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OVERVIEW

In this supplementary material we include the following sections:

1. Usefulness of Luv

2. Details of weighting function used in Lz

3. Training details of the UV prior network

4. Unwarping and texture editing details

5. Pre-processing details for the real scenes

6. Detailed ablation figure

7. More qualitative comparison with DewarpNet’s (Das et al., 2019) best unwarped view

8. Qualitative comparison with Das et al. (2019) for different types of real documents

9. Qualitative comparison with You et al. (2017) on their test-set

10. OCR Evaluation

11. High-resolution results for texture editing

12. Limitations

13. Example of a failure case

14. Training time

1 USEFULNESS OF Luv

In section 3.3 of the main submission, we define Luv (Eq. 10) to prevent non-uniform mapping
between the 3D and the UV domain. Specifically, we constrain the output of Fuv to be ∼ U(0, 1)
using Luv . Without Luv, Fuv is prone to produce a mapping ∼ U(a, b) where a > 0 or b < 1.
Consequently, Fz also learns an incorrect mapping between the texture and the 3D domain. As a
result, the unwarped texture gets stretched or squeezed. We demonstrate two such examples in Fig.
1.

2 DETAILS OF WEIGHTING FUNCTION USED IN Lz

We define Lz in Eq. 11 of the main submission:

Lz =
1

|Pin|
∑

p∈Pin

wp(ẑp − ẑ′p)2 (1)

where P ∈ Pin are the pixels for which ray-surface intersection is found and Mp = 1. Mp, denote
the pixel in the document maskM . M is a binary image, whereMp = 1 denotes the pixel p is within
the document region. wp is a pre-calculated per-pixel weight based on the document mask (M ). ẑp
is the ray-surface intersection point obtained by sphere tracing, and ẑ′p is the ray-surface intersection
point predicted by Fz . To derive the 2D texture map of a 3D surface, constraint optimization-based
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Figure 1: Usefulness of Luv: Examples trained without Luv show undesired stretches and squeezes
in the unwarped texture.

techniques use user-defined keypoints (Tzur & Tal, 2009). The keypoints allow to constrain the
2D to 3D mapping estimation. For documents, we can consider the set of boundary points as the
keypoints. From the application perspective, it helps to accurately map the texture boundary to the
learned surface boundary (see Fig. 3(d) vs. (e) vs. (f)). Therefore, we employ a weighting function,
which assigns a higher weight to the 3D surface points at the boundary. To implement W (p) we use
a Euclidean distance transform (Borgefors, 1986) on the document mask M , a binary image. Each
pixel p, in the distance transformed image, D encodes the distance to the nearest non-zero pixel. We
first normalize and invert the distance transformed image:

Dnorm =
D −min(D)

max(D)−min(D)

Dinv = 1−Dnorm
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Here max(.) and min(.) denote the maximum and minimum value of Dp over all the pixels. We
assign the weights wp as follows:

wp =

{
10.0, if Dinv

p > 0.8

0.3, otherwise
(2)

3 TRAINING DETAILS OF THE UV PRIOR NETWORK (F̂uv)

Following L223 in the main paper, we provide more training details. We use an 8 layer MLP with
a hidden layer of 512 units to learn the 3D to UV mapping prior for document shapes. Each hidden
layer has a sine (Sitzmann et al., 2020) activation function. The final layer uses a HardTanh activa-
tion function. To train F̂uv we utilize 10K UV mapped document meshes available in the Doc3D
dataset. Each mesh is first registered with a [−1, 1] uniform grid using a rigid transformation. Then
the meshes are rendered in Blender (ble) to obtain the projected geometry image (G) and the UV
image (U ). In G, each pixel p encodes the (X,Y,Z) coordinates. In U , p encodes the corresponding
UV coordinates. During training, we randomly sample 10K pixels from each G as input to F̂uv

and use the corresponding pixels in U as the ground-truth. We optimize the L1 loss for 150 epochs
between the predicted and the ground-truth UV coordinates using the Adam optimizer with an initial
learning rate of 10−5. The learning rate is halved every 50 epochs. Following NeRF (Mildenhall
et al., 2020), we use a high dimensional Fourier mapping (χk : R → R2k) to learn high-frequency
details in the shape and the UV space. We empirically set the number of Fourier bands, k = 10.

