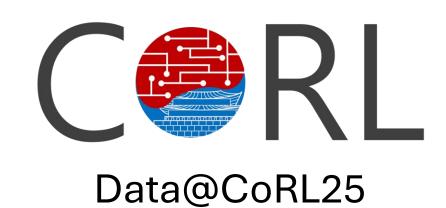


Don't Get Distracted: Improving Robotic Perception Robustness via In-Context Visual Scene Editing

M. Pourkeshavarz*, A. Sigal*, S. Pakdamansavoji, Z. Li, RH. Yang, Amir Rasouli Huawei Technologies Canada



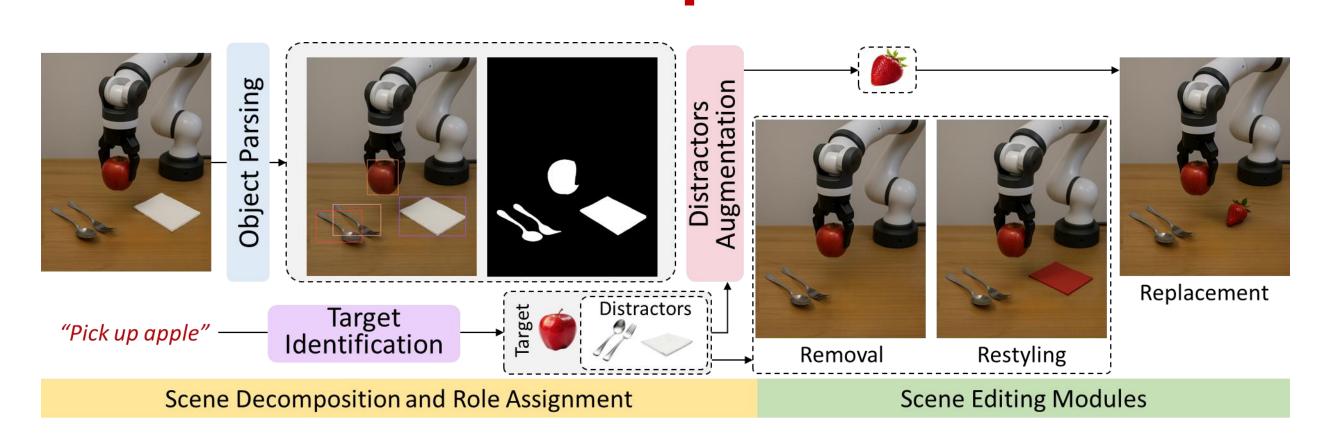
Motivation

- Generalization across visually diverse environments is fundamental for deploying robotic manipulation policies
- Learned policies trained via imitation learning suffer from clutter or context variation previously not observed during training
- Generating large-scale robot demonstrations capturing complex environment is prohibitive
- Existing data generation pipelines depend on computationally expensive simulators and suffer from sim2real gap

Contributions

- A novel in-context visual scene editing (NICE)
 strategy for large-scale data generation with minimal
 human involvement
- Experimental evaluation to highlight the realism of data generated using our pipeline
- Experiments on two downstream tasks, visual affordance prediction and object manipulation to validate the effectiveness of NICE data

