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A EXPERIMENTAL DETAILS
This section provides the details of the model and training for experiments in Section 4.
A.1 TRAINING AND EVALUATION

ColorMNIST. Samples in the colorMNIST dataset are 32x32 resolution handwritten digit images,
where the digit is represented in black and the background is some known assigned color which is
representable as a continuous RGB color vector. The train-test split is 60,000 training images to
10,000 test images. The augmentation scheme is randomized resized crop followed by a random
horizontal flip. We pre-train using the LARS optimizer (You et al. (2017)) and cosine annealing for
the learning rate scheduler. The full FARE attention mechanism with sparsification uses 8 rounds
of hashing, a bucket size of 64, and backwards and forwards cross-bucket attention. The linear
classifier is trained using L-BFGS as optimizer over 500 iterations. We pre-train with a batch size
of 256 for 50 epochs.

Figure 2: colorMNIST dataset (Tsai et al., 2022)
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We follow the recent contrastive learning literature (Chen et al. (2020), Robinson et al. (2020), Wu
et al. (2020)) and pre-train the full model before discarding everything except the backbone encoder
at evaluation time.

CelebA. The train-test split is the default as provided by PyTorch. Images are resized to 128 x128.
Resnet-18 (He et al., 2016) is the encoder and we use the same 2-layer MLP and random augmen-
tation strategies as Chen et al. (2020). Same as with colorMNIST, we pre-train with the LARS
optimizer and use cosine annealing. We use a batch size of 512 and the LSH scheme uses buckets
of size 128 with 8 rounds of hashing and backwards and forwards cross-bucket attention. We train
the full model for 100 epochs and evaluate with a single linear layer trained on the frozen encodings
for 10 epochs using Adam as optimizer.

To evaluate the fairness of the representations, we adopt the Equalized Odds (EO) metric (Hardt
et al., 2016). Following Jung et al. (2022) and Zhang et al. (2022), we compute the metric over
multiple sensitive attributes by:

S (P (Y=g =y) - P (Y =glv =y) |, 14
vgg{lgjéssz ( gy =y) - P gy =y (14)

where f is the averaged sum, Y is the target label, Y is the predicted label, and s;,s; € S are
values of sensitive attributes. A smaller EO means a fairer model.

A.2 BASELINES

ColorMNIST. The relevant baselines for comparison are the InfoNCE model (InfoNCE) (Oord
et al., 2018), the Fair-InfoNCE model with clustering (Fair-InfoNCE) (Tsai et al., 2022) and the
conditional contrastive learning with kernel model (CCLK) (Tsai et al. (2022)).

The InfoNCE model uses the InfoNCE loss function 15 without performing any conditional sam-
pling. The Fair-InfoNCE model uses the Fair-InfoNCE loss function 21 and performs conditional
sampling by first clustering the protected attribute so as to discretize it and then sampling from
within the same cluster as the anchor. We report this model’s results according to its best perform-
ing cluster size as determined by its authors, which is found to be a 10-cluster partition. CCLK uses
a kernel similarity metric for weighing negative samples in the batch according to their similarity in
the bias-dimension. We report its results according to its best performing kernel choice as chosen
by its authors which was the cosine kernel.

The InfoNCE objective (Oord et al., 2018) used in the baseline model InfoNCE is given by:

o (@Upos)

supE n n |lo 15
fp (#:Ypos)~Pxy s {Uneg oy ~PY gef(z,ypas) + Zg:l ef (T Yneg.i) (13)

CelebA. We compare with SimCLR (Chen et al., 2020) and all kernel implementations of CCLK
provided by Tsai et al. (2022). For each kernel model, the kernel in the name refers to the what
kernel similarity metric is chosen for measuring the similarity across protected attributes, which
then determines the relevance of that sample for being contrasted with the positive sample. For
example, CCLK-RBF uses the RBF kernel to compute similarity between two protected attributes.

B CONNECTION BETWEEN KERNEL-BASED SCORING FUNCTION
ESTIMATION IN (TSAI ET AL., 2022) AND ATTENTION

The CCLK model uses the following kernel-based scoring function estimation:

Proposition 2 (Kernel-Based Scoring Function Estimation (Tsai et al., 2022)). Given
{@i, yi, 2 Yoy ~ P%y 5, the similarity score of the data pair (;, y) given the anchor z; is computed
via the finite-sample kernel estimation ef @) when y ~ Py\z—., as follows:

f @) = [Kxy (Kz + M) K] (o)

fori = 1,...,b, [Kxylij := ef®@¥%) and [Kz];; := (v(2i),7(2;))g. where 7 is some kernel

feature embedding, G is the corresponding Reproducing Kernel Hilbert Space (RKHS), and (-, )¢
is an inner product in space G.

15



Under review as a conference paper at ICLR 2024

First, in comparison to Eqn. 2, FARE and sparseFARE avoid matrix inversion. FARE’s atten-
tion computation has complexity O(b?) (Vaswani et al., 2017) and sparseFARE has complexity
O(b logb) (Kitaev et al., 2020), which improve significantly over O(b%) in Eqn. 2.

