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A PROOF OF THEOREM

A.1 PROOF OF THEOREM 3.1

In this section, we analyze the property of bQ in finite state-action space S ⇥ A. The proof of
limt!1 Qt = Q⇤ has been well-established in previous work (Robbins & Monro, 1951; Jaakkola
et al., 1993; Melo, 2001). Then the proof of limt!1 bQt = bQ⇤ is similar. We first prove the empirical
Bellman operator Eq. (9) is a �-contraction operator under the supremum norm. Then when updating
in a sampling manner as Eq. (10), it can be considered as a random process. Borrowing an auxiliary
result from stochastic approximation, we prove it satisfies the conditions that guarantee convergence.
Finally, to prove bQ⇤ lower-bounds Q⇤, we rewrite bQ⇤(s, a) � Q⇤(s, a) based on the standard and
empirical Bellman operators. When the data covers the whole state-action space, we naturally have
bQ⇤ = Q⇤.

For proof simplicity, we use � denotes policies that interact with the environment and form the
current replay memory. We first show existing results for Bellman learning in Eq. (8), and then
prove Theorem 3.1 in three steps. The Bellman (optimality) operator B is defined as:

(BQ)(s, a) =
X

s02S
P (s0|s, a)[r + �max

a0
Q(s0, a0)]. (7)

Previous works have shown the operator B is a �-contraction with respect to supremum norm:

kBQ1 � BQ2k1  �kQ1 �Q2k1,

the supremum norm kvk1 = max1id |vi|, d is the dimension of vector v. Following Banach’s
fixed-point theorem, Q converges to optimal action value Q⇤ if we consecutively apply operator B
to Q, limn!1(B)nQ = Q⇤.

Further, the update rule in Eq. (8), i.e. Q-learning, is a sampling version that applies the �-
contraction operator B to Q.

Q(s, a) r(s, a) + �max
a0

Q(s0, a0). (8)

It can be considered as a random process and will converge to Q⇤, limt!1 Qt = Q⇤, with some
mild conditions (Szepesvári, 2010; Robbins & Monro, 1951; Jaakkola et al., 1993; Melo, 2001).

Similarly, we define the empirical Bellman (optimality) operator B̂ as:

(B̂ bQ)(s, a) =
X

s02S
P (s0|s, a)[r + � max

a0:�(a0|s0)>0

bQ(s0, a0)]. (9)

And the sampling version we used on the graph is:

bQ(s, a) r + � max
a0:�(a0|s0)>0

bQ(s0, a0), (10)

We split Theorem 3.1 into three lemmas. We first show B̂ is a �-contraction operator under supre-
mum norm, thus converges to optimal action value bQ⇤, limn!1(B)n bQ = bQ⇤. Then we show the
sampling-based update rule in Eq. (10) converges to bQ⇤, limt!1 bQt = bQ⇤. Finally, we show bQ⇤

lower-bounds Q⇤, bQ⇤(s, a)�Q⇤(s, a)  0, 8(s, a) 2 S ⇥A. And when the data covers the whole
state-action space, i.e. �(a|s) > 0 for all state-action pairs, we naturally have bQ⇤(s, a) = Q⇤(s, a).

Lemma A.1. The operator B̂ defined in Eq. (9) is a �-contraction operator under supremum norm,

kB̂ bQ1 � B̂ bQ2k1  �k bQ1 �
bQ2k1.
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Proof. We can rewrite kB̂ bQ1 � B̂ bQ2k1 as

kB̂ bQ1 � B̂ bQ2k1

= max
s,a

���
X

s02S
P (s0|s, a)[r + � max

a0
1:�(a

0
1|s0)>0

bQ1(s
0, a01)]� P (s0|s, a)[r + � max

a0
2:�(a

0
2|s0)>0

bQ2(s
0, a02)]