4 UNWARPING AND TEXTURE EDITING DETAILS

To unwarp an input image, we determine a pixel at p = (x, y) in the input image should be pro-
jected to (u, v) in the unwarped image. Here the unwarped image refers to the texture space. The
coordinates (u, v) and p are associated by Fz and τ : For a (u, v) coordinate, its corresponding point
in 3D is obtained by ẑ′p = Fz(u, v). Given the camera parameter τ , ẑ′p is projected to p in the input
image. Thus, we can find its corresponding pixel in the input image for each pixel in the unwarped
image, which is all we need for unwarping. More specifically, we use standard image projection
and bilinear sampling (Jaderberg et al., 2015) to implement the unwarping step (see Fig. 2). The
unwarping process can be realized as a grid sampling step from the warped document image to a 2D
rectangular uniform grid. We can perform this sampling operation with a grid G ∈ R(H×W×2) and
a bi-linear sampler. Here H and W denote the height and the width of the grid. Each location in G
encodes a pixel coordinate p̂ of the input image.

At test time we sample Fz in a uniform grid and project using the known camera pose (τ ) to obtain
the pixel coordinates. More specifically, sampling Fz in a uniform grid ∈ [0, 1] yields a uniform 2D
grid Rz ∈ R(H×W×3). Each (u, v) in Rz encodes a 3D coordinate of the document surface. The
Rz representation of the 3D shape is analogous to geometry images (Gu et al., 2002). We obtain G
from Rz with a standard projection:

p̂ = K [R|T ] z̄ (3)

Here, z̄ is the homogeneous coordinate representation of z. K ∈ R3×3, [R|T ] ∈ R4×4, denote the
intrinsic and extrinsic parameters of the camera.

For the texture editing task, we first unwarp the image, then edit the texture, and finally warp each
edited pixel p back to the original position using the predicted texture coordinates (tp). We can
utilize the same bilinear sampling operation as the unwarping step.

5 PRE-PROCESSING DETAILS FOR THE REAL SCENES

To train our proposed approach on the real scenes, we first obtain the camera poses using
COLMAP (Schönberger et al., 2016). Each scene in the real data (You et al., 2017) has 5-10 views.
We pre-process the camera poses to a spherical domain following (Mildenhall et al., 2019). Since all
the training meshes used to train F̂uv are aligned with a [−1, 1] uniform grid, we apply a fixed pre-
computed rigid-transformation on the estimated 3D shape during the joint training of S, Fuv , and
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Figure 2: Unwarping steps at test time: Rz denotes the flattened geometry in the texture space.
Using the camera projection matrix for each view, we can obtain the unwarping grid G. × denotes
matrix multiplication. G can be used to sample (Jaderberg et al., 2015) the input image to get the
unwarped image.

Fz . Specifically, we use a 6D rigid transformation, with two parameters for rotation (axis-angle rep-
resentation), three for translation, and one for scale. We first train a vanilla IDR (Yariv et al., 2020)
for 1000 epochs. Then we obtain a 3D point-cloud representation of the surface by sphere-tracing
the IDR estimated SDF. Each point in the point cloud is a ray-surface intersection point. Note that
we do not need a very accurate geometry at this step. Therefore it is not required to optimize the
SDF until convergence. Now we obtain the desired rigid transformation by optimizing the Chamfer
distance between the obtained surface point cloud and 10K points sampled from a 2D uniform regu-
lar grid ∈ [−1, 1]. We use SGD (Sutskever et al., 2013) with a learning rate of 0.001 and momentum
0.9 and optimize for 10K iterations. Later, At every iteration during the joint training, we apply
the estimated rigid transformation on the sphere traced surface points (ẑp) and use the transformed
points as an input to the Fuv .

6 DETAILED ABLATION FIGURE

We show a more detailed example of Fig. 6 of the main submission in Fig. 3, with zoomed-in
regions to demonstrate the effect of the different components of LT (Eq. 12 in the main paper).

