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Figure 5: MICCAI challenges categorized by their task. Since a long time at least 50% of challenges
only focus on semantic segmentation with other tasks being significantly less represented.

A THE SIGNIFICANCE OF SEMANTIC SEGMENTATION IN 3D MEDICAL IMAGE
ANALYSIS

Semantic segmentation plays a pivotal role in the field of 3D medical image segmentation, offering
crucial insights and enabling precision in diagnosis and treatment planning. In this section, we
explore the profound importance of semantic segmentation, particularly in the context of MRI and
CT data, and its far-reaching implications for healthcare.

Native Data Representation for MRIs and CTs: Semantic segmentation serves as the native data
representation for 3D medical images obtained through MRI and CT scans. These imaging modal-
ities provide detailed, volumetric views of internal anatomical structures, tissues, and pathologies.
Semantic segmentation effectively assigns labels to each pixel or voxel, translating raw data into
clinically meaningful information. This conversion is vital in bridging the semantic gap between
volumetric data and actionable insights, making it easier to integrate computer vision techniques into
medical workflows.

Crucial Role in Diagnosis and Treatment Planning: The accuracy of diagnosis and the effective-
ness of treatment planning are of paramount importance in healthcare. Semantic segmentation plays
a pivotal role in achieving these goals. By precisely delineating anatomical regions and pathological
anomalies, it provides clinicians with a comprehensive understanding of a patient’s condition. For
example, in oncology, semantic segmentation assists in the localization and quantification of tumors,
supporting staging and treatment evaluation. In neurology, it aids in identifying brain structures
for precise surgical planning, while in cardiology, it helps assess cardiac chambers and vessels,
contributing to cardiovascular health evaluation.

Advancements in Personalized Medicine: Furthermore, the integration of semantic segmentation
in 3D medical image analysis aligns with the shift towards personalized medicine. It enables the
extraction of patient-specific anatomical and pathological information, facilitating the customization
of treatment plans. Additionally, it allows for longitudinal studies by tracking disease progression over
time. By harnessing semantic segmentation, healthcare practitioners can offer tailored interventions
that optimize patient outcomes, while minimizing risks and side effects. This personalized medicine
approach is poised to transform healthcare, providing more effective treatments tailored to individual
patients.

Semantic Segmentation Challenges at MICCAI: A significant testament to the importance
of semantic segmentation in the medical imaging community is reflected in the annual MICCAI
(Medical Image Computing and Computer Assisted Intervention) conference. A vast majority of
challenges and competitions at MICCAI revolve around semantic segmentation (see Fig. 5. Imaginary
Figure 1 illustrates the dominance of semantic segmentation challenges at the MICCAI conference,
highlighting the central role it occupies in advancing the field of medical image analysis.
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In summary, semantic segmentation serves as a cornerstone in 3D medical image analysis, particularly
in the context of MRI and CT data. Its native representation, support in diagnosis and treatment
planning, and contributions to personalized medicine are instrumental in reshaping healthcare. The
synergy between computer vision and medical imaging, driven by semantic segmentation, holds
promise for improving patient care and catalyzing transformative advancements in 3D medical image
segmentation.

B TRAINING DETAILS

B.1 ARCHITECTURE TRAINING HYPERPARAMETERS

The network training scheme is based heavily on the default settings of the nnUNet framework
with minor changes added on top of the nnUNet framework (Isensee et al. (2021)). To maintain
comparability, the patch size was set to 96× 96× 96 for all 3D networks and 512× 512 for all 2D
networks (except SwinUNet whose adherence to the Swin Transformer architecture restricted us to
224× 224). The AdamW optimizer (Loshchilov & Hutter (2017)) was used as the optimizer with
1e− 4 as the learning rate for all ViT-based networks and 5e− 4 as that of all Swin-based networks.
An exception is SwinUNet which showed unstable training performance with 5e− 4 and thus needed
a lower learning rate of 1e− 4. Table 4 provides a detailed description of the training settings.

Epochs Learning Rate Weight Decay Optimizer Data Augmentation Patch Size Used nnUNet
SwinUNet2D

1e− 4

3e− 5†
AdamW

nn
U

N
et

D
ef

au
lt†

224× 224 ×
TransFuse2D

512× 512
×

TransUNet2D ×
UTNet2D ×
CoTr3D

96× 96× 96

✓
SwinUNETR3D 5e− 4 ×

TransBTS3D
1e− 4

×
UNETR3D ×

nnFormer3D 5e− 4 ✓
nnUNet3D

1e− 2† SGD† –
nnUNet2D 512× 512 –

Table 4: The training details of all networks are provided. The hyperparameters are constant for
training during all experimental modes - low dataset experiments or network modification experiments.
Some hyperparameters are the default settings† of the nnUNet framework.

