
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

Under review as a conference paper at ICLR 2025

COMPARISONS ARE ALL YOU NEED FOR

OPTIMIZING SMOOTH FUNCTIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

When optimizing machine learning models, there are various scenarios where gra-
dient computations are challenging or even infeasible. Furthermore, in reinforce-
ment learning (RL), preference-based RL that only compares between options has
wide applications, including reinforcement learning with human feedback in large
language models. In this paper, we systematically study optimization of a smooth
function f : Rn → R only assuming an oracle that compares function values at
two points and tells which is larger. When f is convex, we give two algorithms

using Õ(n/ǫ) and Õ(n2) comparison queries to find an ǫ-optimal solution, respec-

tively. When f is nonconvex, our algorithm uses Õ(n/ǫ2) comparison queries to
find an ǫ-approximate stationary point. All these results match the best-known
zeroth-order algorithms with function evaluation queries in n dependence, thus
suggesting that comparisons are all you need for optimizing smooth functions us-
ing derivative-free methods. In addition, we also give an algorithm for escaping
saddle points and reaching an ǫ-second order stationary point of a nonconvex f ,

using Õ(n1.5/ǫ2.5) comparison queries.

1 INTRODUCTION

Optimization is pivotal in the realm of machine learning. For instance, advancements in stochas-
tic gradient descent (SGD) such as ADAM (Kingma & Ba, 2015), Adagrad (Duchi et al., 2011),
etc., serve as foundational methods for the training of deep neural networks. However, there exist
scenarios where gradient computations are challenging or even infeasible, such as black-box adver-
sarial attack on neural networks (Papernot et al., 2017; Madry et al., 2018; Chen et al., 2017) and
policy search in reinforcement learning (Salimans et al., 2017; Choromanski et al., 2018). Conse-
quently, zeroth-order optimization methods with function evaluations have gained prominence, with
provable guarantee for convex optimization (Duchi et al., 2015; Nesterov & Spokoiny, 2017) and
nonconvex optimization (Ghadimi & Lan, 2013; Fang et al., 2018; Jin et al., 2018a; Ji et al., 2019;
Zhang et al., 2022; Vlatakis-Gkaragkounis et al., 2019; Balasubramanian & Ghadimi, 2022).

Furthermore, optimization for machine learning has been recently soliciting for even less informa-
tion. For instance, it is known that taking only signs of gradient descents still enjoy good perfor-
mance (Liu et al., 2019; Li et al., 2023; Bernstein et al., 2018). Moreover, in the breakthrough of
large language models (LLMs), reinforcement learning from human feedback (RLHF) played an
important rule in training these LLMs, especially GPTs by OpenAI (Ouyang et al., 2022). Com-
pared to standard RL that applies function evaluation for rewards, RLHF is preference-based RL
that only compares between options and tells which is better. There is emerging research interest
in preference-based RL, where various works have established provable guarantees for learning a
near-optimal policy from preference feedback (Chen et al., 2022; Saha et al., 2023; Novoseller et al.,
2020; Xu et al., 2020; Zhu et al., 2023; Tang et al., 2023). Furthermore, Wang et al. (2023) proved
that for a wide range of preference models, preference-based RL can be solved with small or no
extra costs compared to those of standard reward-based RL.

In this paper, we systematically study optimization of smooth functions using comparisons. Specif-

ically, for a function f : Rn → R, we define the comparison oracle of f as OComp
f : Rn × R

n →

1

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

Under review as a conference paper at ICLR 2025

{−1, 1} such that

OComp
f (x,y) =

{

1 if f(x) ≥ f(y)

−1 if f(x) ≤ f(y)
. (1)

(When f(x) = f(y), outputting either 1 or −1 is okay.) We consider an L-smooth function
f : Rn → R, defined as

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ ∀x,y ∈ R
n.

Furthermore, we say f is ρ-Hessian Lipschitz if

‖∇2f(x)−∇2f(y)‖ ≤ ρ‖x− y‖ ∀x,y ∈ R
n.

In terms of the goal of optimization, we define:

• x ∈ R
n is an ǫ-optimal point if f(x) ≤ f∗ + ǫ, where f∗ := infx f(x).

• x ∈ R
n is an ǫ-first-order stationary point (ǫ-FOSP) if ‖∇f(x)‖ ≤ ǫ.

• x ∈ R
n is an ǫ-second-order stationary point (ǫ-SOSP) if ‖∇f(x)‖ ≤ ǫ and λmin(∇2f(x)) ≥

−√ρǫ.1

Our main results can be listed as follows:

• For an L-smooth convex f , Theorem 2 finds an ǫ-optimal point in O(nL/ǫlog(nL/ǫ)) compar-
isons.

• For an L-smooth convex f , Theorem 3 finds an ǫ-optimal point in O(n2 log(nL/ǫ)) comparisons.

• For an L-smooth f , Theorem 4 finds an ǫ-FOSP using O(Ln log n/ǫ2) comparisons.

• For an L-smooth, ρ-Hessian Lipschitz f , Theorem 5 finds an ǫ-SOSP in Õ(n1.5/ǫ2.5) compar-
isons.

Intuitively, our results can be described as comparisons are all you need for derivative-free meth-
ods: For finding an approximate minimum of a convex function, the state-of-the-art zeroth-order
methods with full function evaluations have query complexities O(n/

√
ǫ) (Nesterov & Spokoiny,

2017) or Õ(n2) (Lee et al., 2018), which are matched in n by our Theorem 2 and Theorem 3 using
comparisons, respectively. For finding an approximate stationary point of a nonconvex function,
the state-of-the-art zeroth-order result has query complexity O(n/ǫ2) (Fang et al., 2018), which is
matched by our Theorem 4 up to a logarithmic factor. In other words, in derivative-free scenarios for
optimizing smooth functions, function values per se are unimportant but their comparisons, which
indicate the direction that the function decreases.

Among the literature for derivative-free optimization methods (Larson et al., 2019), direct search
methods by Kolda et al. (2003) proceed by comparing function values, including the directional di-
rect search method (Audet & Dennis Jr, 2006) and the Nelder-Mead method (Nelder & Mead, 1965)
as examples. However, the directional direct search method does not have a known rate of conver-
gence, meanwhile the Nelson-Mead method may fail to converge to a stationary point for smooth
functions (Dennis & Torczon, 1991). As far as we know, the most relevant result is by Bergou et al.
(2020), which proposed the stochastic three points (STP) method and found an ǫ-optimal point of

a convex function and an ǫ-FOSP of a nonconvex function in Õ(n/ǫ) and Õ(n/ǫ2) comparisons,
respectively. STP also has a version with momentum (Gorbunov et al., 2020). Our Theorem 2
and Theorem 4 can be seen as rediscoveries of these results using different methods. In addition,

literature on dueling convex optimization also achieves Õ(n/ǫ) for finding an ǫ-optimal point of
a convex function (Saha et al., 2021; 2022). However, for comparison-based convex optimization
with poly(log 1/ǫ) dependence, Jamieson et al. (2012) achieved this for strongly convex functions,

and the state-of-the-art result for general convex optimization by Karabag et al. (2021) takes Õ(n4)

comparison queries. Their algorithm applies the ellipsoid method, which has Õ(n2) iterations and

each iteration takes Õ(n2) comparisons to construct the ellipsoid. This Õ(n4) bound is noticeably
worse than our Theorem 3. As far as we know, our Theorem 5 is the first provable guarantee for
finding an ǫ-SOSP of a nonconvex function by comparisons.

1This is a standard definition among nonconvex optimization literature for escaping saddle points and reach-
ing approximate second-order stationary points, see for instance (Nesterov & Polyak, 2006; Curtis et al., 2017;
Agarwal et al., 2017; Carmon et al., 2018; Jin et al., 2018b; Allen-Zhu & Li, 2018; Xu et al., 2018; Zhang et al.,
2022; Zhang & Gu, 2023).

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Under review as a conference paper at ICLR 2025

Techniques. Our first technical contribution is Theorem 1, which for a point x estimates the direc-
tion of ∇f(x) within precision δ. This is achieved by Algorithm 2, named as Comparison-GDE
(GDE is the acronym for gradient direction estimation). It is built upon a directional preference
subroutine (Algorithm 1), which inputs a unit vector v ∈ R

n and a precision parameter ∆ > 0, and
outputs whether 〈∇f(x),v〉 ≥ −∆ or 〈∇f(x),v〉 ≤ ∆ using the value of the comparison oracle

for OComp
f (x+ 2∆

L v,x). Comparison-GDE then has three phases:

• First, it sets v to be all standard basis directions ei to determine the signs of all∇if(x) (up to ∆).

• It then sets v as 1√
2
(ei− ej), which can determine whether |∇if(x)| or |∇jf(x)| is larger (up to

∆). Start with e1 and e2 and keep iterating to find the i∗ with the largest | ∂
∂i∗∇f(x)| (up to ∆).

• Finally, for each i 6= i∗, It then sets v to have form 1√
1+α2

i

(αiei∗ − ei) and applies binary search

to find the value for αi such that αi|∇i∗f(x)| equals to |∇if(x)| up to enough precision.

Comparison-GDE outputs α/‖α‖ for GDE, where α = (α1, . . . , αn)
⊤. It in total uses

O(n log(n/δ)) comparison queries, with the main cost coming from binary searches in the last
step (the first two steps both take ≤ n comparisons).

We then leverage Comparison-GDE for solving various optimization problems. In convex op-
timization, we develop two algorithms that find an ǫ-optimal point separately in Section 3.1 and
Section 3.2. Our first algorithm is a specialization of the adaptive version of normalized gradient
descent (NGD) introduced in Levy (2017), where we replace the normalized gradient query in their
algorithm by Comparison-GDE. It is a natural choice to apply gradient estimation to normalized
gradient descent, given that the comparison model only allows us to estimate the gradient direction
without providing information about its norm. Note that Bergou et al. (2020) also discussed NGD,
but their algorithm using NGD still needs the full gradient and cannot be directly implemented by
comparisons. Our second algorithm builds upon the framework of cutting plane methods, where we
show that the output of Comparison-GDE is a valid separation oracle, as long as it is accurate
enough. Moreover, we note that Cai et al. (2022) also studied gradient estimation by comparisons

and combined that with inexact NGD, but their complexity Õ(d/ǫ1.5) is suboptimal compared to
ours.

In nonconvex optimization, we develop two algorithms that find an ǫ-FOSP and an ǫ-SOSP, respec-
tively, in Section 4.1 and Section 4.2. Our algorithm for finding an ǫ-FOSP is a specialization of the
NGD algorithm, where the normalized gradient is given by Comparison-GDE. Our algorithm for
finding an ǫ-SOSP uses a similar approach as corresponding first-order methods by Allen-Zhu & Li
(2018); Xu et al. (2018) and proceeds in rounds, where we alternately apply NGD and negative cur-
vature descent to ensure that the function value will have a large decrease if more than 1/9 of the
iterations in this round are not ǫ-SOSP. The normalized gradient descent part is essentially the same
as our algorithm for ǫ-FOSP in Section 4.1. The negative curvature descent part with comparison
information, however, is much more technically involved. In particular, previous first-order methods
(Allen-Zhu & Li, 2018; Xu et al., 2018; Zhang & Li, 2021) all contains a subroutine that can find a
negative curvature direction near a saddle point x with λmin(∇2f(x) ≤ −√ρǫ). One crucial step

in this subroutine is to approximate the Hessian-vector product ∇2f(x) · y for some unit vector
y ∈ R

n by taking the difference between ∇f(x + ry) and ∇f(x), where r is a very small pa-
rameter. However, this is infeasible in the comparison model which only allows us to estimate the
gradient direction without providing information about its norm. Instead, we find the directions of
∇f(x), ∇f(x+ ry), and ∇f(x− ry) by Comparison-GDE, and we determine the direction of
∇f(x + ry) − f(y) using the fact that its intersection with ∇f(x) and ∇f(x + ry) as well as its
intersection with∇f(x) and ∇f(x− ry) give two segments of same length (see Figure 1).

Open questions. Our work leaves several natural directions for future investigation:

• Can we give comparison-based optimization algorithms based on accelerated gradient descent
(AGD) methods? This is challenging because AGD requires carefully chosen step sizes, but
with comparisons we can only learn gradient directions but not the norm of gradients. This
is also the main reason why the 1/ǫ dependence in our Theorem 2 and Theorem 5 are worse
than Nesterov & Spokoiny (2017) and Zhang & Gu (2023) with evaluations in their respective
settings.

3

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

Under review as a conference paper at ICLR 2025

Figure 1: The intuition of Algorithm 10 for computing Hessian-vector products using gradient directions.

x

∇f(x+ry)
‖∇f(x+ry)‖

∇f(x−ry)
‖∇f(x−ry)‖

∇f(x)
‖∇f(x)‖

direction of ∇2f(x) · y

• Can we improve our result for finding second-order stationary points in nonconvex optimiza-
tion? Compared to gradient-based methods that choose the step size in negative curvature find-
ing (Allen-Zhu & Li, 2018; Xu et al., 2018), our comparison-based perturbed normalized gradient
descent (Algorithm 5) can only utilize gradient directions but have no information about gradient

norms, resulting in a fixed and conservative step size and in total Õ(
√
n/ǫ) iterations.

• Can we apply our algorithms to machine learning? Tang et al. (2023) made attempts on preference-
based RL, and it is worth further exploring whether we can prove more theoretical results
for preference-based RL and other machine learning settings. It would be also of general in-
terest to see if our results can provide theoretical justification for quantization in neural net-
works (Gholami et al., 2022).

Notations. We use bold letters, e.g., x, y, to denote vectors and capital letters, e.g., A, B, to
denote matrices. We use ‖ · ‖ to denote the Euclidean norm (ℓ2-norm) and denote Sn−1 to be the
n-dimensional sphere with radius 1, i.e., Sn−1 := {x ∈ R

n : ‖x‖ = 1}. We denote BR(x) := {y ∈
R

n : ‖y − x‖ ≤ R} and [T] := {0, 1, . . . , T}. For a convex set K ⊆ R
n, its diameter is defined as

D := supx,y∈K ‖x− y‖ and its projection operator ΠK is defined as

ΠK(x) := argminy∈K‖x− y‖, ∀x ∈ R
n.