7 MORE QUALITATIVE COMPARISON WITH DEWARPNET’S (DAS ET AL.,
2019) BEST UNWARPED VIEW

In Fig. 4 we report the percentage of views that yield better quantitative results than the best result of
DewarpNet (Das et al., 2019). We found that our approach yields better quantitative scores in∼ 91%
of the views across 10 scenes. For a better illustrative comparison we show qualitative results of the
4 best (lowest LD) unwarped views using Das et al. (2019) in Fig.8, and 9. We choose scene 3 and 6
for Fig. 8, and 9. These scenes have a comparatively larger number of views with better LD scores
than the proposed approach’s average score. In Fig. 5, 6, 7, we show all the seven scenes where
proposed approach yields worse average LD score compared to the best LD achieved by DewarpNet
(Fig. 5 in main submission only shows six out of seven examples). Clearly in all of the cases we
achieve better or comparative results. It’s apparent that the quantitative metrics do not always reflect
better visual quality. This discrepancy is due to the sensitivity of MSSIM and LD towards subtle
global transformations such as a translation of few pixels. Furthermore, we can see that it is hard
to predict which view will perform best for Das et al. (2019), and results vary significantly even if
the views are reasonably frontal. Comparatively, being a multi-view method, our approach produces
more consistent unwarping across all views.
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Figure 3: Weighted Lz , and conformality effects. Top and middle row: (a) without conformal-
ity constraints, (b) with conformality constraints, (d) wp = 1 in weighted Lz , (e) weighted Lz

with wp calculated using Eq. 2, (c,f) ground-truth; bottom-row (left-to-right): without conformality
constraints and weighted Lz; only with weighted Lz; only with conformality constraints; with con-
formality constraints and weighted Lz; ground-truth scan. Numbers in bottom denote the respective
LD values.
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Figure 4: Percentage of unwarped views in each scene that are better than the best performing view
of DewarpNet (Das et al., 2019). The number under each bar refers to the scene id presented in the
same order as Table 1 in the main submission. In average (denoted by orange dashed line) 91.2%
views unwarped by the proposed method produce better results than (Das et al., 2019).
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(a) (b)

Figure 5: Comparison of the best view (i.e., view that yields lowest LD using DewarpNet) (a)
unwarped by DewarpNet and (b) our approach. Our results are clearly better with straighter lines.
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(a) (b)

Figure 6: Comparison of the best view (i.e., view that yields lowest LD using DewarpNet) (a)
unwarped by DewarpNet and (b) our approach. Our results are clearly better with straighter lines.

8 QUALITATIVE COMPARISON WITH DAS ET AL. (2019) FOR DIFFERENT
TYPES OF REAL DOCUMENTS

In Fig. 10, 11, 12, and 13, we show qualitative unwarping result for four different type of documents,
e.g. book, receipt, flyer, and magazine. In all the views our method shows consistent and good
quality unwarping results.
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(a) (b)

Figure 7: Comparison of the best view (i.e., view that yields lowest LD using DewarpNet) unwarped
by DewarpNet and our approach. Our results are clearly competitive with straighter lines.

DewarpNet Proposed

ED ↓ CER (std) ↓ WER (std) ↓ ED ↓ CER (std) ↓ WER (std) ↓
Mean 798.30 0.2827 (0.12) 0.4646 (0.17) 600.78 0.2122 (0.10) 0.3568 (0.11)

Table 1: Comparison of OCR error metrics: We improve the OCR performance of Das et al. (2019)
by∼25% in terms of Edit Distance (ED), Character Error Rate (CER), and Word Error Rate (WER).

9 QUALITATIVE COMPARISON WITH YOU ET AL. (2017)

In Fig. 14, 14 we provide a qualitative comparison with 5 publicly available images from (You
et al., 2017). The results are competitive and often produce better unwarping. Quantitative numbers
couldn’t be reported because the high-res/original unwarped results are not publicly available.

10 OCR EVALUATION

Our OCR evaluation set contains 5 real documents with a total of 77 images. All these documents
are text heavy and contains academic journals or write-ups. We use Edit Distance (ED) (Miller et al.,
2009), Character Error Rate (CER) and Word Error Rate (WER) as our evaluation metrics. ED is
defined as the total number of substitutions (s), insertions (i) and deletions (d) required to obtain
the reference text, given the recognized text. The reference text is obtained by running the OCR
algorithm on the scanned ground-truth image of each document. CER is defined as: (s+ i+ d)/N
whereN is the number of characters in the reference text. We use Tesseract 4.1.1 based LSTM OCR
engine for this experiment.

In Table 1 we compare the proposed and the DewarpNet unwarped results in terms of OCR perfor-
mance. Our unwarped results reduce the ED, CER and WER by ∼24%. This improvement proves
our unwarped results are more suitable for downstream applications tasks like OCR.

11 HIGH-RESOLUTION RESULTS FOR TEXTURE EDITING

In Fig. 16, 17 we show the examples of texture editing in higher resolution.

8



Under review as a conference paper at ICLR 2022

(a) (b) (c)

Figure 8: 4 best results (sorted in ascending order from top to bottom according to LD score [lower
better]) of (b) DewarpNet compared to (c) proposed unwarping for scene 3 (Synth 3). For all the
views proposed unwarping shows better and consistent visual results than DewarpNet. (a) is the
input. Blue dashed boxes denote the discriminative areas in the unwarped results.