We maintain consistency in hyperparameters whether we are using these architectures in network
modification for isolating the ConvNet backbone (§3) or our low dataset experiments (§5).

B.2 LOW DATASET EXPERIMENTS

In our experimental design, we maintain a consistent set of hyperparameters, which we use across
all experiments (see ‘§B.1‘). As we want to explore the impact of varying dataset sizes on the
performance of machine learning models we artificially augment dataset size. We achieve this by
systematically creating subsets of the complete training samples drawn from the AMOS and KiTS
datasets. For the AMOS dataset, we work with subsets consisting of 2, 5, 11, 25, 54, 116, and 250
samples, corresponding to 1%, 2.1%, 4.6%, 10%, 21.5%, 46.4%, and 100% of the original 250
samples, respectively. For the KiTS dataset, our subsets consist of 1, 3, 7, 16, 34, 74, and 160 samples
of the original 160 samples, respectively.

In our approach, we systematically reduce the size of each training subset. We achieve this reduction
by randomly discarding 53.6% of the samples from the larger training subset to create the subsequent
smaller subset. Importantly, we ensure that each larger subset encompasses all the samples from the
preceding smaller subsets, maintaining data continuity throughout this gradual downsizing.

To improve the reliability of our experiments, we use a three-fold cross-validation strategy for each
data percentage. These cross-validation folds are consistently applied across all our architectural
experiments. We do this to make it easier to compare the results between experiments and to reduce
the impact of random sample selection on our findings. This becomes especially important when we
have limited data, where the quality of training samples can vary significantly.
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Overall, our experimental design offers a robust and systematic means of assessing model performance
across a spectrum of data availability conditions, ranging from scenarios with severely constrained
datasets to scenarios utilizing the complete dataset. This comprehensive analysis sheds light on how
machine learning models perform under varying data constraints.

B.3 LONG-RANGE DEPENDENCIES EXPERIMENT

In our long-range dependency experiment, we employ nnU-Net v2 and adhere to the native nnU-Net
training methodology, which involves 5-fold cross-validation on the AMOS dataset consisting of the
full 300 training samples, partitioned using an 80-20 split Isensee et al. (2021). Aside from this we
preserve the conventional nnU-Net training procedure as outlined in the seminal work by Isensee et
al. Isensee et al. (2021).

To conduct our receptive field experiment, we take a stepwise approach by removing entire stages
from our architecture, as illustrated in Figure Table 3 in the main manuscript. We begin with all
stages intact and progressively eliminate the lower stages, starting from stage 5 and ending with just
stages 0 and 1 remaining in the architecture. This process not only affects the receptive field but also
significantly reduces the overall depth of the model, resulting in a substantial decrease in the total
number of non-linear operations applied to the data.

It is important to note that, at this point, we choose not to compensate for the reduction in depth
by adding 1x1x1 convolutions. This decision is due to the complexity involved in determining the
optimal locations for such convolutions, which could introduce unintended complications into our
experiments.

Given these practical considerations, we opt to stick as closely as possible to the original nnU-Net
architecture while primarily adjusting the number of channels. This approach helps us maintain a
consistent VRAM profile of around 10.7GB, ensuring that our experiments can be conducted on a
single RTX2080TI.

C TRANSFORMER NETS VS BASIC UNETS
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Figure 6: Transformer Nets vs original UNets of widths of 25%, 50%, 75% and 100%

D REPRESENTATION SIMILARITY EXPERIMENT DETAILS

In this section we explain all the steps conducted for the representational similarity experiments.

Dataset preparation for representational similarity comparison Medical image segmentation
methods tend to be unable to process the whole 3D volume of a single patient, instead a patch-wise
approach is undertaken to predict an entire patient. Additionally, opposed to natural images, the
scans usually have a fixed spacing (e.g. 1x1x1 [mm] istrotropic spacing) that practictioners want to
maintain. Subsequently we use the validation cases of AMOS to create a patched dataset, which we
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Figure 7: Visualization which positions we select to extract activations from. We select all representa-
tions at positions along the red line, after blocks that are not skipped by a residual connection.

use to extract representations on. Since not all architectures share an identical input patch size, we
create multiple patched datasets for each input patch size, resulting in one 3D patched dataset with
patches of size 96× 96× 96 and two 2D datasets of size 224× 224 and one of size 512× 512. We
do so by turning off data augmentation on the dataloader used during our training experiments ( see
§B), leaving us with a preprocessed region, randomly cropped from the validation case. For each
case we extract 5 patches in the 3D case and 25 patches in the 2d case, resulting in patched dataset
sizes of 250 for the 3D case and 1250 for the 2D case.

