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6. Details of Binary Masks

In this paper, we apply binary masks to encode the input im-
ages, then generate the SCI images. As we indicated in the
main paper, we follow the ablation studies of Li et al. [20]
to control the mask overlapping rate to be 0.25. Specifically,
the mask overlapping rate is defined as:
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where OR. denotes mask overlapping rate, M is the i-th
mask and (z,y) indicates pixel coordinate, and N is total
number of compressed images. When we generate synthetic
datasets and capture real datasets, we follow the mask gen-
eration procedure proposed by Li et al. [20] to obtain the
masks:

OR(z,y) = 15)

Algorithm 1 Mask Generation
Require: H, W, N, OR.

1: Initialz =1, =1,n = OR x N,

M=0¢€¢ RHXWXN'

2: while 7 < H do
3 while j < W do
4 Randomly select n indices k,, from NV frames.
5 Mg, (i,7) = 1.
6: j=J3+1
7
8
9:

end while
i=1+1
end while

7. Computational Efficiency of Different Meth-
ods

Existing SOTA methods generally require extensive train-
ing time. For instance, EfficientSCI, one of the the top-
performing prior methods, requires more than 100 hours
(nearly five days) to train its Transformer-based model, and
its inference speed is limited to only 2.6 FPS. The SCIN-
eRF training process takes approximately 5 hours, and the
rendering speed is just at 0.25 FPS, falling short of real-time
requirements. SCISplat incorporates 3DGS, which greatly
accelerates training time to less than an hour, with over
200FPS rendering speed. As for our method, it achieves less
than 2.5 hours for training with 56 FPS on rendering speed,
which remains real-time rendering capabilities. The slower

Model Training Time (hrs)] Inference Speed (FPS)1
GAP-TV [51] N/A 0.13
PnP-FFDNet [52] N/A 0.01
PnP-FastDVDNet [54] N/A 0.01
EfficientSCI [44] ~ 100 2.6
SCINeRF [20] ~5 0.25
SCISplat [19] <1 205
Ours <25 56

Table 3. Quantitative comparisons of training time (in hrs, if
applicable) and inference/rendering speed (FPS) of different
methods on synthetic dataset. Our proposed method maintains
the real-time rendering capabilities of 3DGS, while achieves sig-
nificantly faster training speed and inference speed compared to
prior SCI image reconstruction methods and SCINeRF.

training and rendering speed of our method compared to
SCISplat can be attributed to the introduction of the defor-
mation MLP, which takes extra training and inference time.
Nevertheless, our method can still perform real-time render-
ing. Table 3 shows the details of quantitative comparisons.

8. Additional Experimental Results

Figure 5 shows the additional qualitative results on syn-
thetic datasets. Our method is capable of reconstructing
dynamic 3D scenes from a single compressed images, as in-
dicated by Figure 5. Table 4 and Figure 6 shows the quan-
titative and qualitative results of our method against prior
SOTA methods on SCINeRF synthetic datasets, where all
compressed 3D scenes are static. Our method surpasses ex-
isting SOTA SCI image recovery methods and SCINeRF,
and reaches comparable performance with SCISplat, which
is the current SOTA SCI static 3D representation method.
Figure 7 shows the qualitative results on scenes in SCINeRF
real datasets. The experimental results on SCINeRF dataset
further demonstrate that our method not only effectively re-
constructs the dynamic parts of the scene but also maintains
high performance and rendering quality in the static regions.

We further evaluate the 3D scene representation quality
of our approach against a set of naive baselines. In these
baselines, restored images from prior SOTA SCI recon-
struction methods (including GAP-TV [51], PnP-FFDNet
[52], PnP-FastDVDNet [54], and EfficientSCI [44]) are di-
rectly fed into the original deformable 3DGS framework
[50] for scene reconstruction. However, due to the lim-
ited high-frequency details and the lack of multi-view con-
sistency in their reconstructions, these images cannot sup-



Airplants Hotdog Cozy2room Tanabata Factory Vender

PSNR7T SSIM?T LPIPS||PSNR?T SSIM{ LPIPS||PSNRT SSIM1 LPIPS||PSNRT SSIM?T LPIPS| |PSNRT SSIM?T LPIPS| PSNR? SSIMT LPIPS|
GAP-TV 22.85 0.406 0.499 | 2235 0.766 0.318 | 21.77 0.432 0.603 | 20.42 0426 0.625 | 24.05 0.566 0.0.515| 20.00 0.368 0.688
PnP-FFDNet | 27.79 0.912 0.182 | 29.00 0.977 0.051 | 28.98 0.892 0.984 | 29.17 0903 0.119 | 31.75 0.897 0.114 | 28.70 0.923 0.131
PnP-FastDVDNet| 28.18 0.909 0.175 | 29.93 0.972 0.052 | 30.19 0913 0.079 | 29.73 0.933 0.098 | 32.53 0.916 0.105 | 29.68 0.940 0.045
EfficientSCI | 30.13 0.942 0.112 | 30.75 0.956 0.046 | 31.47 0.932 0.047 | 32.30 0.958 0.060 | 32.87 0.925 0.070 | 33.17 0.940 0.104
SCINeRF 30.69 0933 0.072 | 31.35 0.987 0.031 | 33.23 0.949 0.044 | 33.61 0.963 0.037 | 36.60 0.963 0.022 | 36.40 0.984 0.029
SCISplat 31.45 0.951 0.036 | 32.67 0.991 0.021 | 3526 0.972 0.011 | 37.86 0.985 0.005 | 38.92 0.975 0.010 | 39.49 0.992 0.004
Ours 3091 0942 0.040 | 32.54 0.966 0.026 | 34.86 0.958 0.025 | 36.92 0.975 0.008 | 38.07 0.981 0.018 | 38.95 0.972 0.005