2 ESTIMATION OF GRADIENT DIRECTION BY COMPARISONS

First, we show that given a point x ∈ R
n and a direction v ∈ R

n, we can use one comparison query
to understand whether the inner product 〈∇f(x),v〉 is roughly positive or negative. Intuitively, this
inner product determines whether x+ v is following or against the direction of ∇f(x), also known
as directional preference (DP) in Karabag et al. (2021).

Lemma 1. Given a point x ∈ R
n, a unit vector v ∈ B1(0), and precision ∆ > 0 for directional

preference. Then Algorithm 1 is correct:

• If OComp
f (x+ 2∆

L v,x) = 1, then 〈∇f(x),v〉 ≥ −∆.

• If OComp
f (x+ 2∆

L v,x) = −1, then 〈∇f(x),v〉 ≤ ∆.

Algorithm 1: DP(x,v,∆)

Input: Comparison oracle OComp
f of f : Rn → R, x ∈ R

n, unit vector v ∈ B1(0), ∆ > 0

1 if OComp
f (x+ 2∆

L v,x) = 1 then

2 return “〈∇f(x),v〉 ≥ −∆"

3 else (in this case OComp
f (x+ 2∆

L v,x) = −1)

4 return “〈∇f(x),v〉 ≤ ∆"

4

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

Under review as a conference paper at ICLR 2025

Proof. Since f is an L-smooth differentiable function,

|f(y)− f(x)− 〈∇f(x),y − x〉| ≤ 1

2
L‖y − x‖2

for any x,y ∈ R
n. Take y = x+ 2∆

L v, this gives

∣

∣

∣

∣

f(y)− f(x)− 2∆

L
〈∇f(x),v〉

∣

∣

∣

∣

≤ 1

2
L

(

2∆

L

)2

=
2∆2

L
.

Therefore, if OComp
f (y,x) = 1, i.e., f(y) ≥ f(x),

2∆

L
〈∇f(x),v〉≥ 2∆

L
〈∇f(x),v〉+ f(x)− f(y)≥−2∆2

L

and hence 〈∇f(x),v〉 ≥ −∆. On the other hand, if OComp
f (y,x) = −1, i.e., f(y) ≤ f(x),

2∆

L
〈∇f(x),v〉 ≤ f(y)− f(x) +

2∆2

L
≤ 2∆2

L

and hence 〈∇f(x),v〉 ≤ ∆.

Now, we prove that we can use Õ(n) comparison queries to approximate the direction of the gradient
at a point, which is one of our main technical contributions.

Theorem 1. For an L-smooth function f : Rn → R and a point x ∈ R
n, Algorithm 2 outputs

an estimate g̃(x) of the direction of ∇f(x) using O(n log(n/δ)) queries to the comparison oracle

OComp
f of f (Eq. (1)) that satisfies

∥

∥

∥

∥

g̃(x)− ∇f(x)
‖∇f(x)‖

∥

∥

∥

∥

≤ δ

if we are given a parameter γ > 0 such that ‖∇f(x)‖ ≥ γ.

Proof. The correctness of (2) and (3) follows directly from the arguments in Line 2 and Line 3,
respectively. For Line 6, since αi ≤ 1 for any i ∈ [n], the binary search can be regarded as having

bins with interval lengths
√

1 + α2
i∆ ≤

√
2∆, and when the binary search ends Eq. (4) is satisfied.

Furthermore, Eq. (4) can be written as

∣

∣

∣

∣

αi −
gi
gi∗

∣

∣

∣

∣

≤
√
2∆

gi∗
≤ 2∆

√
n

γ
.

This is because ‖∇f(x)‖ = ‖(g1, . . . , gn)⊤‖ ≥ γ implies maxi∈[n] gi ≥ γ/
√
n, and together with

(3) we have gi∗ ≥ γ/
√
n−
√
2∆ ≥ γ/

√
2n because ∆ ≤ γ/4

√
n.

We now estimate

∥

∥

∥
g̃(x)− ∇f(x)

‖∇f(x)‖

∥

∥

∥
. Note

∇f(x)
‖∇f(x)‖ = ∇f(x)/gi∗

‖∇f(x)/gi∗‖ and g̃(x) = α/‖α‖. Moreover

∥

∥

∥

∥

α− ∇f(x)
gi∗

∥

∥

∥

∥

≤
n
∑

i=1

∣

∣

∣

∣

αi −
gi
gi∗

∣

∣

∣

∣

≤ 2∆
√
n(n− 1)

γ
.

By Lemma 5 for bounding distance between normalized vectors) and the fact that ‖α‖ ≥ 1,

∥

∥

∥

∥

g̃(x)− ∇f(x)
‖∇f(x)‖

∥

∥

∥

∥

=

∥

∥

∥

∥

α

‖α‖ −
∇f(x)/gi∗
‖∇f(x)/gi∗‖

∥

∥

∥

∥

≤ 4∆n3/2

γ
≤ δ.

Thus the correctness has been established. For the query complexity, Line 2 takes n queries, Line 3

takes n − 1 queries, and Line 6 throughout the for loop takes (n − 1)⌈log2(γ/
√
2∆) + 1⌉ =

O(n log(n/δ)) queries to the comparison oracle, given that each αi is within the range of [0, 1]

and we approximate it to accuracy
√
2∆/gi∗ ≥

√
2∆/γ. This finishes the proof.

5

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

Under review as a conference paper at ICLR 2025

Algorithm 2: Comparison-based Gradient Direction Estimation (Comparison-GDE(x, δ, γ))

Input: Comparison oracle OComp
f of f : Rn → R, precision δ, lower bound γ on ‖∇f(x)‖

1 Set ∆← δγ/4n3/2. Denote ∇f(x) = (g1, . . . , gn)
⊤

2 Call Algorithm 1 with inputs (x, e1,∆), . . . , (x, en,∆) where ei is the ith standard basis with

ith coordinate being 1 and others being 0. This determines whether gi ≥ −∆ or gi ≤ ∆ for
each i ∈ [n]. WLOG

gi ≥ −∆ ∀i ∈ [n] (2)

(otherwise take a minus sign for the ith coordinate)
3 We next find the approximate largest one among g1, . . . , gn. Call Algorithm 1 with input

(x, 1√
2
(e1 − e2),∆). This determines whether g1 ≥ g2 −

√
2∆ or g2 ≥ g1 −

√
2∆. If the

former, call Algorithm 1 with input (x, 1√
2
(e1 − e3),∆). If the later, call Algorithm 1 with

input (x, 1√
2
(e2 − e3),∆). Iterate this until en, we find the i∗ ∈ [n] such that

gi∗ ≥ max
i∈[n]

gi −
√
2∆ (3)

4 for i = 1 to i = n (except i = i∗) do
5 Initialize αi ← 1/2
6 Apply binary search to αi in ⌈log2(γ/∆) + 1⌉ iterations by calling Algorithm 1 with input

(x, 1√
1+α2

i

(αiei∗ − ei),∆). For the first iteration with αi = 1/2, if αigi∗ − gi ≥ −
√
2∆

we then take αi = 3/4; if αigi∗ − gi ≤
√
2∆ we then take αi = 1/4. Later iterations are

similar. Upon finishing the binary search, αi satisfies

gi −
√
2∆ ≤ αigi∗ ≤ gi +

√
2∆ (4)

7 return g̃(x) = α

‖α‖ where α = (α1, . . . , αn)
⊤, αi (i 6= i∗) is the output of the for loop,

αi∗ = 1

3 CONVEX OPTIMIZATION BY COMPARISONS

In this section, we study convex optimization with function value comparisons:

Problem 1 (Comparison-based convex optimization). In the comparison-based convex optimization

(CCO) problem we are given query access to a comparison oracle OComp
f (1) for an L-smooth

convex function f : Rn → R whose minimum is achieved at x∗ with ‖x∗‖ ≤ R. The goal is to
output a point x̃ such that ‖x̃‖ ≤ R and f(x̃)− f(x∗) ≤ ǫ, i.e., x̃ is an ǫ-optimal point.

We provide two algorithms that solve Problem 1. In Section 3.1, we use normalized gradient descent
to achieve linear dependence in n (up to a log factor) in terms of comparison queries. In Section 3.2,
we use cutting plane method to achieve log(1/ǫ) dependence in terms of comparison queries.

3.1 COMPARISON-BASED ADAPTIVE NORMALIZED GRADIENT DESCENT

In this subsection, we present our first algorithm for Problem 1, Algorithm 3, which applies
Comparison-GDE (Algorithm 2) with estimated gradient direction at each iteration to the adap-
tive normalized gradient descent (AdaNGD), originally introduced by Levy (2017).

Theorem 2. Algorithm 3 solves Problem 1 using O(nLR2/ǫ log
(

nLR2/ǫ
)

) queries.

The following result bounds the rate at which Algorithm 3 decreases the function value of f .

Lemma 2. In the setting of Problem 1, Algorithm 3 satisfies

min
t∈[T]

f(xt)− f∗ ≤ 2L(2R
√
2T + 2TδR)2/T 2,

6

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

Under review as a conference paper at ICLR 2025

Algorithm 3: Comparison-based Approximate Adaptive Normalized Gradient Descent
(Comparison-AdaNGD)

Input: Function f : Rn → R, precision ǫ, radius R

1 T ← 64LR2

ǫ , δ ← 1
4R

√

ǫ
2L , γ ← ǫ

2R , x0 ← 0

2 for t = 0, . . . , T − 1 do
3 ĝt ←Comparison-GDE(xt, δ, γ)

4 ηt ← R
√

2/t
5 xt+1 = ΠBR(0)(xt − ηtĝt)

6 tout ← argmint∈[T]f(xt)

7 return xtout

if at each step we have
∥

∥

∥

∥

g̃t −
∇ft(xt)

‖∇ft(xt)‖

∥

∥

∥

∥

≤ δ ≤ 1.

The proof of Lemma 2 is deferred to Appendix B. We now prove Theorem 2 using Lemma 2.

Proof of Theorem 2. We show that Algorithm 3 solves Problem 1 by contradiction. Assume that the
output of Algorithm 3 is not an ǫ-optimal point of f , or equivalently, f(xt)−f∗ ≥ ǫ for any t ∈ [T].
This leads to

‖∇f(xt)‖ ≥
f(xt)− f∗

‖xt − x∗‖ ≥
ǫ

2R
, ∀t ∈ [T]

given that f is convex. Hence, Theorem 1 promises that
∥

∥

∥

∥

ĝt −
∇f(xt)

‖∇f(xt)‖

∥

∥

∥

∥

≤ δ ≤ 1.

With these approximate gradient directions, by Lemma 2 we can derive that

min
t∈[T]

f(xt)− f∗ ≤ 2L(2R
√
2T + 2TδR)2/T 2 ≤ ǫ,

contradiction. This proves the correctness of Algorithm 3. The query complexity of Algorithm 3
only comes from the gradient direction estimation step in Line 3, which equals

T ·O(n log(n/δ)) = O

(

nLR2

ǫ
log

(

nLR2

ǫ

))

.

3.2 COMPARISON-BASED CUTTING PLANE METHOD

In this subsection, we provide a comparison-based cutting plane method that solves Problem 1. We
begin by introducing the basic notation and concepts of cutting plane methods, which are algorithms
that solves the feasibility problem defined as follows.

Problem 2 (Feasibility Problem, Jiang et al. (2020); Sidford & Zhang (2023)). We are given query
access to a separation oracle for a set K ⊂ R

n such that on query x ∈ R
n the oracle outputs a

vector c and either c = 0, in which case x ∈ K, or c 6= 0, in which case H := {z : c⊤z ≤ c⊤x} ⊃
K. The goal is to query a point x ∈ K.

Jiang et al. (2020) developed a cutting plane method that solves Problem 2 using O(n log(nR/r))
queries to a separation oracle where R and r are parameters related to the convex set K.

Lemma 3 (Theorem 1.1, Jiang et al. (2020)). There is a cutting plane method which solves
Problem 2 using at most C · n log(nR/r) queries for some constant C, given that the set K is
contained in the ball of radius R centered at the origin and it contains a ball of radius r.

7

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

Under review as a conference paper at ICLR 2025

Nemirovski (1994); Lee et al. (2015) showed that, running cutting plane method on a Lipschitz
convex function f with the separation oracle being the gradient of f would yield a sequence of
points where at least one of them is ǫ-optimal. Furthermore, Sidford & Zhang (2023) showed that
even if we cannot access the exact gradient value of f , it suffices to use an approximate gradient
estimate with absolute error at most O(ǫ/R).

In this work, we show that this result can be extended to the case where we have an estimate of the
gradient direction instead of the gradient itself. Specifically, we prove the following result.

Theorem 3. There exists an algorithm based on cutting plane method that solves Problem 1 using
O(n2 log(nLR2/ǫ)) queries.

Note that Theorem 3 improves the prior state-of-the-art from Õ(n4) by Karabag et al. (2021) to

Õ(n2).

Proof of Theorem 3. The proof follows a similar intuition as the proof of Proposition 1 in
Sidford & Zhang (2023). Define Kǫ/2 to be the set of ǫ/2-optimal points of f , and Kǫ to be the
set of ǫ-optimal points of f . Given that f is L-smooth, Kǫ/2 must contain a ball of radius at least

rK =
√

ǫ/L since for any x with ‖x− x∗‖ ≤ rK we have

f(x)− f(x∗) ≤ L‖x− x∗‖2/2 ≤ ǫ/2.

We apply the cutting plane method, as described in Lemma 3, to query a point in Kǫ/2, which

is a subset of the ball B2R(0). To achieve this, at each query x of the cutting plane method,
we use Comparison-GDE(x, δ, γ), our comparison-based gradient direction estimation algorithm
(Algorithm 2), as the separation oracle for the cutting plane method, where we set

δ =
1

16R

√

ǫ

L
, γ =

√
2Lǫ.

We show that any query outside of Kǫ to Comparison-GDE(x, δ, γ) will be a valid separation
oracle for Kǫ/2. In particular, if we ever queried Comparison-GDE(x, δ, γ) at any x ∈ B2R(0) \
Kǫ with output being ĝ, for any y ∈ Kǫ/2 we have

〈ĝ,y − x〉 ≤
〈 ∇f(x)
‖∇f(x)‖ ,y − x

〉

+

∥

∥

∥

∥

ĝ − ∇f(x)
‖∇f(x)‖

∥

∥

∥

∥

· ‖y − x‖

≤ f(y)− f(x)

‖∇f(x)‖ +

∥

∥

∥

∥

ĝ − ∇f(x)
‖∇f(x)‖

∥

∥

∥

∥

· ‖y − x‖ ≤ − ǫ

2
+

ǫ

10R
· 4R < 0,

where

‖∇f(x)‖ ≥ (f(x)− f∗)/‖x− x∗‖ ≥ (f(x)− f∗)/(2R)

given that f is convex. Combined with Theorem 1, it guarantees that
∥

∥

∥

∥

ĝ − ∇f(x)
‖∇f(x)‖

∥

∥

∥

∥

≤ δ =
1

16R

√

ǫ

L
.