���

= max
s,a

�
���
X

s02S
P (s0|s, a)[ max

a0
1:�(a

0
1|s0)>0

bQ1(s
0, a01)� max

a0
2:�(a

0
2|s0)>0

bQ2(s
0, a02)]

���

 max
s,a

�
X

s02S
P (s0|s, a)

��� max
a0
1:�(a

0
1|s0)>0

bQ1(s
0, a01)� max

a0
2:�(a

0
2|s0)>0

bQ2(s
0, a02)

���

 max
s,a

�
X

s02S
P (s0|s, a) max

ã:�(ã|s0)>0

��� bQ1(s
0, ã)� bQ2(s

0, ã)
���

 max
s,a

�
X

s02S
P (s0|s, a) max

s̃,ã:�(ã|s̃)>0

��� bQ1(s̃, ã)� bQ2(s̃, ã)
���

= max
s,a

�
X

s02S
P (s0|s, a)k bQ1 �

bQ2k1

= �k bQ1 �
bQ2k1,

where the last line follows from
P

s02S P (s0|s, a) = 1.

To show the sampling-based update rule in Eq. (10) converges to bQ⇤, we borrow an auxiliary result
from stochastic approximation (Robbins & Monro, 1951; Jaakkola et al., 1993).

Theorem A.2. The random process {�t} taking values in Rn
and defined as

�t+1(x) = (1� ↵t(x))�t(x) + ↵t(x)Ft(x) (11)

converges to zero w.p.1 under the following assumptions:

(1) 0  ↵t  1,
P

t ↵t(x) =1 and
P

t ↵
2
t (x) <1;

(2) kE[Ft(x)|Ft]kW  �k�tkW , with � < 1;

(3) V ar[Ft(x)|Ft]  C(1 + k�tk
2
W ), for C > 0.

W is a norm. In our proof it is supremum norm.

Proof. See Robbins & Monro (1951); Jaakkola et al. (1993).

Lemma A.3. Given any initial estimation bQ0, the following update rule:

bQt+1(st, at) = bQt(st, at) + ↵t(xt, at)[rt + � max
a:�(a|st+1)>0

bQt(st+1, a)� bQt(st, at)], (12)

converges w.p.1 to the optimal action-value function bQ⇤
if

0  ↵t(s, a)  1,
X

t

↵t(s, a) =1 and
X

t

↵2
t (s, a) <1,

for all (s, a) 2 S ⇥A.

Proof. Based on Theorem A.2, we prove the update rule in Eq. (12) converges.

Rewrite Eq. (12) as

bQt+1(st, at) = (1� ↵t(st, at)) bQt(st, at) + ↵t(xt, at)[rt + � max
a:�(a|st+1)>0

bQt(st+1, a)]
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Subtract bQ⇤(st, at) from both sides:
bQt+1(st, at)� bQ⇤(st, at)

= (1� ↵t(st, at))( bQt(st, at)� bQ⇤(st, at)) + ↵t(xt, at)[rt + � max
a:�(a|st+1)>0

bQt(st+1, a)� bQ⇤(st, at)]

Let
�t(s, a) = bQ(s, a)� bQ⇤(s, a) (13)

and
Ft(s, a) = r + � max

a0:�(a0|s0)>0

bQt(s
0, a0)� bQ⇤(s, a). (14)

We get the same random process shown in Theorem A.2 Eq. (11). Then, proving limt!1 bQt = bQ⇤

is the same as proving �t(s, a) converges to zero with probability 1. We only need to show the
assumptions in Theorem A.2 are satisfied under the definitions of Eqs. (13) and (14).

Theorem A.2 (1) is the same as the condition in Lemma A.3. It is easy to achieve, for example, we
can choose ↵t(s, a) = 1/t.