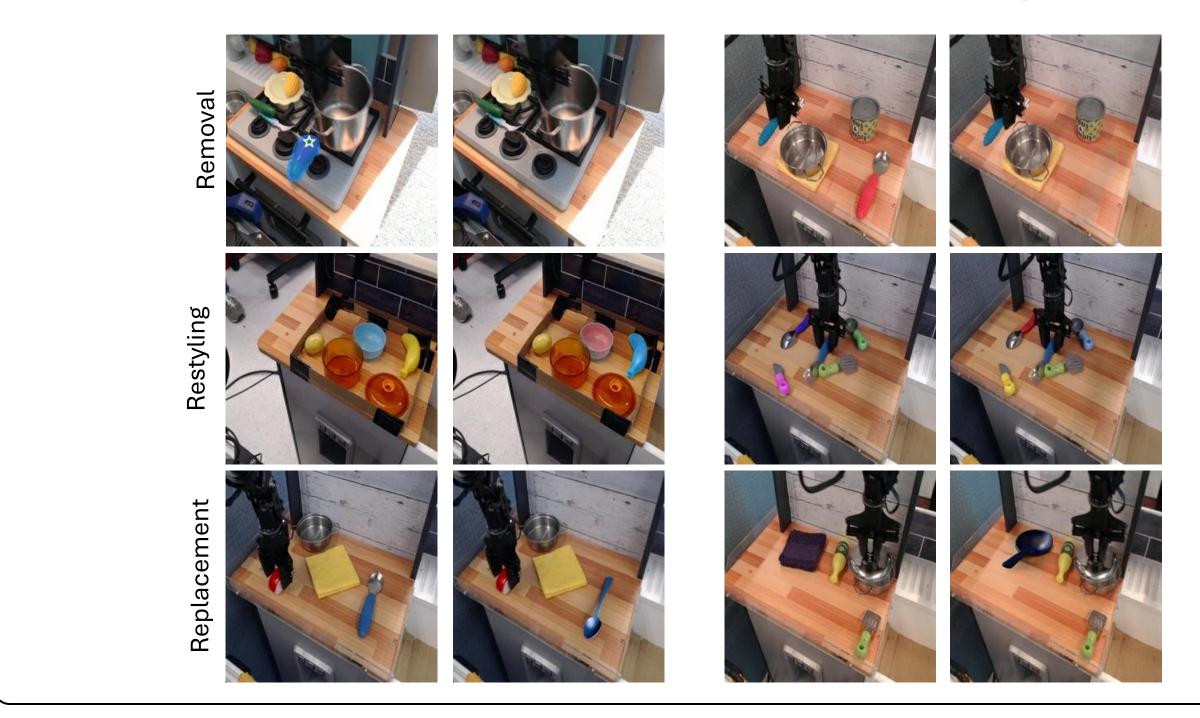
NICE Pipeline



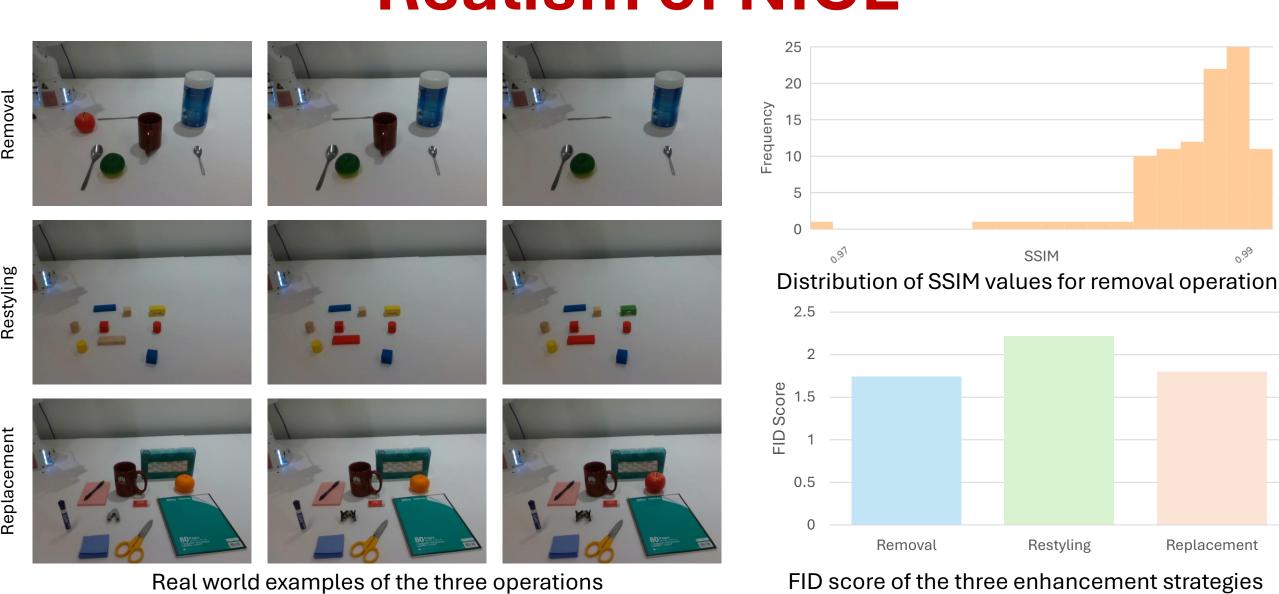
An overview of the NICE data generation pipeline

- Object removal: Detect objects, segment and mask them, dilate mask regions to cover shadows, and use LaMa inpainting to propagate background
- Object restyling: Using object masks apply textures from Describable Textures Dataset (DTD) and perform color and lighting adjustment
- **Object replacement:** Replace object with a novel but contextually relevant: 1) generate description of the existing object with Deepseek, 2) generate image of the object from this description using Stable Diffusion

Qualitative Examples on Bridge Data



Realism of NICE



- Generate real-world examples by swapping/removing objects and recapturing the scenes
- Simulating the operations using NICE pipeline yields high similarity

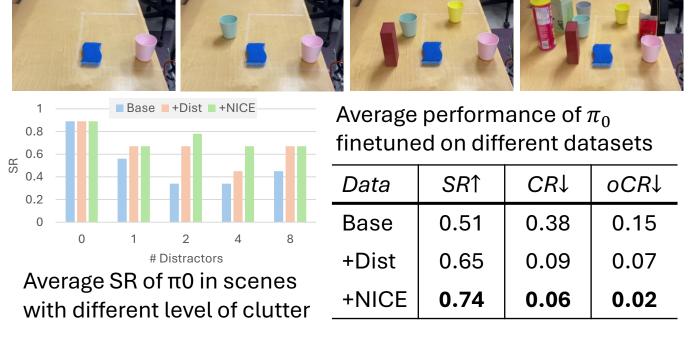
Affordance

Average prediction accuracy (APA)(%) across different clutter levels using RoboPoint

	Dataset	APA _{LC}	APA_{MC}	APA _{HC}
	Original	32.64	30.47	20.08
	+NICE	48.12 (+15.48)	45.76 (+15.29)	41.44 (+21.36)

- Scenes with levels of clutters, placing 1-2 (LC), 5-8 (MC), and 11-15 (HC) objects
- Finetuning affordance
 prediction model on NICE is
 best for very cluttered scenes
 achieving as high as 21%
 improvement in accuracy

Manipulation



- We evaluate π_0 finetuned on 3 datasets,
 - Base: scenes with only targets
 - Dist: scenes with only 8 distractors and targets
 - NICE: data generated from Dist using our data generation pipeline
- NICE boots performance, especially on more cluttered scenes, by as much as 22%
- On average NICE results in 23% in SR compared to Base and 9% to Dist
- NICE lowers total collision rate (CR), and obstacle CR (oCR) by 3% and 5% respectively, making the policy trained on the data operate safer