Hence,

〈ĝ,y − x〉 ≤ f(y)− f(x)

‖∇f(x)‖ +

∥

∥

∥

∥

ĝ − ∇f(x)
‖∇f(x)‖

∥

∥

∥

∥

· ‖y − x‖ ≤ −1

2

√

ǫ

2L
+

1

16R

√

ǫ

L
· 4R < 0,

indicating that ĝ is a valid separation oracle for the set Kǫ/2. Consequently, by Lemma 3, after

Cn log(nR/rK) iterations, at least one of the queries must lie within Kǫ, and we can choose the
query with minimum function value to output, which can be done by making Cn log(nR/rK) com-
parisons.

Note that in each iteration O(n log(n/δ)) queries to OComp
f (1) are needed. Hence, the overall query

complexity equals

Cn log(nR/rK) ·O(n log(n/δ)) + Cn log(nR/rK) = O
(

n2 log
(

nLR2/ǫ
))

.

8

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

Under review as a conference paper at ICLR 2025

Algorithm 4: Comparison-based Approximate Normalized Gradient Descent (Comparison-
NGD)

Input: Function f : Rn → R, ∆, precision ǫ
1 T ← 18L∆

ǫ2 , x0 ← 0

2 for t = 0, . . . , T − 1 do
3 ĝt ←Comparison-GDE(xt, 1/6, ǫ/12)
4 xt = xt−1 − ǫĝt/(3L)

5 Uniformly randomly select xout from {x0, . . . ,xT }
6 return xout

4 NONCONVEX OPTIMIZATION BY COMPARISONS

In this section, we study nonconvex optimization with function value comparisons. We first de-
velop an algorithm that finds an ǫ-FOSP of a smooth nonconvex function in Section 4.1. Then in
Section 4.2, we further develop an algorithm that finds an ǫ-SOSP of a nonconvex function that is
smooth and Hessian-Lipschitz.

4.1 FIRST-ORDER STATIONARY POINT COMPUTATION BY COMPARISONS

In this subsection, we focus on the problem of finding an ǫ-FOSP of a smooth nonconvex function
by making function value comparisons.

Problem 3 (Comparison-based first-order stationary point computation). In the Comparison-based
first-order stationary point computation (Comparison-FOSP) problem we are given query access

to a comparison oracle OComp
f (1) for an L-smooth (possibly) nonconvex function f : Rn → R

satisfying f(0)− infx f(x) ≤ ∆. The goal is to output an ǫ-FOSP of f .

We develop a comparison-based normalized gradient descent algorithm that solves Problem 3.

Theorem 4. With success probability at least 2/3, Algorithm 4 solves Problem 3 using
O(L∆n log n/ǫ2) queries.

The proof of Theorem 4 is deferred to Appendix C.1.

4.2 ESCAPING SADDLE POINTS OF NONCONVEX FUNCTIONS BY COMPARISONS

In this subsection, we focus on the problem of escaping from saddle points, i.e., finding an ǫ-SOSP of
a nonconvex function that is smooth and Hessian-Lipschitz, by making function value comparisons.

Problem 4 (Comparison-based escaping from saddle point). In the Comparison-based escaping
from saddle point (Comparison-SOSP) problem we are given query access to a comparison oracle

OComp
f (1) for a (possibly) nonconvex function f : Rn → R satisfying f(0) − infx f(x) ≤ ∆ that

is L-smooth and ρ-Hessian Lipschitz. The goal is to output an ǫ-SOSP of f .

Our algorithm for Problem 4 given in Algorithm 5 is a combination of comparison-based normalized
gradient descent and comparison-based negative curvature descent (Comparison-NCD). Specif-
ically, Comparison-NCD is built upon our comparison-based negative curvature finding algo-
rithms, Comparison-NCF1 (Algorithm 8) and Comparison-NCF2 (Algorithm 9) that work
when the gradient is small or large respectively, and can decrease the function value efficiently when
applied at a point with a large negative curvature.

Lemma 4. In the setting of Problem 4, for any z satisfying λmin(∇2f(x)) ≤ −√ρǫ, Algorithm 6
outputs a point zout ∈ R

n satisfying

f(zout)− f(z) ≤ − 1

48

√

ǫ3

ρ

with success probability at least 1− ζ using O
(

L2n3/2

ζρǫ log2 nL
ζ
√
ρǫ

)

queries.

9

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Under review as a conference paper at ICLR 2025

Algorithm 5: Comparison-based Perturbed Normalized Gradient Descent (Comparison-PNGD)

Input: Function f : Rn → R, ∆, precision ǫ
1 S ← 350∆

√

ρ
ǫ3 , δ ← 1

6 , x1,0 ← 0

2 T ← 384L2
√
n

δρǫ log 36nL√
ρǫ , p← 100

T
logS

3 for s = 1, . . . ,S do
4 for t = 0, . . . ,T − 1 do
5 ĝt ←Comparison-GDE(xs,t, δ, γ)
6 ys,t ← xs,t − ǫĝt/(3L)
7 Choose xs,t+1 to be the point between {xs,t,ys,t} with smaller function value

8 x′
s,t+1 ←

{

0, w.p. 1− p

Comparison-NCD(xs,t+1, ǫ, δ), w.p. p

9 Choose xs+1,0 among {xs,0, . . . ,xs,T ,x′
s,0, . . . ,x

′
s,T } with the smallest function value.

10 x′
s+1,0 ←

{

0, w.p. 1− p

Comparison-NCD(xs+1,0, ǫ, δ), w.p. p

11 Uniformly randomly select sout ∈ {1, . . . ,S} and tout ∈ [T]
12 return xsout,tout

Algorithm 6: Comparison-based Negative Curvature Descent (Comparison-NCD)

Input: Function f : Rn → R, precision ǫ, input point z, error probability δ
1 v1 ←Comparison-NCF1(z, ǫ, δ)
2 v2 ←Comparison-NCF2(z, ǫ, δ)

3 z1,+ = z+ 1
2

√

ǫ
ρv1, z1,− = z− 1

2

√

ǫ
ρv1, z2,+ = z+ 1

2

√

ǫ
ρv2, z2,− = z− 1

2

√

ǫ
ρv2

4 return zout ∈ {z1,+, z1,−, z2,+, z2,−} with the smallest function value.

The proof of Lemma 4 is deferred to Appendix C.3. Next, we present the main result of this subsec-
tion, which describes the complexity of solving Problem 4 using Algorithm 5.

Theorem 5. With success probability at least 2/3, Algorithm 5 solves Problem 4 using an expected

O
(

∆L2n3/2

ρ1/2ǫ5/2
log3 nL√

ρǫ

)

queries.

The proof of Theorem 5 is deferred to Appendix C.4.

REFERENCES

Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Finding approxi-
mate local minima faster than gradient descent. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pp. 1195–1199, 2017. arXiv:1611.01146

Zeyuan Allen-Zhu and Yuanzhi Li. Neon2: Finding local minima via first-order oracles. In Advances
in Neural Information Processing Systems, pp. 3716–3726, 2018. arXiv:1711.06673

Charles Audet and John E. Dennis Jr. Mesh adaptive direct search algorithms for constrained opti-
mization. SIAM Journal on Optimization, 17(1):188–217, 2006.

Krishnakumar Balasubramanian and Saeed Ghadimi. Zeroth-order nonconvex stochastic optimiza-
tion: Handling constraints, high dimensionality, and saddle points. Foundations of Computational
Mathematics, pp. 1–42, 2022. arXiv:1809.06474

El Houcine Bergou, Eduard Gorbunov, and Peter Richtárik. Stochastic three points method for
unconstrained smooth minimization. SIAM Journal on Optimization, 30(4):2726–2749, 2020.
arXiv:1902.03591

10

https://arxiv.org/abs/1611.01146
https://arxiv.org/abs/1711.06673
https://arxiv.org/abs/1809.06474
https://arxiv.org/abs/1902.03591

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

Under review as a conference paper at ICLR 2025

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signSGD: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, pp. 560–569. PMLR, 2018. arXiv:1802.04434

HanQin Cai, Daniel McKenzie, Wotao Yin, and Zhenliang Zhang. A one-bit, comparison-
based gradient estimator. Applied and Computational Harmonic Analysis, 60:242–266, 2022.
arXiv:2010.02479

Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for nonconvex
optimization. SIAM Journal on Optimization, 28(2):1751–1772, 2018. arXiv:1611.00756

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order opti-
mization based black-box attacks to deep neural networks without training substitute models. In
Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26, 2017.
arXiv:1708.03999

Xiaoyu Chen, Han Zhong, Zhuoran Yang, Zhaoran Wang, and Liwei Wang. Human-in-the-
loop: Provably efficient preference-based reinforcement learning with general function approx-
imation. In International Conference on Machine Learning, pp. 3773–3793. PMLR, 2022.
arXiv:2205.11140

Krzysztof Choromanski, Mark Rowland, Vikas Sindhwani, Richard Turner, and Adrian Weller.
Structured evolution with compact architectures for scalable policy optimization. In International
Conference on Machine Learning, pp. 970–978. PMLR, 2018. arXiv:1804.02395

Frank E. Curtis, Daniel P. Robinson, and Mohammadreza Samadi. A trust region algorithm with

a worst-case iteration complexity of O(ǫ−3/2) for nonconvex optimization. Mathematical Pro-
gramming, 162(1-2):1–32, 2017.

John E. Dennis, Jr and Virginia Torczon. Direct search methods on parallel machines. SIAM Journal
on Optimization, 1(4):448–474, 1991.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(7):2121–2159, 2011.

John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for
zero-order convex optimization: The power of two function evaluations. IEEE Transactions on
Information Theory, 61(5):2788–2806, 2015. arXiv:1312.2139

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. SPIDER: Near-optimal non-convex
optimization via stochastic path-integrated differential estimator. Advances in Neural Information
Processing Systems, 31, 2018. arXiv:1807.01695

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochas-
tic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013. arXiv:1309.5549

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-Power Computer
Vision, pp. 291–326. Chapman and Hall/CRC, 2022. arXiv:2103.13630

Eduard Gorbunov, Adel Bibi, Ozan Sener, El Houcine Bergou, and Peter Richtarik. A stochastic
derivative free optimization method with momentum. In International Conference on Learning
Representations, 2020. arXiv:1905.13278

Kevin G. Jamieson, Robert Nowak, and Ben Recht. Query complexity of derivative-free optimiza-
tion. Advances in Neural Information Processing Systems, 25, 2012. arXiv:1209.2434

Kaiyi Ji, Zhe Wang, Yi Zhou, and Yingbin Liang. Improved zeroth-order variance reduced algo-
rithms and analysis for nonconvex optimization. In International Conference on Machine Learn-
ing, pp. 3100–3109. PMLR, 2019. arXiv:1910.12166

11

https://arxiv.org/abs/1802.04434
https://arxiv.org/abs/2010.02479
https://arxiv.org/abs/1611.00756
https://arxiv.org/abs/1708.03999
https://arxiv.org/abs/2205.11140
https://arxiv.org/abs/1804.02395
https://arxiv.org/abs/1312.2139
https://arxiv.org/abs/1807.01695
https://arxiv.org/abs/1309.5549
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/1905.13278
https://arxiv.org/abs/1209.2434
https://arxiv.org/abs/1910.12166

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

Under review as a conference paper at ICLR 2025

Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. An improved cutting plane
method for convex optimization, convex-concave games, and its applications. In Proceedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 944–953, 2020.
arXiv:2004.04250

Chi Jin, Lydia T. Liu, Rong Ge, and Michael I. Jordan. On the local minima of the empirical risk.
Advances in Neural Information Processing Systems, 31, 2018a. arXiv:1803.09357

Chi Jin, Praneeth Netrapalli, and Michael I. Jordan. Accelerated gradient descent escapes saddle
points faster than gradient descent. In Conference on Learning Theory, pp. 1042–1085, 2018b.
arXiv:1711.10456

Mustafa O. Karabag, Cyrus Neary, and Ufuk Topcu. Smooth convex optimization using sub-zeroth-
order oracles. Proceedings of the AAAI Conference on Artificial Intelligence, 35(5):3815–3822,
2021. arXiv:2103.00667

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015. arXiv:1412.6980

Tamara G. Kolda, Robert Michael Lewis, and Virginia Torczon. Optimization by direct search: New
perspectives on some classical and modern methods. SIAM review, 45(3):385–482, 2003.

Jeffrey Larson, Matt Menickelly, and Stefan M. Wild. Derivative-free optimization methods. Acta
Numerica, 28:287–404, 2019. arXiv:904.11585

Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method and its im-
plications for combinatorial and convex optimization. In 2015 IEEE 56th Annual Symposium on
Foundations of Computer Science, pp. 1049–1065. IEEE, 2015. arXiv:1508.04874

Yin Tat Lee, Aaron Sidford, and Santosh S. Vempala. Efficient convex optimization with member-
ship oracles. In Proceedings of the 31st Conference on Learning Theory, volume 75 of Proceed-
ings of Machine Learning Research, pp. 1292–1294, 2018. arXiv:1706.07357

Kfir Levy. Online to offline conversions, universality and adaptive minibatch sizes. Advances in
Neural Information Processing Systems, 30, 2017. arXiv:1705.10499

Xiuxian Li, Kuo-Yi Lin, Li Li, Yiguang Hong, and Jie Chen. On faster convergence of scaled sign
gradient descent. IEEE Transactions on Industrial Informatics, 2023. arXiv:2109.01806

Sijia Liu, Pin-Yu Chen, Xiangyi Chen, and Mingyi Hong. signSGD via zeroth-order oracle. In
International Conference on Learning Representations, 2019.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018. arXiv:1706.06083

John A. Nelder and Roger Mead. A simplex method for function minimization. The Computer
Journal, 7(4):308–313, 1965.

Arkadi Nemirovski. Efficient methods in convex programming. Lecture notes, 1994.

Yurii Nesterov and Boris T. Polyak. Cubic regularization of Newton method and its global perfor-
mance. Mathematical Programming, 108(1):177–205, 2006.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17:527–566, 2017.