For Theorem A.2 (2), we have

E[Ft(s, a)|Ft] =
X

s02S
P (s0|s, a)[r + � max

a0:�(a0|s0)
bQt(s

0, a0)� bQ⇤(s, a)]

= (B̂ bQt)(s, a)� bQ⇤(s, a)

= (B̂ bQt)(s, a)� (B̂ bQ⇤)(s, a)

Thus,

kE[Ft(s, a)|Ft]k1 = k(B̂ bQt)� (B̂ bQ⇤)k1

 �k bQt �
bQ⇤
k1

= �k�tk1,

with � < 1.

For Theorem A.2 (3), we have

V ar[Ft(s)|Ft] = E[Ft(s)� E[Ft(s)|Ft]|Ft]
2

= E[Ft(s)� ((B̂ bQt)(s, a)� (B̂ bQ⇤)(s, a))]2

= E[r + � max
a0:�(a0|s0)>0

bQt(s
0, a0)� bQ⇤(s, a)� ((B̂ bQt)(s, a)� (B̂ bQ⇤)(s, a))]2

= E[r + � max
a0:�(a0|s0)>0

bQt(s
0, a0)� (B̂ bQt)(s, a)]

2

= V ar[r + � max
a0:�(a0|s0)>0

bQt(s
0, a0)|Ft]

We add and minus a bQ⇤ term to make it close to the RHS in Theorem A.2 (3):

V ar[r + � max
a0:�(a0|s0)>0

bQ⇤(s0, a0) + � max
a0:�(a0|s0)>0

bQt(s
0, a0)� � max

a0:�(a0|s0)>0

bQ⇤(s0, a0)|Ft]

Since r is bounded, thus r + �maxa0:�(a0|s0)>0
bQ⇤(s0, a0) is bounded. And clearly the second

part maxa0:�(a0|s0)>0
bQt(s0, a0)�maxa0:�(a0|s0)>0

bQ⇤(s0, a0) can be bounded by k�tk1 with some
constant. Thus, we have

V ar[Ft(s)|Ft]  C(1 + k�tk
2
1),

for some constant C > 0 under supremum norm. Thus, by Theorem A.2, �t converges to zero
w.p.1, i.e., bQt converges to bQ⇤ w.p.1.

Lemma A.4. The value estimation obtained by Eq. (9) lower-bounds the value estimation obtained

by Eq. (7):
bQ⇤(s, a)�Q⇤(s, a)  0 (15)

for all state-action pairs.
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Proof. Following the definition of Eqs. (7) and (9), we can rewrite as

max
s,a

( bQ⇤(s, a)�Q⇤(s, a))

= max
s,a

(B̂ bQ⇤(s, a)� BQ⇤(s, a))

= max
s,a

(
X

s02S
P (s0|s, a)[r + � max

â0:�(â0|s0)>0

bQ⇤(s0, â0)]�
X

s02S
P (s0|s, a)[r + �max

a0
Q⇤(s0, a0)])

= max
s,a

X

s02S
P (s0|s, a)�( max

â0:�(â0|s0)>0

bQ⇤(s0, â0)�max
a0

Q⇤(s0, a0))

 max
s,a

X

s02S
P (s0|s, a)�(max

â0
bQ⇤(s0, â0)�max

a0
Q⇤(s0, a0))

 max
s,a

X

s02S
P (s0|s, a)�max

ã
( bQ⇤(s0, ã)�Q⇤(s0, ã))

 max
s,a

�
X

s02S
P (s0|s, a)max

s̃,ã
( bQ⇤(s̃, ã)�Q⇤(s̃, ã))

= �max
s̃,ã

( bQ⇤(s̃, ã)�Q⇤(s̃, ã)) = �max
s,a

( bQ⇤(s, a)�Q⇤(s, a))

where the last line follows from
P

s02S P (s0|s, a) = 1. Then we have

max
s,a

( bQ⇤(s, a)�Q⇤(s, a))  �max
s,a

( bQ⇤(s, a)�Q⇤(s, a))

 �2 max
s,a

( bQ⇤(s, a)�Q⇤(s, a))

 · · ·

 �n max
s,a

( bQ⇤(s, a)�Q⇤(s, a))

Take limit for both sides and since 0 < � < 1, we have maxs,a( bQ⇤(s, a)�Q⇤(s, a))  0.