Representation extraction and comparison Given these patches we extract the representations
of the architecture along the "outer hull" of the architecture, neglecting potential augmentation
internally, to end up with a sequential like structure (see Fig. 7). Additionally we choose to not
extract representations when residual connections are present, hence we extract either after a full
Transformer block (Fig. 1) or a full Basic residual block or Bottleneck residual block.

CKA calculation Having determined the positions to measure representations and the patched
dataset to use for representation extraction, we calculate our mini-batch CKA according to Eq. (3)
and Eq. (4). As batch size we chose 64 for all nine architectures. As we have 3 different models
for all the experiments we ran, we compare all permutations of the original models to each other,
resulting in three similarity values for our baseline similarity (black ’Original to Original’ values).
Given the additional 3 models with their Transformer blocks replaced, we compare all 9 combinations
of 1 original and 1 replaced model (blue’Original to WB identity’).

It may be important to note that all models were trained on the full 250 AMOS training cases, so
there was 100% overlap between the training data of all models, with and without replacement.

Q1: Why do we want a decreasing representational slope? We care about whether the Trans-
former blocks within the architecture do contribute meaningful to the remaining parts of the archi-
tecture. Hence we would like the Transformer blocks to change the representations as much as
possible from the state they had before the block. When we replace the Transformer block with
an identity mapping we guarantee that current representations remain static along the block and no
representational change can occur.

Given our representational comparison setting between the original architecture (starring Transformer
blocks that can change the representations) and the WB identity architecture (with Transformer blocks
that have been replaced with an identity mapping), we want to see that the learned Transformer blocks
do something different than an identity mapping.

Should the original architectures Transformer blocks under utilize their Transformer-block no change
occurs in them, resembling an identity mapping without constrained to one. This will express itself in
the representational similarity staying largely similar for the stretch of the Transformer blocks.

On the other hand, if the architectures utilize their Transformer blocks heavily, it will change the
representations a lot, leading to a decrease in similarity to the static baseline with its Transformer
blocks replaced by identity mappings.
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Q2: Why is a gap at the output desirable? When looking at the output similarity we can interpret
it as the similarity between the features used for the prediction. Given that this gap is low, we
conclude that the learned features are fairly similar, while larger gaps represent less similar features.

Under this light, having replaced the Transformer block with identity mappings and observing no or
a small gap, indicates that the final features the architecture without Transformers converged to a
similar solution as with Transformers, indicating that the same thing can be learned by convolutions
alone. On the other hand observing a large gap indicates that the solutions the architecture with and
without Transformers converges to is very different, showing that the features are changed in a way
the remaining blocks are not able to achieve by themselves.

We argue that this gap indicates a good use of Transformer blocks, as it adds additional possibilities
on how to solve the task, superseding what convolutions can provide by themselves. The low or
no gap case instead indicates that the convolutional network can learn the same mapping as the
Transformer, so why bother with the high memory demand, more difficult training in a lower data
regime, where it is not outperforming convolutions yet?

E THE RECENT POPULARITY OF TRANSFORMER-BASED ARCHITECTURES IN
MEDICAL IMAGE SEGMENTATION

Network n-D Year Venue Citations
SwinUNet 2D 2021 ECCV(W) 1181
TransFuse 2D 2021 MICCAI 499
TransUNet 2D 2021 arXiv 1969
UTNet 2D 2021 MICCAI 267

CoTr 3D 2021 MICCAI 293
nnFormer 3D 2022, 2023 arXiv, IEEE Transactions on Image Processing 192
SwinUNETR 3D 2022 MICCAI(w) 261
TransBTS 3D 2021 MICCAI 366
UNETR 3D 2022 WACV 726

Total Citations 5754

Table 5: Transformers are popular for medical image segmentation. Citations over the last 2 years
(2021-2023) as of 28.09.2023 show that Transformer-based deep neural networks are increasingly
popular for tasks in medical image segmentation.
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