Ellen Novoseller, Yibing Wei, Yanan Sui, Yisong Yue, and Joel Burdick. Dueling posterior sam-
pling for preference-based reinforcement learning. In Conference on Uncertainty in Artificial
Intelligence, pp. 1029–1038. PMLR, 2020. arXiv:1908.01289

12

https://arxiv.org/abs/2004.04250
https://arxiv.org/abs/1803.09357
https://arxiv.org/abs/1711.10456
https://arxiv.org/abs/2103.00667
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/904.11585
https://arxiv.org/abs/1508.04874
https://arxiv.org/abs/1706.07357
https://arxiv.org/abs/1705.10499
https://arxiv.org/abs/2109.01806
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1908.01289

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

Under review as a conference paper at ICLR 2025

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022. arXiv:2203.02155

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Anan-
thram Swami. Practical black-box attacks against machine learning. In Proceedings of the
2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519, 2017.
arXiv:1602.02697

Aadirupa Saha, Tomer Koren, and Yishay Mansour. Dueling convex optimization. In International
Conference on Machine Learning, pp. 9245–9254. PMLR, 2021.

Aadirupa Saha, Tomer Koren, and Yishay Mansour. Dueling convex optimization with general
preferences, 2022. arXiv:2210.02562

Aadirupa Saha, Aldo Pacchiano, and Jonathan Lee. Dueling RL: Reinforcement learning with trajec-
tory preferences. In International Conference on Artificial Intelligence and Statistics, pp. 6263–
6289. PMLR, 2023. arXiv:2111.04850

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning, 2017. arXiv:1703.03864

Aaron Sidford and Chenyi Zhang. Quantum speedups for stochastic optimization. Advances in
Neural Information Processing Systems, 37, 2023. arXiv:2308.01582

Zhiwei Tang, Dmitry Rybin, and Tsung-Hui Chang. Zeroth-order optimization meets human feed-
back: Provable learning via ranking oracles, 2023. arXiv:2303.03751

Emmanouil-Vasileios Vlatakis-Gkaragkounis, Lampros Flokas, and Georgios Piliouras. Efficiently
avoiding saddle points with zero order methods: No gradients required. Advances in Neural
Information Processing Systems, 32, 2019. arXiv:1910.13021

Yuanhao Wang, Qinghua Liu, and Chi Jin. Is RLHF more difficult than standard RL? a theoreti-
cal perspective. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
arXiv:2306.14111

Yi Xu, Rong Jin, and Tianbao Yang. First-order stochastic algorithms for escaping from saddle
points in almost linear time. In Advances in Neural Information Processing Systems, pp. 5530–
5540, 2018. arXiv:1711.01944

Yichong Xu, Ruosong Wang, Lin Yang, Aarti Singh, and Artur Dubrawski. Preference-based re-
inforcement learning with finite-time guarantees. Advances in Neural Information Processing
Systems, 33:18784–18794, 2020. arXiv:2006.08910

Chenyi Zhang and Tongyang Li. Escape saddle points by a simple gradient-descent based algorithm.
Advances in Neural Information Processing Systems, 34:8545–8556, 2021. arXiv:2111.14069

Hualin Zhang and Bin Gu. Faster gradient-free methods for escaping saddle points. In The Eleventh
International Conference on Learning Representations, 2023.

Hualin Zhang, Huan Xiong, and Bin Gu. Zeroth-order negative curvature finding: Escaping saddle
points without gradients. Advances in Neural Information Processing Systems, 35:38332–38344,
2022. arXiv:2210.01496

Banghua Zhu, Jiantao Jiao, and Michael Jordan. Principled reinforcement learning with human
feedback from pairwise or k-wise comparisons. In ICLR 2023 Workshop on Mathematical and
Empirical Understanding of Foundation Models, 2023. arXiv:2301.11270

13

https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/1602.02697
https://arxiv.org/abs/2210.02562
https://arxiv.org/abs/2111.04850
https://arxiv.org/abs/1703.03864
https://arxiv.org/abs/2308.01582
https://arxiv.org/abs/2303.03751
https://arxiv.org/abs/1910.13021
https://arxiv.org/abs/2306.14111
https://arxiv.org/abs/1711.01944
https://arxiv.org/abs/2006.08910
https://arxiv.org/abs/2111.14069
https://arxiv.org/abs/2210.01496
https://arxiv.org/abs/2301.11270

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

Under review as a conference paper at ICLR 2025

A AUXILIARY LEMMAS

A.1 DISTANCE BETWEEN NORMALIZED VECTORS

Lemma 5. If v,v′ ∈ R
n are two vectors such that ‖v‖ ≥ γ and ‖v − v′‖ ≤ τ , we have

∥

∥

∥

∥

v

‖v‖ −
v′

‖v′‖

∥

∥

∥

∥

≤ 2τ

γ
.

Proof. By the triangle inequality, we have
∥

∥

∥

∥

v

‖v‖ −
v′

‖v′‖

∥

∥

∥

∥

≤
∥

∥

∥

∥

v

‖v‖ −
v′

‖v‖

∥

∥

∥

∥

+

∥

∥

∥

∥

v′

‖v‖ −
v′

‖v′‖

∥

∥

∥

∥

=
‖v − v′‖
‖v‖ +

|‖v‖ − ‖v′‖|‖v′‖
‖v‖‖v′‖

≤ τ

γ
+

τ

γ
=

2τ

γ
.

Lemma 6. If v1,v2 ∈ R
n are two vectors such that ‖v1‖, ‖v2‖ ≥ γ, and v′

1,v
′
2 ∈ R

n are another
two vectors such that ‖v1 − v′

1‖, ‖v2 − v′
2‖ ≤ τ where 0 < τ < γ, we have

∣

∣

∣

∣

〈

v1

‖v1‖
,

v2

‖v2‖

〉

−
〈

v′
1

‖v′
1‖

,
v′
2

‖v′
2‖

〉∣

∣

∣

∣

≤ 6τ

γ
.

Proof. By the triangle inequality, we have
∣

∣

∣

∣

〈

v1

‖v1‖
,

v2

‖v2‖

〉

−
〈

v′
1

‖v′
1‖

,
v′
2

‖v′
2‖

〉
∣

∣

∣

∣

≤
∣

∣

∣

∣

〈

v1

‖v1‖
,

v2

‖v2‖

〉

−
〈

v′
1

‖v1‖
,

v′
2

‖v2‖

〉∣

∣

∣

∣

+

∣

∣

∣

∣

〈

v′
1

‖v1‖
,

v′
2

‖v2‖

〉

−
〈

v′
1

‖v′
1‖

,
v′
2

‖v′
2‖

〉∣

∣

∣

∣

.

On the one hand, by the triangle inequality and the Cauchy-Schwarz inequality,
∣

∣

∣

∣

〈

v1

‖v1‖
,

v2

‖v2‖

〉

−
〈

v′
1

‖v1‖
,

v′
2

‖v2‖

〉
∣

∣

∣

∣

≤ 1

‖v1‖‖v2‖
(|〈v1,v2〉 − 〈v1,v

′
2〉|+ |〈v1,v

′
2〉 − 〈v′

1,v
′
2〉〉|)

≤ ‖v2 − v′
2‖

‖v2‖
+
‖v1 − v′

1‖‖v′
2‖

‖v1‖‖v2‖

≤ τ

γ
+

τ(γ + τ)

γ2
.

On the other hand, by the Cauchy-Schwarz inequality, |〈v′
1,v

′
2〉| ≤ ‖v′

1‖‖v′
2‖, and hence

∣

∣

∣

∣

〈

v′
1

‖v1‖
,

v′
2

‖v2‖

〉

−
〈

v′
1

‖v′
1‖

,
v′
2

‖v′
2‖

〉∣

∣

∣

∣

= |〈v′
1,v

′
2〉|
∣

∣

∣

∣

1

‖v1‖‖v2‖
− 1

‖v′
1‖‖v′

2‖

∣

∣

∣

∣

≤
∣

∣

∣

∣

‖v′
1‖‖v′

2‖
‖v1‖‖v2‖

− 1

∣

∣

∣

∣

≤
(

γ + τ

γ

)2

− 1.

In all, due to τ < γ,

∣

∣

∣

∣

〈

v1

‖v1‖
,

v2

‖v2‖

〉

−
〈

v′
1

‖v′
1‖

,
v′
2

‖v′
2‖

〉
∣

∣

∣

∣

≤ τ

γ
+

τ(γ + τ)

γ2
+

(

γ + τ

γ

)2

− 1 =
2τ(2γ + τ)

γ2
≤ 6τ

γ
.

14

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

Under review as a conference paper at ICLR 2025

A.2 A FACT FOR VECTOR NORMS

Lemma 7. For any nonzero vectors v,g ∈ R
n,

√

√

√

√

1− 〈 v+g

‖v+g‖ ,
v

‖v‖ 〉2

1− 〈 v−g

‖v−g‖ ,
v

‖v‖ 〉2
=
‖v − g‖
‖v + g‖ .

Proof. We have

1− 〈 v+g

‖v+g‖ ,
v

‖v‖ 〉2

1− 〈 v−g

‖v−g‖ ,
v

‖v‖ 〉2
· ‖v + g‖2
‖v − g‖2 =

‖v + g‖2 − 〈v + g, v
‖v‖ 〉2

‖v − g‖2 − 〈v − g, v
‖v‖ 〉2

=
〈v + g,v + g〉 − (‖v‖+ 〈v,g〉

‖v‖)2

〈v − g,v − g〉 − (‖v‖ − 〈v,g〉
‖v‖)2

=
‖v‖2 + ‖g‖2 + 2〈v,g〉 − (‖v‖2 + 2〈v,g〉+ 〈v,g〉2

‖v‖2)

‖v‖2 + ‖g‖2 − 2〈v,g〉 − (‖v‖2 − 2〈v,g〉+ 〈v,g〉2
‖v‖2)

= 1.

A.3 GRADIENT UPPER BOUND OF SMOOTH CONVEX FUNCTIONS

Lemma 8 (Lemma A.2, Levy (2017)). For any L-smooth convex function f : Rn → R and any
x ∈ R

n, we have

‖∇f(x)‖2 ≤ 2L(f(x)− f∗).

B APPROXIMATE ADAPTIVE NORMALIZED GRADIENT DESCENT

(APPROX-ADANGD)

In this section, we prove technical details of the normalized gradient descent we use for convex opti-
mization. Inspired by Levy (2017) which condcuted a detailed analysis for the normalized gradient
descent method, we first introduce the Approximate Adaptive Gradient Descent (Approx-AdaGrad)
algorithm below:

Algorithm 7: Approximate Adaptive Gradient Descent (Approx-AdaGrad)

Input: # Iterations T , a set of convex functions {ft}Tt=1, x0 ∈ R
n, a convex set K with

diameter D
1 for t = 1, . . . , T do
2 Calculate an estimate g̃t of ∇ft(xt−1)

3 ηt ← D/
√
2t

4 xt = ΠK(xt−1 − ηtg̃t)

Lemma 9. Algorithm 7 guarantees the following regret

T
∑

t=1

ft(xt)−min
x∈K

T
∑

t=1

ft(x) ≤ D
√
2T + TδD.

if at each step t we have

‖∇ft(xt)‖ = 1, ‖g̃t −∇ft(xt)‖ ≤ δ, ‖g̃t‖ = 1.

15

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Under review as a conference paper at ICLR 2025

Proof. The proof follows the flow of the proof of Theorem 1.1 in Levy (2017). For any t ∈ [T] and
x ∈ K we have

‖xt+1 − x‖2 ≤ ‖xt − x‖2 − 2ηt〈g̃t,xt − x〉+ η2t ‖g̃t‖2

and

〈g̃t,xt − x〉 ≤ 1

2ηt

(

‖xt − x‖2 − ‖xt+1 − x‖2
)

+
ηt
2
‖g̃t‖2.

Since ft is convex for each t, we have

ft(xt)− ft(x) ≤ 〈∇ft(xt),xt − x〉
≤ 〈g̃t,xt − x〉+ ‖g̃t −∇ft(xt)‖ · ‖xt − x‖
≤ 〈g̃t,xt − x〉+ δD,

which leads to

T
∑

t=1

ft(xt)−
T
∑

t=1

ft(x) ≤
T
∑

t=1

‖xt − x‖2
2

(

1

ηt
− 1

ηt−1

)

+
T
∑

t=1

ηt
2
‖g̃t‖2 + TδD,

where we denote η0 =∞. Further we can derive that

T
∑

t=1

ft(xt)−
T
∑

t=1

ft(x) ≤
D2

2

T
∑

t=1

(

1

ηt
− 1

ηt−1

)

+
D

2
√
2

T
∑

t=1

‖g̃t‖2√
t

+ TδD

≤ D2

2ηT
+

D

2
√
2

T
∑

t=1

1√
t
+ TδD,

Moreover, we have

T
∑

t=1

1√
t
≤ 2
√
T ,

which leads to

T
∑

t=1

ft(xt)−
T
∑

t=1

ft(x) ≤
D2

2ηT
+

D

2
√
2

T
∑

t=1

1√
t
+ TδD

≤ D
√
2T + TδD.

Now, we can prove Lemma 2 which guarantees the completeness of Theorem 2.

Proof of Lemma 2. The proof follows the flow of the proof of Theorem 2.1 in Levy (2017). In
particular, observe that Algorithm 3 is equivalent to applying Approx-AdaGrad (Algorithm 7) to the
following sequence of functions

f̃t(x) :=
〈∇f(xt),x〉
‖∇f(xt)‖

, ∀t ∈ [T].

Then by Lemma 9, for any x ∈ K we have

T
∑

t=1

〈∇f(xt),xt − x〉
‖∇f(xt)‖

≤ D
√
2T + TδD,

where

f(xt)− f(x) ≤ 〈∇f(xt),xt − x〉, ∀t ∈ [T]

given that f is convex, and D = 2R is the diameter of BR(0). Hence,

min
t∈[T]

f(xt)− f∗ ≤
∑T

t=1(f(xt)− f∗)/‖∇f(xt)‖
∑T

t=1 1/‖∇f(xt)‖
≤ 2R

√
2T + 2TδR

∑T
t=1 1/‖∇f(xt)‖

.