When �(a|s) > 0 for all state-action pairs, the two contraction operators B̂ and B are the same. And
based on Banach’s fixed-point theorem, there is a unique fixed point. Thus bQ⇤(s, a) = Q⇤(s, a) for
all state-action pairs., i.e., bQ⇤(s, a) �Q⇤(s, a) = 0, (s, a) 2 S ⇥A holds when �(a|s) > 0 for all
state-action pairs.

Then, we get Theorem 3.1 proved with Lemmas A.1, A.3 and A.4.

B ENVIRONMENT SPECIFICATIONS

B.1 SOKOBAN

Sokoban (Schrader, 2018), the Japanese word for ’a warehouse keeper’, is a puzzle video game,
which is analogous to the problem of having an agent in a warehouse push some specified boxes
from their initial locations to target locations. Target locations have the same number of boxes. The
goal of the game is to manipulate the agent to move all boxes to the target locations. Specifically,
the game is played on a rectangular grid called a room, and each cell of the room is either a floor or
a wall. At each new episode, the environment will be reset, which means the layout of the room is
randomly generated, including the floors, the walls, the target locations, the boxes’ initial locations,
and the location of the agent. We choose four tasks with different complexities from Push-5×5-1 to
Push-6×6-2, which is shown in Figure 5. The numbers in the task name denote respectively the size
of the grid and the number of boxes.

State Space. The state space consists of all possible images displayed on the screen. Each image has
the same size as the map, and using the way of dividing each pixel of the image by 255 to normalize
into [0,1], we preprocess the image to the inputting state.
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Action Space. The action space of Sokoban has a total of eight actions, composed of moving and
pushing the box in four directions, which are left, right, up, down, push-left, push-right, push-up,
push-down in detail.

Reward Setting. The agent gets a punishment with a -0.1 reward after each time step. Successfully
pushing a box to the target location, can get a +1 reward, and if all boxes are laid in the right
locations, the agent can obtain an extra +10 reward. We set the max episode steps to 120, which
means the cumulative reward during one episode ranges from -12 to 10 plus the number of boxes.

(a) Push-5x5-1 (b) Push-5x5-2 (c) Push-6x6-1 (d) Push-6x6-2

Figure 5: Visualization of puzzle tasks from Sokoban, which focuses on evaluating the capabilities
of agents in spatial reasoning, logical deduction, and long-term planning.

B.2 CRAFTENV

Craftenv (Zhao et al., 2023), A Flexible Robotic Construction Environment, is a collection of con-
struction tasks. The agent needs to learn to manipulate the elements, including smartcar, blocks, and
slopes, to achieve a target structure through efficient and effective policy. Each construction task is
a simulation of the corresponding complex real-world task, which is challenging enough for rein-
forcement learning algorithms. Meanwhile, the CraftEnv is highly malleable, enabling researchers
to design their own tasks for specific requirements. The environment is simple to use since it is
implemented by Python and can be rendered using PyBullet. We choose three different designs of
the building tasks, shown in Figure 6, to evaluate our algorithm in CraftEnv.

State Space. We assume that the agent can obtain all the information in the map. Therefore, the state
consists of all knowledge of smartcar, blocks, folded slopes, unfolded slopes’ body, and unfolded
slopes’ foot, including the position and the yaw angle.

Action Space. The available actions of an agent are designed based on real-world smartcar mod-
els, including a total of fifteen actions. Besides all eight directions moving actions, i.e. forward,
backward, left, right, left-forward, left-backward, right-forward, and right-backward, there are
interaction-related actions, designed to simulate the building process in the real world. Specifi-
cally, the agent can act lift and drop actions to decide whether or not to carry the surrounding basic
element, and can flod or unflod slopes to build the complex buildings. In addition, the actions of
rotate-left and rotate-right control the agent to rotate the main body to the left and right, and stop

action is just a non-action.

