o, . . . , Xs, 7 of[Algorithm 3| satisfy
1 /e
X - f(x > ——/—
f( 3,9) f( 5,0)_ 48 p7
; 3L
then the number of e-FOSP among X9, . . . ,Xs 7 is at least T — 2 pe
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Proof. For any iteration ¢ € 7] with ||V f(xs¢)|| > €, bymwe have

g vf Xst
IV (xs)ll

indicating
f&sjt1) = f(xst) < f(¥s) = [ (%)

L
S <vf(xs,t)axs,t+1 - Xs,t> + §||Xs,t+1 - Xs,t||2

< ,L<Vf(xs,t), &) + = (L)Q

3L
€2 2¢2
<~ TSI — ) + 1oy < — o

That is to say, for any ¢ € [7] such that Xs,¢ 1s not an e-FOSP, the function value will decrease at
2 . . . . .
least %LL in this iteration. Moreover, given that

f(Xs,tJ,-l) = min{f(xs,t)7 f(YS,t)} < f(xs,t)

and
1 /e
f(xs0) = f(xs,7) < 18 ;7
we can conclude that the number of e-FOSP among x; 1, ..., X, & is at least
1 [e¢ 9L 7 3L
48\ p 2e2 32,/pe
O
Lemma 19. In the setting of [Problem @ if there are less than & T €-SOSP among the iterations
Xs,05 - - - s Xs, 7 Of[Algorithm 3] with probability at least 1 — (1 — p(1 — 5))§/ ® we have

63
Flkor10) — Flxs0) < -;\ﬁ.

Proof. If f(x5,7) — [(Xs0) < — 45 \/7 we directly have
f(Xsr1,0) = f(Xs0) = mln{f(xs,o), v f(Xs,7)s f(xls,0)7 R f(Xls,y)} — f(xs,0)

€3
< f(xs,7) — f(xs0) < _418\/7

Hence, we only need to prove the case with f(xs11,0) — f(Xs,0) > — 51 / , where by [Cemma 18]

the number of e-FOSP among X 0, ..., X, o is at least 7 — 32W Smce there are less than 85
€-SOSP among the iterations X o, . . ., X, 7, there exists
3L &7 T

C320pe 9 “ 18

different values of ¢ € [.7] such that

va(XS,t)” S €, Amin(vzf(x)) S —\/p?.

For each such ¢, with probability p the subroutine Comparison-NCD is executed in
this iteration. Conditioned on that, with probability at least 1 — ¢ its output x{ , satisfies

1 3
f(x‘/s,t) - f(Xs,t) < 48\/5
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by[Cemma 4l Hence, with probability at least
L= (1=p(1-8)7 /",
there exists a t’ € [.7] with

which leads to

f(Xerl,O) - f(xs,O) = min{f(xs,o); R f(xs,.7)’ f(xls 0)7 R f(xls,ﬂ)} - f(xs,O)

s

1 /e

< f(xls,t') — [(xsr) < T ;’

where the second inequality is due to the fact that f(xs4) < (Xs,0) for any possible value of ¢’ in

s

(7). O

Proof of Theorem 3l We assume for any s = 1,...,S with X4 0, . .., Xs 7 containing less than %
e-SOSP we have

63
FGxasn0) = Fxe0) < — 2 <.

Given that there are at most S different values of s, by [CLemma 19} the probability of this assumption
being true is at least

(1—(1—p(1—4)7/1%)° > S 43)

Moreover, given that
S
Z f(xs41,0) = f(X5,0) = f(xs+1,0) — f(0) = f* = f(0) = —A
s=1

there are at least %S different values of s = 1,...,S with

63
f(Xs110) = f(xs0) < _418\/:’

as we have f(xs+1,0) < f(xs,0) for any s. Hence, in this case the proportion of e-SOSP among all
the iterations is at least

ST 4
8 _ 2

Combined with (3], the overall success probability of outputting an e-SOSP is at least % X g =3

The query complexity of [ATgorithm 3| comes from both the gradient estimation step in and

the negative curvature descent step in| By [Theorem 1l the query complexity of the first part
equals

AL2n3/2

whereas the expected query complexity of the second part equals
L*n3/%2  , nlL AL*n?? 4 nL
soe 0" 75 ) = © (G o8 )
Hence, the overall query complexity of equals
AL*n3/? 4 nL

Sﬂp-O(
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