16

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Under review as a conference paper at ICLR 2025

Next, we proceed to bound the term
∑T

t=1 1/‖∇f(xt)‖ on the denominator. By the Cauchy-
Schwarz inequality,

(

T
∑

t=1

1/‖∇f(xt)‖
)

·
(

T
∑

t=1

‖∇f(xt)‖
)

≥ T 2,

which leads to
T
∑

t=1

1

‖∇f(xt)‖
≥ T 2

∑T
t=1 ‖∇f(xt)‖

,

where
T
∑

t=1

‖∇f(xt)‖ =
T
∑

t=1

‖∇f(xt)‖2
‖∇f(xt)‖

≤
T
∑

t=1

2L(f(xt)− f∗)

‖∇f(xt)‖

≤ 2L

T
∑

t=1

〈∇f(xt),xt − x∗〉
‖∇f(xt)‖

≤ 2L(2R
√
2T + 2TδR),

where the first inequality is by Lemma 8, the second inequality is by the convexity of f , and the
third inequality is due to Lemma 9. Further we can derive that

min
t∈[T]

f(xt)− f∗ ≤ 8R
√
T + 2TδR

∑T
t=1 1/‖∇f(xt)‖

≤ 2L(2R
√
2T + 2TδR)2

T 2
.

C PROOF DETAILS OF NONCONVEX OPTIMIZATION BY COMPARISONS

C.1 PROOF OF THEOREM 4

Proof of Theorem 4. We prove the correctness of Theorem 4 by contradiction. For any iteration
t ∈ [T] with ‖∇f(xt)‖ > ǫ, by Theorem 1 we have

∥

∥

∥

∥

ĝt −
∇f(xt)

‖∇f(xt)‖

∥

∥

∥

∥

≤ δ =
1

6
,

indicating

f(xt+1)− f(xt) ≤ 〈∇f(xt),xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

≤ − ǫ

3L
〈∇f(xt), ĝt〉+

L

2

(ǫ

3L

)2

≤ − ǫ

3L
‖∇f(xt)‖(1− δ) +

ǫ2

18L
≤ −2ǫ2

9L
.

That is to say, for any iteration t such that xt is not an ǫ-FOSP, the function value will decrease at

least 2ǫ2

9L in this iteration. Furthermore, for any iteration t ∈ [T] with ǫ
12 < ‖∇f(xt)‖ ≤ ǫ, by

Theorem 1 we have
∥

∥

∥

∥

ĝt −
∇f(xt)

‖∇f(xt)‖

∥

∥

∥

∥

≤ δ =
1

6
,

indicating

f(xt+1)− f(xt) ≤ 〈∇f(xt),xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

≤ − ǫ

3L
‖∇f(xt)‖(1− δ) +

ǫ2

18L
≤ 0. (5)

17

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

Under review as a conference paper at ICLR 2025

For any iteration t ∈ [T] with ‖∇f(xt)‖ ≤ ǫ/12, we have

f(xt+1)− f(xt) ≤ 〈∇f(xt),xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

≤ ‖∇f(xt)‖·‖xt+1 − xt‖+
L

2
‖xt+1 − xt‖2 ≤

ǫ2

12L
.

Combining (5) and the above inequality, we know that for any iteration t such that xt is an ǫ-FOSP,
the function value increases at most ǫ2/(12L) in this iteration. Moreover, since

f(0)− f(xT) ≤ f(0)− f∗ ≤ ∆,

we can conclude that at least 2/3 of the iterations have xt being an ǫ-FOSP, and randomly outputting
one of them solves Problem 3 with success probability at least 2/3.

The query complexity of Algorithm 4 only comes from the gradient direction estimation step in
Line 3, which equals

T ·O(n log(n/δ)) = O
(

L∆n log n/ǫ2
)

.

C.2 NEGATIVE CURVATURE FINDING BY COMPARISONS

In this subsection, we show how to find a negative curvature direction of a point x satisfying
λmin(∇2f(x)) ≤ −√ρǫ Observe that the Hessian matrix ∇2f(x) admits the following eigen-
decomposition:

∇2f(x) =

n
∑

i=1

λiuiu
⊤
i , (6)

where the vectors {ui}ni=1 forms an orthonormal basis of Rn. Without loss of generality we assume
the eigenvalues λ1, λ2, . . . , λn corresponding to u1,u2, . . . ,un satisfy

λ1 ≤ λ2 ≤ · · · ≤ λn, (7)

where λ1 ≤ −
√
ρǫ. Throughout this subsection, for any vector v ∈ R

n, we denote

v⊥ := v − 〈v,u1〉u1

to be the component of v that is orthogonal to u1.

C.2.1 NEGATIVE CURVATURE FINDING WHEN THE GRADIENT IS RELATIVELY SMALL

In this part, we present our negative curvature finding algorithm that finds the negative curvature of
a point x with λmin(∇2f(x)) ≤ −√ρǫ when the norm of the gradient ∇f(x) is relatively small.

Algorithm 8: Comparison-based Negative Curvature Finding 1 (Comparison-NCF1)

Input: Function f : Rn → R, x, precision ǫ, error probability δ

1 T ← 384L2
√
n

δρǫ log 36nL√
ρǫ , δ̂ ← 1

8T (ρǫ)1/4

√

πL
n , r ← πδ(ρǫ)1/4

√
L

128ρnT
, γ ← δr

16

√

πρǫ
n

2 y0 ←Uniform(Sn−1)
3 for t = 0, . . . ,T − 1 do

4 ĝt ←Comparison-GDE(x+ ryt, δ̂, γ)

5 ȳt+1 ← yt − δ
16L

√

ρǫ
n ĝt

6 yt+1 ← yt+1/‖yt+1‖
7 return ê← yT

18

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Under review as a conference paper at ICLR 2025

Lemma 10. In the setting of Problem 4, for any x satisfying

‖∇f(x)‖ ≤ L

(

πδ

256nT

)2√
ǫ

ρ
, λmin(∇2f(x)) ≤ −√ρǫ,

Algorithm 8 outputs a unit vector ê satisfying

êT ∇2f(x)ê ≤ −√ρǫ/4,

with success probability at least 1− δ using

O

(

L2n3/2

δρǫ
log2

nL

δ
√
ρǫ

)

queries.

To prove Lemma 10, without loss of generality we assume x = 0 by shifting R
n such that x is

mapped to 0. We denote zt := ryt/‖yt‖ for each iteration t ∈ [T] of Algorithm 8.

Lemma 11. In the setting of Problem 4, for any iteration t ∈ [T] of Algorithm 8 with |yt,1| ≥ δ
8

√

π
n ,

we have

‖∇f(zt)‖ ≥
δr

16

√

πρǫ

n
.

Proof. Observe that

‖∇f(zk)‖ ≥ |∇1f(zk)|
= |∇1f(0) + (∇2f(0)zk)1 +∇1f(zk)−∇1f(0)− (∇2f(0)zk)1|
≥ |(∇2f(0)zk)1| − |∇1f(0)| − |∇1f(zk)−∇1f(0)− (∇2f(0)zk)1|.

Given that f is ρ-Hessian Lipschitz, we have

|∇1f(zk)−∇1f(0)− (∇2f(0)zk)1| ≤
ρ‖zk‖2

2
=

ρr2

2
≤ δr

32

√

πρǫ

n
.

Moreover, we have

|(∇2f(0)zk)1| =
√
ρǫ‖zk,1‖ ≥

δr

8

√

πρǫ

n
,

which leads to

‖∇f(zk)‖ ≥ |∇1f(zk)|
≥ |(∇2f(0)zk)1| − |∇1f(0)| − |∇1f(zk)−∇1f(0)− (∇2f(0)zk)1|

≥ δr

16

√

πρǫ

n
,

where the last inequality is due to the fact that

‖∇1f(0)‖ ≤ ‖∇f(0)‖ ≤
πδr(ρǫ)1/4

√
L

256nT
≤ δr

32

√

πρǫ

n
.

Lemma 12. In the setting of Problem 4, for any iteration t ∈ [T] of Algorithm 8 we have

|yt,1| ≥
δ

8

√

π

n
(8)

if |y0,1| ≥ δ
2

√

π
n and ‖∇f(0)‖ ≤ δr

32

√

πρǫ
n .

19

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Under review as a conference paper at ICLR 2025

Proof. We use recurrence to prove this lemma. In particular, assume

|yt,1|
‖yt,⊥‖

≥ δ

2

√

π

n

(

1− 1

2T

)t

(9)

is true for all t ≤ k for some k, which guarantees that

|yt,1| ≥
δ

4

√

π

n

(

1− 1

2T

)t

Then for t = k + 1, we have

ȳk+1,⊥ = yk,⊥ −
δ

16L

√

ρǫ

n
· ĝk,⊥,

and

‖ȳk+1,⊥‖ ≤
∥

∥

∥

∥

yk,⊥ −
δ

16L

√

ρǫ

n
· ∇⊥f(zk)

‖∇f(zk)‖

∥

∥

∥

∥

+
δ

16L

√

ρǫ

n

∥

∥

∥

∥

ĝk,⊥ −
∇⊥f(zk)

‖∇f(zk)‖

∥

∥

∥

∥

. (10)

Since ‖f(zt)‖ ≥ δr
16

√

πρǫ
n by Lemma 11, we have

δ

16L

√

ρǫ

n

∥

∥

∥

∥

ĝk,⊥ −
∇⊥f(zk)

‖∇f(zk)‖

∥

∥

∥

∥

≤ δ

16L

√

ρǫ

n

∥

∥

∥

∥

ĝk −
∇f(zk)
‖∇f(zk)‖

∥

∥

∥

∥

≤ δδ̂

16L

√

ρǫ

n
≤ δ

64T
√
n
.

by Theorem 1. Moreover, observe that

∇⊥f(zk) = (∇2f(0)zk)⊥ +∇⊥f(0) + (∇⊥f(zk)−∇⊥f(0)− (∇2f(0)zk)⊥)

= ∇2f(0)zk,⊥ +∇⊥f(0) + (∇⊥f(zk)−∇⊥f(0)− (∇2f(0)zk)⊥), (11)

where the norm of

σk,⊥ := ∇⊥f(zk)−∇⊥f(0)− (∇2f(0)zk)⊥

is upper bounded by

ρr2

2
+

πδr(ρǫ)1/4
√
L

256nT
≤ πδr(ρǫ)1/4

√
L

128nT
≤ δr

16

√

πρǫ

n

given that f is ρ-Hessian Lipschitz and ‖∇f(0)‖ ≤ δr
32

√

πρǫ
n . Next, we proceed to bound the first

term on the RHS of (10), where

yk,⊥ −
δ

16L

√

ρǫ

n
· ∇⊥f(zk)

‖∇f(zk)‖
= yk,⊥ −

δ

16L

√

ρǫ

n
· ∇⊥f(zk)

‖∇f(zk)‖

= yk,⊥ −
δ

16L

√

ρǫ

n
· ∇

2f(0)zk,⊥
‖∇f(zk)‖

− δ

16L

√

ρǫ

n
· σk,⊥
‖∇f(zk)‖

,

where

∇2f(0)zk,⊥ =

n
∑

i=2

λi〈zk,⊥,ui〉ui = r

n
∑

i=2

λi〈yk,⊥,ui〉ui,

and

yk,⊥ −
δ

16L

√

ρǫ

n
· ∇

2f(0)zk,⊥
‖∇f(zk)‖

=

n
∑

i=2

(

1− rδ

16‖∇f(zk)‖

√

ρǫ

n

λi

L

)

〈yk,⊥,ui〉ui.

Given that

−1 ≤ rδ

16‖∇f(zk)‖

√

ρǫ

n

λi

L
≤ 1

20

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Under review as a conference paper at ICLR 2025

is always true, we have
∥

∥

∥

∥

yk,⊥ −
δ

16L

√

ρǫ

n
· ∇

2f(0)zk,⊥
‖∇f(zk)‖

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

n
∑

i=2

(

1 +
rδρǫ

16‖∇f(zk)‖L
√
n

)

〈yk,⊥,ui〉ui

∥

∥

∥

∥

∥

≤
(

1 +
rδρǫ

16‖∇f(zk)‖L
√
n

)

‖yk,⊥‖

and
∥

∥

∥

∥

yk,⊥ −
δ

16L

√

ρǫ

n
· ∇⊥f(zk)

‖∇f(zk)‖

∥

∥

∥

∥

≤
(

1 +
rδρǫ

16‖∇f(zk)‖L
√
n

)

‖yk,⊥‖+
∥

∥

∥

∥

δ

16L

√

ρǫ

n
· σk,⊥
‖∇f(zk)‖

∥

∥

∥

∥

≤
(

1 +
rδρǫ

16‖∇f(zk)‖L
√
n

)

‖yk,⊥‖+
δ

64T
√
n
.

Combined with (10), we can derive that

‖ȳk+1,⊥‖ ≤
∥

∥

∥

∥

yk,⊥ −
δ

16L

√

ρǫ

n
· ∇⊥f(zk)

‖∇f(zk)‖

∥

∥

∥

∥

+
δ

16L

√

ρǫ

n

∥

∥

∥

∥

ĝk,⊥ −
∇⊥f(zk)

‖∇f(zk)‖

∥

∥

∥

∥

(12)

≤
(

1 +
rδρǫ

16‖∇f(zk)‖L
√
n

)

‖yk,⊥‖+
δ

32T
√
n
. (13)

Similarly, we have

|ȳk+1,1| ≥
∣

∣

∣

∣

yk,1 −
δ

16L

√

ρǫ

n
· ∇1f(zk)

‖∇f(zk)‖

∣

∣

∣

∣

− δ

16L

√

ρǫ

n

∣

∣

∣

∣

ĝk,1 −
∇1f(zk)

‖∇f(zk)‖

∣

∣

∣

∣

, (14)

where the second term on the RHS of (14) satisfies

δ

16L

√

ρǫ

n

∣

∣

∣

∣

ĝk,1 −
∇1f(zk)

‖∇f(zk)‖

∣

∣

∣

∣

≤ δ

16L

√

ρǫ

n

∥

∥

∥

∥

ĝk −
∇f(zk)
‖∇f(zk)‖

∥

∥

∥

∥

≤ δδ̂

16L

√

ρǫ

n
≤ δ

64T
√
n
,

by Theorem 1, whereas the first term on the RHS of (14) satisfies

yk,1 −
δ

16L

√

ρǫ

n
· ∇1f(zk)

‖∇f(zk)‖
= yk,1 −

δ

16L

√

ρǫ

n
· u

⊤
1 ∇2f(0)u1yk,1
‖∇f(zk)‖

− δ

16L

√

ρǫ

n
· σk,1

‖∇f(zk)‖

=

(

1 +
rδρǫ

16‖∇f(zk)‖L
√
n

)

yk,1 −
δ

16L

√

ρǫ

n
· σk,1

‖∇f(zk)‖
,

where the absolute value of

σk,1 := ∇1f(zk)−∇1f(0)− (∇2f(0)zk)1

is upper bounded by

ρr2

2
+

πδr(ρǫ)1/4
√
L

256nT
≤ πδr(ρǫ)1/4

√
L

128nT
≤ δr

16

√

πρǫ

n

given that f is ρ-Hessian Lipschitz and

‖∇f(0)‖ ≤ πδr(ρǫ)1/4
√
L

256nT
.