Reward Setting. CraftEnv is a flexible environment as mentioned above. We can specify our own
reward function for different construction tasks. For the relatively simple tasks of building with
specified shape requirement, we can use discrete reward, where some reward is given when part of
the blueprint is built. While, for building tasks with high complexity, various reward patterns should
be designed to encourage the agent to build with different intentions.

C EXPERIMENTAL DETAILS

In this section, we provide the implementation details including basic settings for preference-based
RL, architecture of neural network, hyper-parameters and other training detail.
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(a) The Strip-shaped Building (b) The Block-shaped Building (c) The Simple Two-Story Building

Figure 6: Visualization of building tasks from CraftEnv. From left to right are The Strip-shaped
Building, The Block-shaped Building, and The Simple Two-Story Building task respectively.

C.1 BASIC SETTINGS

In the following section, we provide more details of the unsupervised exploration and the
uncertainty-based sampling scheme, both of which are mentioned in Section 4.1. These are pivotal
techniques in enhancing the feedback efficiency of algorithms, as referenced in Lee et al. (2021b).
To ensure an fair comparison, all preference-based RL algorithms in our experiments incorporate
both unsupervised exploration and uncertainty-based sampling.

Unsupervised Exploration. The technique of unsupervised exploration in preference-based RL is
proposed by Lee et al. (2021b). Designing an intrinsic reward based on the entropy of the state
efficiently encourages the agent to visit more diverse states and generate more various behaviors.
More specifically, it uses a variant of particle-based entropy (Misra et al., 2003) as the estimation of
entropy for the convenience of computation.

Uncertainty-based Sampling. There are some different sampling schemes, including but not lim-
ited to uniform sampling, disagreement sampling, and entropy sampling. The latter two sampling
schemes are classified as uncertainty-based sampling, which has a better performance compared to
uniform sampling intuitively and empirically.

C.2 ARCHITECTURE AND HYPERPARAMETERS.

In this section, we describe the architecture of neural networks of the SAC algorithm, which is used
as the underlying model. Then we present the full list of hyperparameters of SAC, PEBBLE, and the
proposed SEER. The actor of SAC has three layers, specifically, the first layer is the convolutional
layer, composed of 16 kernels with a size of 3. Then we squeeze the output into one dimension
as the input for the last two fully connected layers. The two Q networks of SAC have the same
architecture as that of the actor, one convolutional layer and two fully connected layers. The detailed
parameters of the neural network and hyperparameters during learning are shown in table 2. The
hyperparameters of PEBBLE and SEER, which are different from those of SAC, are presented in
table 3.

Table 2: Hyperparameters of SAC.

Hyperparameter Value Hyperparameter Value
Number of layers 3 layers: 1 Conv2d, 2 Linear Discount 0.99
Number of kernels of Conv2d 16 Batch size 256
Size of Kernel of Conv2d 3 Initial temperature 0.2
Stride of Conv2d 1 (�1,�2) (0.9,0.999)
Padding of Conv2d 0 Update freq 4
Hidden units of hidden layer 128 Critic target update freq 8000
Activation Function ReLU Critic ⌧ 1
Actor optimizer Adam Exploration 1
Critic optimizer Adam Graph ⌧ (Graph-based) 1.0
Learning rate 1e-4 Policy weight (Graph-based) 1.0
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Table 3: Hyperparameters of PEBBLE and SEER.

Hyperparameter Value Hyperparameter Value
Length of segment 50 Numbers of reward functions / Ensemble size 3
Learning rate 0.0003 Top-k 5
Reward batch size 128 Length of segment (SEER) 20
Reward update 200 Beta � (SEER) 0.5
Frequency of feedback 2000 Graph update batch size (SEER) 32
Number of train steps 1e6 Critic update batch size (SEER) 64
Replay buffer capacity 1e6
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