Table 4. Quantitative SCI image reconstruction comparisons on SCINeRF dataset The results are computed from the rendered images
from estimated scenes via our proposed method, and recovered images from state-of-the-art SCI image restoration methods on six scenes in
static SCINeRF dataset: Airplants, Hotdog, Cozy2room, Tanabata, Factory and Vender. We apply conventional evaluation metrics includ-
ing PSNR, SSIM and LPIPS. The experimental results demonstrate that our proposed SCIGaussian-D can render images with comparable
quality with SCISplat, the current state-of-the-art method on static SCI datasets. The results on static datasets further prove that our method
maintains high quality on reconstructing static regions from a single SCI measurement.

Clock Lego Jump Punch Tank
PSNRT SSIM? LPIPS| |PSNRT SSIM?T LPIPS||PSNR?T SSIM{T LPIPS||PSNR1 SSIM1 LPIPS| |PSNRT SSIM?T LPIPS|
GAP-TV+Deformable3DGS 18.78 0.460 0.501 | 17.71 0.461 0.536 | 18.95 0.358 0.541 | 20.71 0.461 0416 | 23.67 0.669 0.372
PnP-FFDNet+Deformable3DGS | 26.92 0.893 0.100 | 24.91 0.907 0.135 | 31.77 0962 0.194 | 28.30 0.881 0.166 | 29.32 0.905 0.129
PnP-FastDVDNet+Deformable3DGS | 27.34  0.887 0.099 | 24.57 0.893 0.112 | 31.12 0.952 0.141 | 28.61 0.900 0.147 | 31.61 0.955 0.120
EfficientSCI+Deformable3DGS 3234 0.939 0.062 | 30.34 0.972 0.066 | 34.58 0.982 0.087 | 29.22 0916 0.130 | 32.36 0.962 0.093

ours 3476 0.970 0.014 | 33.73 0.987 0.015 | 37.24 0.991 0.013 | 33.74 0.962 0.024 | 34.66 0.980 0.022

Table 5. Quantitative SCI image reconstruction comparisons on the synthetic datasets with naive baselines The results are computed
from the rendered images from estimated scenes via our proposed method, and rendered images from original deformable 3DGS with
reconstructed images from existing SOTA methods as input. The experimental results demonstrate that our proposed method outperforms
existing naive two-stage approaches.

port reliable SfM for estimating camera poses and point
clouds. To make these baselines operational, we initial-
ize deformable 3DGS using camera poses and point clouds
computed from ground-truth images with COLMAP [38].
This setting gives the baselines an inherent advantage, as
they exploit accurate poses that are unavailable in a real test
scenario, thereby making the comparison unfavorable to our
method. Despite this bias, the quantitative results in Table
5 and qualitative results in Figure 8 show that our method
still delivers superior performance in 3D scene representa-
tion compared with 2-stage naive baselines, underscoring
its robustness and effectiveness even under disadvantageous
conditions.
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Figure 5. Additional Qualitative evaluations of our method against SOTA SCI image restoration methods on the synthetic dataset.
Top to bottom shows the results for different scenes, including Lego, Jump and Punch. The experimental results demonstrate that our
method achieves superior performance on dynamic image restoration from a single compressed image (the far-left column).
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Figure 6. Qualitative evaluations of our method against SOTA SCI image restoration methods on the static SCINeRF synthetic
dataset. Top to bottom shows the results for different scenes, including Airplants, Hotdog, Cozy2room, Factory, Tanabata and Vender.
The experimental results demonstrate that our method achieves comparable performance on static scene representation with SCISplat, the
current state-of-the-art static SCI 3D scene representation method.
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Figure 7. Qualitative evaluations of our method against SOTA SCI image restoration methods on the SCINeRF real dataset. Top
to bottom shows different scenes. The results demonstrate that our proposed method surpasses existing image restoration methods on real
datasets by effectively retrieving dynamic regions of the scene and maintaining high reconstruction quality on static regions of the scene.
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Figure 8. Qualitative evaluations of our methods against naive two-stage baselines. We compared the quality of synthesized images
from our methods against that of original deformable 3DGS with images from SOTA methods as input. Top to bottom shows different
scenes. The qualitative comparisons demonstrate that our methods outperforms the prior naive two-stage approaches.
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