Combined with (14), we can derive that

|ȳk+1,1| ≥
∣

∣

∣

∣

yk,1 −
δ

16L

√

ρǫ

n
· ∇1f(zk)

‖∇f(zk)‖

∣

∣

∣

∣

− δ

16L

√

ρǫ

n

∣

∣

∣

∣

ĝk,1 −
∇1f(zk)

‖∇f(zk)‖

∣

∣

∣

∣

≥
(

1 +
rδρǫ

16‖∇f(zk)‖L
√
n

)

|yk,1| −
δ

32T
√
n
.

Combined with (12), we have

|yk+1,1|
‖yk+1,⊥‖

=
|ȳk+1,1|
‖ȳk+1,⊥‖

≥

(

1 + rδρǫ
16‖∇f(zk)‖L

√
n

)

|yk,1| − δ
32T

√
n

(

1 + rδρǫ
16‖∇f(zk)‖L

√
n

)

‖yk,⊥‖+ δ
32T

√
n

.

21

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Under review as a conference paper at ICLR 2025

Hence, if |yk,1| ≥ 1
2 , (9) is also true for t = k + 1. Otherwise, we have ‖yk,⊥‖ ≥

√
3/2 and

|yk+1,1|
‖yk+1,⊥‖

≥

(

1 + rδρǫ
16‖∇f(zk)‖L

√
n

)

|yk,1| − δ
32T

√
n

(

1 + rδρǫ
16‖∇f(zk)‖L

√
n

)

‖yk,⊥‖+ δ
32T

√
n

≥

(

1 + rδρǫ
16‖∇f(zk)‖L

√
n
− 1

8T

)

(

1 + rδρǫ
16‖∇f(zk)‖L

√
n
+ 1

8T

)

|yk,1|
‖yk,⊥‖

≥
(

1− 1

2T

) |yk,1|
‖yk,⊥‖

≥ δ

2

√

π

n

(

1− 1

2T

)k+1

.

Thus, we can conclude that (9) is true for all t ∈ [T]. This completes the proof.

Lemma 13. In the setting of Problem 4, for any i with λi ≥ −
√
ρǫ

2 , the T -th iteration of Algorithm 8
satisfies

|yT ,i|
|yT ,1|

≤ (ρǫ)1/4

4
√
nL

(15)

if |y0,1| ≥ δ
2

√

π
n and ‖∇f(0)‖ ≤ δr

32

√

πρǫ
n .

Proof. For any t ∈ [T − 1], similar to (14) in the proof of Lemma 12, we have

ȳt+1,i = yt,i −
δ

16L

√

ρǫ

n
· ĝt,i,

and

|ȳt+1,i| ≤
∣

∣

∣

∣

yt,i −
δ

16L

√

ρǫ

n
· ∇if(zk)

‖∇f(zk)‖

∣

∣

∣

∣

− δ

16L

√

ρǫ

n

∣

∣

∣

∣

ĝt,i −
∇if(zk)

‖∇f(zk)‖

∣

∣

∣

∣

. (16)

By Lemma 12 we have |yt,1| ≥ δ
8

√

π
n for each t ∈ [T], which combined with Lemma 11 leads to

‖∇f(zt)‖ ≥ δr
16

√

πρǫ
n . Thus, the second term on the RHS of (16) satisfies

δ

16L

√

ρǫ

n

∣

∣

∣

∣

ĝt,i −
∇if(zt)

‖∇f(zt)‖

∣

∣

∣

∣

≤ δ

16L

√

ρǫ

n

∥

∥

∥

∥

ĝt −
∇f(zt)
‖∇f(zt)‖

∥

∥

∥

∥

≤ δδ̂

16L

√

ρǫ

n
≤ δ(ρǫ)1/4

128T n

√

π

L

by Theorem 1. Moreover, the first term on the RHS of (16) satisfies

yt,i −
δ

16L

√

ρǫ

n
· ∇if(zt)

‖∇f(zt)‖
= yt,i −

δ

16L

√

ρǫ

n
· u

⊤
i ∇2f(0)uiyt,i
‖∇f(zt)‖

− δ

16L

√

ρǫ

n
· σt,i

‖∇f(zt)‖

≤
(

1 +
rδρǫ

32‖∇f(zt)‖L
√
n

)

yt,i −
δ

16L

√

ρǫ

n
· σt,i

‖∇f(zt)‖
,

where the absolute value of

σt,i := ∇if(zt)−∇if(0)− (∇2f(0)zt)i

is upper bounded by

ρr2

2
+

πδr(ρǫ)1/4
√
L

256nT
≤ πδr(ρǫ)1/4

√
L

128nT

given that f is ρ-Hessian Lipschitz and

‖∇f(0)‖ ≤ πδr(ρǫ)1/4
√
L

256nT
.

Combined with (16), we can derive that

|ȳt+1,i| ≤
∣

∣

∣

∣

yt,i −
δ

16L

√

ρǫ

n
· ∇if(zt)

‖∇f(zt)‖

∣

∣

∣

∣

+
δ

16L

√

ρǫ

n

∣

∣

∣

∣

ĝt,i −
∇if(zt)

‖∇f(zt)‖

∣

∣

∣

∣

≤
(

1 +
rδρǫ

32‖∇f(zt)‖L
√
n

)

|yt,i|+
δ(ρǫ)1/4

64T n

√

π

L
.

22

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Under review as a conference paper at ICLR 2025

Considering that |yt,1| ≥ δ
8

√

π
n ,

|ȳt+1,1| ≥
∣

∣

∣

∣

yt,1 −
δ

16L

√

ρǫ

n
· ∇1f(zt)

‖∇f(zt)‖

∣

∣

∣

∣

− δ

16L

√

ρǫ

n

∣

∣

∣

∣

ĝt,1 −
∇1f(zt)

‖∇f(zt)‖

∣

∣

∣

∣

≥
(

1 +
rδρǫ

16‖∇f(zt)‖L
√
n

)

|yt,1| −
δ(ρǫ)1/4

64T n

√

π

L

≥
(

1 +
rδρǫ

24‖∇f(zt)‖L
√
n

)

|yt,1|,

where the last inequality is due to the fact that |yt,1| ≥ δ
8

√

π
n by Lemma 12. Hence, for any t ∈

[T − 1] we have

|yt+1,i|
|yt+1,1|

=
|ȳt+1,i|
|ȳt+1,1|

≤

(

1 + rδρǫ
32‖∇f(zt)‖L

√
n

)

|yt,i|+ δ(ρǫ)1/4

64T n

√

π
L

(

1 + rδρǫ
24‖∇f(zt)‖L

√
n

)

|yt,1|

≤

(

1 + rδρǫ
32‖∇f(zt)‖L

√
n

)

|yt,i|
(

1 + rδρǫ
24‖∇f(zt)‖L

√
n

)

|yt,1|
+

(ρǫ)1/4

8T
√
nL

≤
(

1− rδρǫ

192‖∇f(zt)‖L
√
n

) |yt,i|
|yt,1|

+
(ρǫ)1/4

8T
√
nL

.

Since f is L-smooth, we have

‖∇f(zt)‖ ≤ ‖∇f(0)‖+ L‖zt‖ ≤ 2Lr,

which leads to

|yt+1,i|
|yt+1,1|

≤
(

1− rδρǫ

192‖∇f(zt)‖L
√
n

) |yt,i|
|yt,1|

+
(ρǫ)1/4

8T
√
nL

≤
(

1− δρǫ

384L2
√
n

) |yt,i|
|yt,1|

+
(ρǫ)1/4

8T
√
nL

.

Thus,

|yT ,i|
|yT ,1|

≤
(

1− δρǫ

384L2
√
n

)T |y0,i|
|y0,1|

+

T
∑

t=1

(ρǫ)1/4

6T
√
nL

(

1− δρǫ

384L2
√
n

)T −t

≤
(

1− δρǫ

384L2
√
n

)T |y0,i|
|y0,1|

+
(ρǫ)1/4

8
√
nL
≤ (ρǫ)1/4

4
√
nL

.

Equipped with Lemma 13, we are now ready to prove Lemma 10.

Proof of Lemma 10. We consider the case where |y0,1| ≥ δ
2

√

π
n , which happens with probability

Pr

{

|y0,1| ≥
δ

2

√

π

n

}

≥ 1− δ

2

√

π

n
· Vol(Sn−2)

Vol(Sn−1)
≥ 1− δ.

In this case, by Lemma 13 we have

|yT ,1|2 =
|yT ,1|2

∑n
i=1 |yT ,i|2

=

(

1 +

n
∑

i=2

(|yT ,i|
|yT ,1|

)2
)−1

≥
(

1 +

√
ρǫ

16L

)−1

≥ 1−
√
ρǫ

8L
,

23

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Under review as a conference paper at ICLR 2025

and

‖yT ,⊥‖2 = 1− |yT ,1|2 ≤
√
ρǫ

8L
.

Let s be the smallest integer such that λs ≥ 0. Then the output ê = yT of Algorithm 8 satisfies

ê⊤∇2f(x)ê = |yT ,1|2u⊤
1 ∇2f(x)u1 + y⊤

T ,⊥∇2f(x)yT ,⊥

≤ −√ρǫ · |yT ,1|2 + L

d
∑

i=s

‖yT ,i‖2

≤ −√ρǫ · |yT ,1|2 + L‖yT ,⊥‖2 ≤ −
√
ρǫ

4
.

The query complexity of Algorithm 8 only comes from the gradient direction estimation step in
Line 4, which equals

T ·O
(

n log
(

n/δ̂
))

= O

(

L2n3/2

δρǫ
log3

nL

δ
√
ρǫ

)

.

C.2.2 NEGATIVE CURVATURE FINDING WHEN THE GRADIENT IS RELATIVELY LARGE

In this part, we present our negative curvature finding algorithm that finds the negative curvature of
a point x with λmin(∇2f(x)) ≤ −√ρǫ when the norm of the gradient ∇f(x) is relatively large.

Algorithm 9: Comparison-based Negative Curvature Finding 2 (Comparison-NCF2)

Input: Function f : Rn → R, x, precision ǫ, error probability δ

1 T ← 384L2
√
n

δρǫ log 36nL√
ρǫ , δ̂ ← 1

8T (ρǫ)1/4

√

πL
n , γx ← πδr(ρǫ)1/4

√
L

256nT
, γy ← δ

8

√

π
n

2 y0 ←Uniform(Sn−1)
3 for t = 0, . . . ,T − 1 do

4 ĝt ←Comparison-Hessian-Vector(x,yt, δ̂, γx, γy)

5 ȳt+1 ← yt − δ
16L

√

ρǫ
n ĝt

6 yt+1 ← yt+1/‖yt+1‖
7 return ê← yT

The subroutine Comparison-Hessian-Vector in Line 4 of Algorithm 9 is given as
Algorithm 10, whose output approximates the Hessian-vector product ∇2f(x) · yt.

Algorithm 10: Comparison-based Hessian-vector product (Comparison-Hessian-Vector)

Input: Function f : Rn → R, x,y ∈ R
n, precision δ̂, lower bound γx on ‖∇f(x)‖, lower

bound γy on |y1|
1 Set r0 ← min

{

γx

100L ,
γx

100ρ ,

√
γxδ̂

20
√
ρ ,

γy δ̂
√
ǫ

20
√
ρ

}

2 ĝ0 ←Comparison-GDE(x,
ρr2

0

γx

, γx), ĝ1 ←Comparison-GDE(x+ r0y,
ρr2

0

γx

, γx/2),

ĝ−1 ←Comparison-GDE(x− r0y,
ρr2

0

γx

, γx/2)

3 Set g =
√

1− 〈ĝ−1, ĝ0〉2ĝ1 −
√

1− 〈ĝ1, ĝ0〉2ĝ−1

4 return ĝ = g/‖g‖

Lemma 14. In the setting of Problem 4, for any x,y ∈ R
d satisfying

‖∇f(x)‖ ≥ γx, λmin(∇2f(x)) ≤ −√ρǫ, ‖y‖ = 1, |y1| ≥ γy,

Algorithm 10 outputs a vector ĝ satisfying
∥

∥

∥

∥

ĝ − ∇2f(x) · y
‖∇2f(x) · y‖

∥

∥

∥

∥

≤ δ̂

using O
(

n log
(

nρL2/γxγ
2
yǫδ̂

2
))

queries.

24

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Under review as a conference paper at ICLR 2025

Proof of Lemma 14. Since f is a ρ-Hessian Lipschitz function,

∥

∥∇f(x+ r0y)−∇f(x)− r0∇2f(x) · y
∥

∥ ≤ ρ

2
r20; (17)

∥

∥∇f(x− r0y)−∇f(x) + r0∇2f(x) · y
∥

∥ ≤ ρ

2
r20. (18)

Therefore,

‖∇f(x+ r0y) +∇f(x− r0y)− 2∇f(x)‖ ≤ ρr20; (19)
∥

∥

∥

∥

∇2f(x) · y − 1

2r0
(∇f(x+ r0y)−∇f(x− r0y))

∥

∥

∥

∥

≤ ρ

2
r0. (20)

Furthermore, because r0 ≤ γx

100L and f is L-smooth,

‖∇f(x+ r0y)‖, ‖∇f(x− r0y)‖ ≥ γx − L · γx
100L

= 0.99γx.