9



Under review as a conference paper at ICLR 2022

(a) (b) (c)

Figure 9: 4 best results (sorted in ascending order from top to bottom according to LD score [lower
better]) of (b) DewarpNet compared to (c) proposed unwarping for scene 6 (Synth 6). In all the
views proposed unwarping shows better and consistent visual results than DewarpNet. (a) is the
input. Blue dashed boxes denote the discriminative areas in the unwarped results.
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(I)

(b)

(II) (III)(I)

(II)

(III)
(a)

Figure 10: Unwarping results on different views of a book. Top row shows the inputs. (a) Proposed,
(b) DewarpNet. Our method generates good quality unwarping results with straighter text-lines.
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(b)

(II) (III)(I)

(a)

Figure 11: Unwarping results on different views of a receipt. Top row shows the inputs. (a) Pro-
posed, (b) DewarpNet. Our method generates good quality unwarping results with straighter text-
lines.
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(a) (b)
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Figure 12: Unwarping results on different views of a flyer. Top row shows the inputs. (a) Proposed,
(b) DewarpNet. Our method generates good quality unwarping results with straighter text-lines.
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Figure 13: Unwarping results on different views of a magazine page. Top row shows the inputs.
(a) Proposed, (b) DewarpNet. Our method generates good quality unwarping results with straighter
text-lines.
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Input You et al. Proposed

Figure 14: Comparison with You et al. (2017): We show competitive unwarping results compared to
a prior multi-view unwarping approach. A quantitative comparison could not be performed because
high-res/original unwarped results are not publicly available.
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Input You et al. Proposed

Figure 15: Comparison with You et al. (2017): We show competitive unwarping results compared to
a prior multi-view unwarping approach. A quantitative comparison could not be performed because
high-res/original unwarped results are not publicly available. The example with the dashed outline
shows a failure case of our method: ’Data 6’(see figure 18).
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Input Unwarped Edited Texture

Texture Edited Images

Figure 16: Example of texture edited images from different views. Note the perspective changes
and deformation on the edited texture due to the complex shape of the paper.
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Input Unwarped Edited Texture

Texture Edited Images

Figure 17: Example of texture edited images from different views. Note the perspective changes
and deformation on the edited texture due to the complex shape of the paper.
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UnwarpedWarped Texture3D shapeIDR renderingInput

Figure 18: Shows a failure case of our method due to inferior 3D reconstruction. This happened due
to fewer available views for the scene and insufficient texture.

12 LIMITATIONS

In the following, we discuss few potential limitations of our method:

• 3D reconstruction: The main limitation of our method follows from IDR (Yariv et al.,
2020). Inadequate number of images of a scene with large texture-less regions lead to
inferior 3D reconstruction which affects our unwarping result (see section 13).

• Training time: The current approach takes ∼18 hours to train a model and separate mod-
els must be trained for every scene which makes it unsuitable for real time applications.
Runtime improvement is considered as out-of-scope of this paper and will be addressed in
future (see section 14).

• Need for masks: We assume masks are available for every image. Although masks
are currently provided as manual inputs, we believe it’s fairly straightforward to train a
foreground-background document segmentation model to automate the task.

13 EXAMPLE OF A FAILURE CASE

Our method might fail due to imperfect 3D reconstruction. We show one such case for ”Data 6” (You
et al., 2017) in Table 2 of the main submission. Mainly, there are two reasons for failure cases: first,
fewer views (only 5), and second, insufficient textured documents. IDR has insufficient information
to reconstruct the 3D shape. As a result of the poor 3D shape, our texture parameterization network
produces an inferior unwarping result. For illustration, we show the reconstructed 3D shape, warped
texture, and unwarped texture in Fig. 18.

14 TRAINING TIME

Our proposed method for a scene can be trained in approximately 18 hours for 448× 448 resolution
images using a single Titan Xp GPU. The current training time per scene is very high compared to
DewarpNet’s inference time which makes it unsuitable for real time applications. However, this is a
fast growing field and there are multiple other works that are focusing on improving the speed and
generalization abilities (Garbin et al., 2021; Bergman et al., 2021) of neural rendering. Obtaining
a faster training scheme is out of the scope of this paper. We believe a few things can be done to
improve the current system such as using a faster rendering based shape reconstruction framework
which we leave as a future work.
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