We first understand how to approximate ∇2f(x) · y by normalized vectors
∇f(x)

‖∇f(x)‖ ,
∇f(x+r0y)

‖∇f(x+r0y)‖ ,
∇f(x−r0y)

‖∇f(x−r0y)‖ , and then analyze the approximation error due to using

ĝ0, ĝ1, ĝ−1, respectively. By Lemma 7, we have

1

2‖∇f(x)‖
‖∇f(x)− r0∇2f(x) · y‖

√

1−
〈

∇f(x)+r0∇2f(x)·y
‖∇f(x)+r0∇2f(x)·y‖ ,

∇f(x)
‖∇f(x)‖

〉2

=
1

2‖∇f(x)‖
‖∇f(x) + r0∇2f(x) · y‖

√

1−
〈

∇f(x)−r0∇2f(x)·y
‖∇f(x)−r0∇2f(x)·y‖ ,

∇f(x)
‖∇f(x)‖

〉2
=: α, (21)

i.e., we denote the value above as α. Because f is ρ-Hessian Lipschitz, ‖r0∇2f(x) · y‖ ≤ r0ρ.
Since r0 ≤ γx

100ρ , ‖r0∇2f(x) · y‖ ≤ γx

100 . Also note that by Lemma 6 we have

〈 ∇f(x) + r0∇2f(x) · y
‖∇f(x) + r0∇2f(x) · y‖ ,

∇f(x)
‖∇f(x)‖

〉

≥ 0.94,

〈 ∇f(x)− r0∇2f(x) · y
‖∇f(x)− r0∇2f(x) · y‖ ,

∇f(x)
‖∇f(x)‖

〉

≥ 0.94.

This promises that

α ≥ 0.99

2
√
1− 0.942

≥ 1. (22)

In arguments next, we say a vector u is d-close to a vector v if ‖u − v‖ ≤ d. We prove that the
vector

g̃1 :=
∇f(x)
‖∇f(x)‖ + α ·

(

√

1−
〈 ∇f(x− r0y)

‖∇f(x− r0y)‖
,
∇f(x)
‖∇f(x)‖

〉2 ∇f(x+ r0y)

‖∇f(x+ r0y)‖

−

√

1−
〈 ∇f(x+ r0y)

‖∇f(x+ r0y)‖
,
∇f(x)
‖∇f(x)‖

〉2 ∇f(x− r0y)

‖∇f(x− r0y)‖

)

(23)

is
7ρr2

0

γx

-close to a vector proportional to ∇f(x + r0y). This is because (17), (18), and Lemma 5

imply that

∇f(x+ r0y)

‖∇f(x+ r0y)‖
and

∇f(x) + r0∇2f(x) · y
‖∇f(x) + r0∇2f(x) · y‖

are
ρr2

0

0.99γx

-close to each other,

√

1−
〈 ∇f(x− r0y)

‖∇f(x− r0y)‖
,
∇f(x)
‖∇f(x)‖

〉2 ∇f(x+ r0y)

‖∇f(x+ r0y)‖
(24)

25

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Under review as a conference paper at ICLR 2025

is proportional to∇f(x+ r0y), and the definition of α implies

∇f(x)
‖∇f(x)‖ − α

√

1−
〈 ∇f(x) + r0∇2f(x) · y
‖∇f(x) + r0∇2f(x) · y‖ ,

∇f(x)
‖∇f(x)‖

〉2 ∇f(x)− r0∇2f(x) · y
‖∇f(x)− r0∇2f(x) · y‖

=
∇f(x) + r0∇2f(x) · y

2‖∇f(x)‖ . (25)

The above vector is
ρr2

0

4γx

-close to
∇f(x+r0y)
2‖∇f(x)‖ by (17), and the error in above steps cumulates by at

most
6ρr2

0

0.99γx

using Lemma 6. In total
6ρr2

0

0.99γx

+
ρr2

0

4γx

≤ 7ρr2
0

γx

.

Furthermore, this vector proportional to ∇f(x + r0y) that is
ρr2

0

4γx

-close to (23) has norm at least

(1− 0.01)/2 = 0.495 because the coefficient in (24) is positive, while in the equality above we have
‖r0∇2f(x) · y‖ ≤ γx

100 . Therefore, applying Lemma 5, the vector g̃1 in (23) satisfies

∥

∥

∥

∥

g̃1

‖g̃1‖
− ∇f(x+ r0y)

‖∇f(x+ r0y)‖

∥

∥

∥

∥

≤ 29ρr20
γx

. (26)

Following the same proof, we can prove that the vector

g̃−1 :=
∇f(x)
‖∇f(x)‖ − α ·

(

√

1−
〈 ∇f(x− r0y)

‖∇f(x− r0y)‖
,
∇f(x)
‖∇f(x)‖

〉2 ∇f(x+ r0y)

‖∇f(x+ r0y)‖

−

√

1−
〈 ∇f(x+ r0y)

‖∇f(x+ r0y)‖
,
∇f(x)
‖∇f(x)‖

〉2 ∇f(x− r0y)

‖∇f(x− r0y)‖

)

(27)

satisfies
∥

∥

∥

∥

g̃−1

‖g̃−1‖
− ∇f(x− r0y)

‖∇f(x− r0y)‖

∥

∥

∥

∥

≤ 29ρr20
γx

. (28)

Furthermore, (25) implies that g̃1 − g̃−1 is 2 · 7ρr
2

0

γx

=
14ρr2

0

γx

-close to

∇f(x) + r0∇2f(x) · y
2‖∇f(x)‖ − ∇f(x)− r0∇2f(x) · y

2‖∇f(x)‖ =
r0

‖∇f(x)‖ ∇
2f(x) · y. (29)

Because λmin(∇2f(x)) ≤ −√ρǫ and |y1| ≥ γy, ‖∇2f(x) · y‖ ≥ √ρǫγy. Therefore, the RHS of

(29) has norm at least
r0

√
ρǫγy

γx

, and by Lemma 5 we have

∥

∥

∥

∥

g̃1 − g̃−1

‖g̃1 − g̃−1‖
− ∇2f(x) · y
‖∇2f(x) · y‖

∥

∥

∥

∥

≤ 14ρr20
γx

/
r0
√
ρǫγy

γx
=

14r0
√
ρ√

ǫγy
. (30)

Finally, by Theorem 1 and our choice of the precision parameter, the error coming from running
Comparison-GDE is:

∥

∥

∥

∥

ĝ0 −
∇f(x)
‖∇f(x)‖

∥

∥

∥

∥

,

∥

∥

∥

∥

ĝ1 −
∇f(x+ r0y)

‖∇f(x+ r0y)‖

∥

∥

∥

∥

,

∥

∥

∥

∥

ĝ−1 −
∇f(x− r0y)

‖∇f(x− r0y)‖

∥

∥

∥

∥

≤ ρr20
γx

. (31)

Combined with (26) and (28), we know that the vector g we obtained in Algorithm 10 is

29ρr20
γx

+
29ρr20
γx

+ 3 · ρr
2
0

γx
=

61ρr20
γx

(32)

close to (g̃1 − g̃−1)/2α. Since α ≥ 1 by (22), by Lemma 5 we have

∥

∥

∥

∥

g

‖g‖ −
g̃1 − g̃−1

‖g̃1 − g̃−1‖

∥

∥

∥

∥

≤ 61ρr20
γx

. (33)

26

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Under review as a conference paper at ICLR 2025

In total, all the errors we have accumulated are (30) and (33):
∥

∥

∥

∥

g

‖g‖ −
∇2f(x) · y
‖∇2f(x) · y‖

∥

∥

∥

∥

≤ 61ρr20
γx

+
14r0
√
ρ√

ǫγy
. (34)

Our selection of r0 = min

{

γx

100L ,
γx

100ρ ,

√
γxδ̂

20
√
ρ ,

γy δ̂
√
ǫ

20
√
ρ

}

can guarantee that (34) is at most δ̂.

In terms of query complexity, we made 3 calls to Comparison-GDE. By Theorem 1 and that our
precision is

ρr20
γx

= Ω

(

γxγ
2
yǫδ̂

2

ρL2

)

,

the total query complexity is O
(

n log
(

nρL2/γxγ
2
yǫδ̂

2
))

.

Based on Lemma 14, we obtain the following result.

Lemma 15. In the setting of Problem 4, for any x satisfying

‖∇f(x)‖ ≥ L

(

πδ

256nT

)2√
ǫ

ρ
, λmin(∇2f(x)) ≤ −√ρǫ,

Algorithm 9 outputs a unit vector ê satisfying

ê⊤∇2f(x)ê ≤ −√ρǫ/4,
with success probability at least 1− δ using

O

(

L2n3/2

δρǫ
log2

nL

δ
√
ρǫ

)

queries.

The proof of Lemma 15 is similar to the proof of Lemma 10. Without loss of generality we assume
x = 0 by shifting R

n such that x is mapped to 0. We denote gt := ∇2f(0) · yt for each iteration
t ∈ [T] of Algorithm 9.

Lemma 16. In the setting of Problem 4, for any iteration t ∈ [T] of Algorithm 9 we have

|yt,1| ≥
δ

8

√

π

n
(35)

if |y0,1| ≥ δ
2

√

π
n and ‖∇f(0)‖ ≤ δr

32

√

πρǫ
n .

Proof. We use recurrence to prove this lemma. In particular, assume

|yt,1|
‖yt,⊥‖

≥ δ

2

√

π

n

(

1− 1

2T

)t

(36)

is true for all t ≤ k for some k, which guarantees that

|yt,1| ≥
δ

4

√

π

n

(

1− 1

2T

)t

Then for t = k + 1, we have

ȳk+1,⊥ = yk,⊥ −
δ

16L

√

ρǫ

n
· ĝk,⊥,

and

‖ȳk+1,⊥‖ ≤
∥

∥

∥

∥

yk,⊥ −
δ

16L

√

ρǫ

n
· gk,⊥
‖gk‖

∥

∥

∥

∥

+
δ

16L

√

ρǫ

n

∥

∥

∥

∥

ĝk,⊥ −
gk,⊥
‖gk‖

∥

∥

∥

∥

, (37)

27

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Under review as a conference paper at ICLR 2025

where

δ

16L

√

ρǫ

n

∥

∥

∥

∥

ĝk,⊥ −
gk,⊥
‖gk‖

∥

∥

∥

∥

≤ δ

16L

√

ρǫ

n

∥

∥

∥

∥

ĝk −
gk

‖gk‖

∥

∥

∥

∥

≤ δδ̂

16L

√

ρǫ

n
≤ δ

64T
√
n
.

by Lemma 14. Next, we proceed to bound the first term on the RHS of (37). Note that

gk,⊥ = ∇2f(0)yk,⊥ =

n
∑

i=2

λi〈yk,⊥,ui〉ui,

and

yk,⊥ −
δ

16L

√

ρǫ

n
· gk,⊥
‖gk‖

=
n
∑

i=2

(

1− δ

16‖gk‖

√

ρǫ

n

λi

L

)

〈yk,⊥,ui〉ui,

where

‖gk‖ ≥ |gk,1| ≥
√
ρǫ|yk,1| ≥

δ

8

√

π

n
.

Consequently, we have

−1 ≤ δ

16‖gk‖

√

ρǫ

n

λi

L
≤ 1, ∀i = 1, . . . , n,

which leads to
∥

∥

∥

∥

yk,⊥ −
δ

16L

√

ρǫ

n
· gk,⊥
‖gk‖

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

n
∑

i=2

(

1 +
δρǫ

16‖gk‖L
√
n

)

〈yk,⊥,ui〉ui

∥

∥

∥

∥

∥

≤
(

1 +
δρǫ

16‖gk‖L
√
n

)

‖yk,⊥‖.

Combined with (37), we can derive that

‖ȳk+1,⊥‖ ≤
∥

∥

∥

∥

yk,⊥ −
δ

16L

√

ρǫ

n
· gk,⊥
‖gk‖

∥

∥

∥

∥

+
δ

16L

√

ρǫ

n

∥

∥

∥

∥

ĝk,⊥ −
gk,⊥
‖gk‖

∥

∥

∥

∥

(38)

≤
(

1 +
δρǫ

16‖gk‖L
√
n

)

‖yk,⊥‖+
δ

64T
√
n
. (39)

Similarly, we have

|ȳk+1,1| ≥
∣

∣

∣

∣

yk,1 −
δ

16L

√

ρǫ

n
· gk,1‖gk‖

∣

∣

∣

∣

− δ

16L

√

ρǫ

n

∣

∣

∣

∣

ĝk,1 −
gk,1
‖gk‖

∣

∣

∣

∣

, (40)

where the second term on the RHS of (40) satisfies

δ

16L

√

ρǫ

n

∣

∣

∣

∣

ĝk,1 −
gk,1
‖gk‖

∣

∣

∣

∣

≤ δ

16L

√

ρǫ

n

∥

∥

∥

∥

ĝk −
gk

‖gk‖

∥

∥

∥

∥

≤ δδ̂

16L

√

ρǫ

n
≤ δ

64T
√
n
,

by Lemma 14. Combined with (40), we can derive that

|ȳk+1,1| ≥
∣

∣

∣

∣

yk,1 −
δ

16L

√

ρǫ

n
· gk,1‖gk‖

∣

∣

∣

∣

− δ

16L

√

ρǫ

n

∣

∣

∣

∣

ĝk,1 −
gk,1
‖gk‖

∣

∣

∣

∣

≥
(

1 +
δρǫ

16‖gk‖L
√
n

)

|yk,1| −
δ

64T
√
n
.

Consequently,

|yk+1,1|
‖yk+1,⊥‖

=
|ȳk+1,1|
‖ȳk+1,⊥‖

≥

(

1 + δρǫ
16‖gk‖L

√
n

)

|yk,1| − δ
64T

√
n

(

1 + δρǫ
16‖gk‖L

√
n

)

‖yk,⊥‖+ δ
64T

√
n

.

28

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

Under review as a conference paper at ICLR 2025

Thus, if |yk,1| ≥ 1
2 , (36) is also true for t = k + 1. Otherwise, we have ‖yk,⊥‖ ≥

√
3/2 and

|yk+1,1|
‖yk+1,⊥‖

≥

(

1 + δρǫ
16‖∇f(zk)‖L

√
n

)

|yk,1| − δ
64T

√
n

(

1 + δρǫ
16‖gk‖L

√
n

)

‖yk,⊥‖+ δ
64T

√
n

≥

(

1 + δρǫ
16‖gk‖L

√
n
− 1

8T

)

(

1 + δρǫ
16‖gk‖L

√
n
+ 1

8T

)

|yk,1|
‖yk,⊥‖

≥
(

1− 1

2T

) |yk,1|
‖yk,⊥‖

≥ δ

2

√

π

n

(

1− 1

2T

)k+1

.

Thus, we can conclude that (36) is true for all t ∈ [T]. This completes the proof.

Lemma 17. In the setting of Problem 4, for any i with λi ≥ −
√
ρǫ

2 , the T -th iteration of Algorithm 9
satisfies

|yT ,i|
|yT ,1|

≤ (ρǫ)1/4

4
√
nL

(41)

if |y0,1| ≥ δ
2

√

π
n .

Proof. For any t ∈ [T − 1], similar to (40) in the proof of Lemma 16, we have

ȳt+1,i = yt,i −
δ

16L

√

ρǫ

n
· ĝt,i,

and

|ȳt+1,i| ≤
∣

∣

∣

∣

yt,i −
δ

16L

√

ρǫ

n
· gt,i
‖gt‖

∣

∣

∣

∣

− δ

16L

√

ρǫ

n

∣

∣

∣

∣

ĝt,i −
gt,i
‖gt‖

∣

∣

∣

∣

, (42)

where the second term on the RHS of (42) satisfies

δ

16L

√

ρǫ

n

∣

∣

∣

∣

ĝt,i −
gt,i
‖gt‖

∣

∣

∣

∣

≤ δ

16L

√

ρǫ

n

∥

∥

∥

∥

ĝt −
gt

‖gt‖

∥

∥

∥

∥

≤ δδ̂

16L

√

ρǫ

n
≤ δ(ρǫ)1/4

128T n

√

π

L

by Lemma 14. Moreover, the first term on the RHS of (42) satisfies

yt,i −
δ

16L

√

ρǫ

n
· gt,i
‖gt‖

= yt,i −
δ

16L

√

ρǫ

n
· u

⊤
i ∇2f(0)uiyt,i
‖gt‖

≤
(

1 +
δρǫ

32‖gt‖L
√
n

)

yt,i,

Consequently, we have

|ȳt+1,i| ≤
(

1 +
δρǫ

32‖gt‖L
√
n

)

|yt,i|+
δ(ρǫ)1/4

128T n

√

π

L
.

Meanwhile,

|ȳt+1,1| ≥
∣

∣

∣

∣

yt,1 −
δ

16L

√

ρǫ

n
· gt,1‖gt‖

∣

∣

∣

∣

− δ

16L

√

ρǫ

n

∣

∣

∣

∣

ĝt,1 −
gt,1
‖gt‖

∣

∣

∣

∣

≥
(

1 +
δρǫ

16‖gt‖L
√
n

)

|yt,1| −
δ(ρǫ)1/4

128T n

√

π

L

≥
(

1 +
δρǫ

24‖gt‖L
√
n

)

|yt,1|,

29

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

Under review as a conference paper at ICLR 2025

where the last inequality is due to the fact that |yt,1| ≥ δ
8

√

π
n by Lemma 16. Hence, for any t ∈

[T − 1] we have

|yt+1,i|
|yt+1,1|

=
|ȳt+1,i|
|ȳt+1,1|

≤

(

1 + δρǫ
32‖gt‖L

√
n

)

|yt,i|+ δ(ρǫ)1/4

128T n

√

π
L

(

1 + δρǫ
24‖gt‖L

√
n

)

|yt,1|

≤

(

1 + δρǫ
32‖gt‖L

√
n

)

|yt,i|
(

1 + δρǫ
24‖gt‖L

√
n

)

|yt,1|
+

(ρǫ)1/4

8T
√
nL

≤
(

1− δρǫ

192‖gt‖L
√
n

) |yt,i|
|yt,1|

+
(ρǫ)1/4

8T
√
nL

.

Since f is L-smooth, we have

‖gt‖ ≤ +L‖yt‖ ≤ L,

which leads to

|yt+1,i|
|yt+1,1|

≤
(

1− δρǫ

192‖gt‖L
√
n

) |yt,i|
|yt,1|

+
(ρǫ)1/4

8T
√
nL

≤
(

1− δρǫ

192L2
√
n

) |yt,i|
|yt,1|

+
(ρǫ)1/4

8T
√
nL

.

Thus,

|yT ,i|
|yT ,1|

≤
(

1− δρǫ

192L2
√
n

)T |y0,i|
|y0,1|

+

T
∑

t=1

(ρǫ)1/4

6T
√
nL

(

1− δρǫ

192L2
√
n

)T −t

≤
(

1− δρǫ

192L2
√
n

)T |y0,i|
|y0,1|

+
(ρǫ)1/4

8
√
nL
≤ (ρǫ)1/4

4
√
nL

.

Equipped with Lemma 17, we are now ready to prove Lemma 15.

Proof of Lemma 15. We consider the case where |y0,1| ≥ δ
2

√

π
n , which happens with probability

Pr

{

|y0,1| ≥
δ

2

√

π

n

}

≥ 1− δ

2

√

π

n
· Vol(Sn−2)

Vol(Sn−1)
≥ 1− δ.

In this case, by Lemma 17 we have

|yT ,1|2 =
|yT ,1|2

∑n
i=1 |yT ,i|2

=

(

1 +

n
∑

i=2

(|yT ,i|
|yT ,1|

)2
)−1

≥
(

1 +

√
ρǫ

16L

)−1

≥ 1−
√
ρǫ

8L
,

and

‖yT ,⊥‖2 = 1− |yT ,1|2 ≤
√
ρǫ

8L
.

Let s be the smallest integer such that λs ≥ 0. Then the output ê = yT of Algorithm 9 satisfies

ê⊤∇2f(x)ê = |yT ,1|2u⊤
1 ∇2f(x)u1 + y⊤

T ,⊥∇2f(x)yT ,⊥

≤ −√ρǫ · |yT ,1|2 + L

d
∑

i=s

‖yT ,i‖2

≤ −√ρǫ · |yT ,1|2 + L‖yT ,⊥‖2 ≤ −
√
ρǫ

4
.

30

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

Under review as a conference paper at ICLR 2025

The query complexity of Algorithm 9 only comes from the Hessian-vector product estimation step
in Line 4, which equals

T ·O
(

n log
(

nρL2/γxγ
2
yǫδ̂

2
))

= O

(

L2n3/2

δρǫ
log2

nL

δ
√
ρǫ

)

.

C.3 PROOF OF LEMMA 4

Proof. By Lemma 10 and Lemma 15, at least one of the two unit vectors v1,v2 is a negative cur-
vature direction. Quantitatively, with probability at least 1 − δ, at least one of the following two
inequalities is true:

v⊤
1 ∇2f(z)v1 ≤ −

√
ρǫ

4
, v⊤

2 ∇2f(z)v2 ≤ −
√
ρǫ

4
.

WLOG we assume the first inequality is true. Denote η = 1
2

√

ǫ
ρ . Given that f is ρ-Hessian Lipschitz,

we have

f(z1,+) ≤ f(z) + η〈∇f(z),v1〉+
∫ η

0

(
∫ a

0

(

−
√
ρǫ

4
+ ρb

)

db

)

da

= f(z) + η〈∇f(z),v1〉 −
1

48

√

ǫ3

ρ
,

and

f(z1,−) ≤ f(z)− η〈∇f(z),v1〉+
∫ η

0

(
∫ a

0

(

−
√
ρǫ

4
+ ρb

)

db

)

da

= f(z)− η〈∇f(z),v1〉 −
1

48

√

ǫ3

ρ
.

Hence,

f(z1,+) + f(z1,−)

2
≤ f(z)− 1

48

√

ǫ3

ρ
,

which leads to

f(zout) ≤ min{f(z1,+), f(z1,−)} ≤ f(z)− 1

48

√

ǫ3

ρ
.

By Lemma 10 and Lemma 15, the query complexity of Algorithm 6 equals

O

(

L2n3/2

δρǫ
log2

nL

δ
√
ρǫ

)

.

C.4 ESCAPE FROM SADDLE POINT VIA NEGATIVE CURVATURE FINDING

Lemma 18. In the setting of Problem 4, if the iterations xs,0, . . . ,xs,T of Algorithm 5 satisfy

f(xs,T)− f(xs,0) ≥ −
1

48

√

ǫ3

ρ
,

then the number of ǫ-FOSP among xs,0, . . . ,xs,T is at least T − 3L
32

√
ρǫ .

31

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

Under review as a conference paper at ICLR 2025

Proof. For any iteration t ∈ [T] with ‖∇f(xs,t)‖ > ǫ, by Theorem 1 we have
∥

∥

∥

∥

ĝt −
∇f(xs,t)

‖∇f(xs,t)‖

∥

∥

∥

∥

≤ δ =
1

6
,

indicating

f(xs,t+1)− f(xs,t) ≤ f(ys,t)− f(xs,t)

≤ 〈∇f(xs,t),xs,t+1 − xs,t〉+
L

2
‖xs,t+1 − xs,t‖2

≤ − ǫ

3L
〈∇f(xs,t), ĝt〉+

L

2

(ǫ

3L

)2

≤ − ǫ

3L
‖∇f(xs,t)‖(1− δ) +

ǫ2

18L
≤ −2ǫ2

9L
.

That is to say, for any t ∈ [T] such that xs,t is not an ǫ-FOSP, the function value will decrease at

least 2ǫ2

9L in this iteration. Moreover, given that

f(xs,t+1) = min{f(xs,t), f(ys,t)} ≤ f(xs,t)

and

f(xs,0)− f(xs,T) ≤ 1

48

√

ǫ3

ρ
,

we can conclude that the number of ǫ-FOSP among xs,1, . . . ,xs,T is at least

T − 1

48

√

ǫ3

ρ
· 9L
2ǫ2

= T − 3L

32
√
ρǫ

.

Lemma 19. In the setting of Problem 4, if there are less than 8T

9 ǫ-SOSP among the iterations

xs,0, . . . ,xs,T of Algorithm 5, with probability at least 1− (1− p(1− δ))
T /18

we have

f(xs+1,0)− f(xs,0) ≤ −
1

48

√

ǫ3

ρ
.

Proof. If f(xs,T)− f(xs,0) ≤ − 1
48

√

ǫ3

ρ , we directly have

f(xs+1,0)− f(xs,0) = min{f(xs,0), . . . , f(xs,T), f(x′
s,0), . . . , f(x

′
s,T)} − f(xs,0)

≤ f(xs,T)− f(xs,0) ≤ −
1

48

√

ǫ3

ρ
.

Hence, we only need to prove the case with f(xs+1,0)− f(xs,0) > − 1
48

√

ǫ3

ρ , where by Lemma 18

the number of ǫ-FOSP among xs,0, . . . ,xs,T is at least T − 3L
32

√
ρǫ . Since there are less than 8T

9

ǫ-SOSP among the iterations xs,0, . . . ,xs,T , there exists

T − 3L

32
√
ρǫ
− 8T

9
≥ T

18

different values of t ∈ [T] such that

‖∇f(xs,t)‖ ≤ ǫ, λmin(∇2f(x)) ≤ −√ρǫ.
For each such t, with probability p the subroutine Comparison-NCD (Algorithm 6) is executed in
this iteration. Conditioned on that, with probability at least 1− δ its output x′

s,t satisfies

f(x′
s,t)− f(xs,t) ≤ −

1

48

√

ǫ3

ρ

32

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

Under review as a conference paper at ICLR 2025

by Lemma 4. Hence, with probability at least

1− (1− p(1− δ))
T /18

,

there exists a t′ ∈ [T] with

f(x′
s,t′)− f(xs,t′) ≤ −

1

48

√

ǫ3

ρ
,

which leads to

f(xs+1,0)− f(xs,0) = min{f(xs,0), . . . , f(xs,T), f(x′
s,0), . . . , f(x

′
s,T)} − f(xs,0)

≤ f(x′
s,t′)− f(xs,t′) ≤ −

1

48

√

ǫ3

ρ
,

where the second inequality is due to the fact that f(xs,t′) ≤ (xs,0) for any possible value of t′ in
[T].

Proof of Theorem 5. We assume for any s = 1, . . . ,S with xs,0, . . . ,xs,T containing less than 8T

9
ǫ-SOSP we have

f(xs+1,0)− f(xs,0) ≤ −
1

48

√

ǫ3

ρ
.

Given that there are at most S different values of s, by Lemma 19, the probability of this assumption
being true is at least

(

1− (1− p(1− δ))
T /18)S ≥ 8

9
. (43)

Moreover, given that

S
∑

s=1

f(xs+1,0)− f(xs,0) = f(xS+1,0)− f(0) ≥ f∗ − f(0) ≥ −∆

there are at least 27
32S different values of s = 1, . . . ,S with

f(xs+1,0)− f(xs,0) ≤ −
1

48

√

ǫ3

ρ
,

as we have f(xs+1,0) ≤ f(xs,0) for any s. Hence, in this case the proportion of ǫ-SOSP among all
the iterations is at least

27
32S · 89T

ST
=

3

4
.

Combined with (43), the overall success probability of outputting an ǫ-SOSP is at least 3
4 × 8

9 = 2
3 .

The query complexity of Algorithm 5 comes from both the gradient estimation step in Line 5 and
the negative curvature descent step in Line 8. By Theorem 1, the query complexity of the first part
equals

ST ·O(n log(n/δ)) = O

(

∆L2n3/2

ρ1/2ǫ5/2
log n

)

,

whereas the expected query complexity of the second part equals

ST p ·O
(

L2n3/2

δρǫ
log2

nL

δ
√
ρǫ

)

= O

(

∆L2n3/2

ρ1/2ǫ5/2
log3

nL√
ρǫ

)

.

Hence, the overall query complexity of Algorithm 5 equals

O

(

∆L2n3/2

ρ1/2ǫ5/2
log3

nL√
ρǫ

)

.

33

	Introduction
	Estimation of Gradient Direction by Comparisons
	Convex Optimization by Comparisons
	Comparison-based adaptive normalized gradient descent
	Comparison-based cutting plane method

	Nonconvex Optimization by Comparisons
	First-order stationary point computation by comparisons
	Escaping saddle points of nonconvex functions by comparisons

	Auxiliary Lemmas
	Distance between normalized vectors
	A fact for vector norms
	Gradient upper bound of smooth convex functions

	Approximate adaptive normalized gradient descent (Approx-AdaNGD)
	Proof details of nonconvex optimization by comparisons
	Proof of [thm:Comparison-FOSP]Theorem 4
	Negative curvature finding by comparisons
	Negative curvature finding when the gradient is relatively small
	Negative curvature finding when the gradient is relatively large

	Proof of [lem:NCD]Lemma 4
	Escape from saddle point via negative curvature finding