Second, our methods do not impose assumptions on the bias-causing interactions over protected
attributes. In particular, we avoid specifying any particular kernel and allow our attention mechanism
to learn the bias-causing interactions. To see this difference, we decompose the estimator in Eqn. 2
as follows:

[Kxy(Kz+\)"'Kyz], (17)
= [Kxyis[(Kz + \I) "' Kz
b
= Zw(zi,zj)ef(m""y-"'), (18)
J

where w(z;, zj) = [(Kz + M)~ 'Kz];; are smoothed kernel similarity scores (Tsai et al., 2022).
Hence we see the (Tsai et al., 2022) estimator as performing a similar weighting of similarity scores
between samples, with weights provided by the similarities over the protected attributes. This ap-
proach differs from ours however since the kernel must be pre-specified in K ;. This imposes strong
assumptions on bias-causing interactions that limit the extent to which the model can learn fair rep-
resentations. Our method by contrast can be understood as replacing w(z;, z;) with attention score
p(zi, ;). The attention mechanism can more flexibly model the bias-causing interactions and learns
to focus-attention on bias-reducing samples that help learn the representation space.

We provide a proof adapted from (Tsai et al., 2022) of their kernel-based scoring function estimation
below.

Proof of kernel-based scoring function estimation. First, letting ® = [b(g(y1)),...o(g(ys))]"
be the matrix of kernel embeddings for encodings g(y;) with feature map ¢ and T' =
[Y(21),--.,7(2)] " be the matrix of kernel embeddings for protected attribute outcomes z with fea-
ture map -y, Definition 3 provides the Kernel Conditional Embedding Operator (Song et al., 2013):

Definition 3. [Kernel Conditional Embedding Operator (Song et al., 2013)] The finite-sample ker-
nel estimation of Ey.p,, ,_. [6(g(y))] is @ (Kz + M)~'Ty(2) where X is a hyperparameter.

Then, according to Definition 3, for any given Z = 2, ¢(g(y)) when y ~ Py |z—. can be estimated
by
O (Kz 4+ )" 1Ty(2) (19)

We look for the inner product between (5) and the encoding of (x;, 2;) when y ~ Pyz—.:

(O(9(2). 87 (K2 + X) Ty (2 = tr(9(g()) 7 (B + M)~ ()
= [Kxy]i(Kz + M) K 2]ix = [Kxy]is[(Kz + M) " K 7]
= [Kxy(Kz + )" *Kgz]i (20)

C COMPARISON OF FAIR-INFONCE AND FARECONTRAST

We present a discussion of the differences between the Fair-InfoNCE objective from Tsai et al.
(2021b) and the FAREContrast objective we use to train our attention-based FARE models. FARE-
Contrast is derived from Fair-InfoNCE by replacing the conditionally sampled negative pairs with
the output of the FARE attention mechanism. This leads to a difference firstly in sampling procedure
and secondly in the inclusion of learnable attention scores in the loss.

The Fair-InfoNCE (Tsai et al., 2021b) is given as:

ef(x»ypos)

supE lo , 21
fp z~Pz, (I7ypos)NPXY|Z:z7 {y7zeg}§:1~P§‘bZ=z gef(x’ypos) + Z?:l ef(l‘,yngg’i) ( )
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and FAREContrast is given as:

ef (wisyi)

supE . _pov |0 , (22)
fp {@oyn 20t~ PRy 2 [ gef(ﬂ?iyyi)JrZ?:l softmax((WQz,-)TWsz/p) ef(ziy;)

where b denotes the batch size, f : X x Y — R is a mapping given by f(z,y) =
cosine similarity (ggx (x), goy (y)) /T, gox 9o, are neural networks parameterized by 0x, 0y, and
T is a hyperparameter scaling the cosine similarity.

We see that FAREContrast does not require conditional sampling of the negatively paired samples,
{Yneg oy ~ Pf}f’z:z for outcome of the of the protected attribute z. Instead, FARE considers
the whole batch and selectively weights samples according to their protected attribute status. One
issue with conditional sampling as in Eqn. 21 is data scarcity, whereby conditioning on Z = z can
lead to insufficient negative samples for contrasting (Tsai et al., 2022). This problem is exacerbated
when the protected attribute has high cardinality or is continuous, which is the problem setting
we aim to deal with. When there are insufficient negative samples, we incur risk of poorly learnt
representations and collapse (Chen et al., 2020; Chen & He, 2021). For this reason, we derive FARE
which considers the whole batch and uses learnt attention scores to accentuate/attenuate negative
samples according to their bias characteristics.

The second difference is then the attention weights included in FAREContrast. Including the atten-
tion weights in FAREContrast means that that FARE learns according to information coming from
the gradients and so can better focus on samples that help minimize the loss, thereby helping the
encoder to learn meaningful representations.

D ADDITIONAL RESULTS

D.1 LSH BUCKET SCHEME

Attention Scheme Top-1 Test Accuracy (1) Bias Removal (1)

Adjacent 86.4+1.3 74.0 £ 3.8
Intra 84.9+2.1 58.2+9.8

Table 3: Sparsification Scheme on ColorMNIST Results. Bias removal is measured by MSE, where
high MSE indicates more color information has been removed from the learned representations.

Table 3 shows results for when the LSH scheme considers intra-bucket attention versus the stan-
dard adjacent bucket attention (where attention is computed across adjacent buckets). We see fairly
substantial drop in performance when restricting attention to within the same bucket, both in terms
of accuracy and fairness. Lower accuracy is intuitive given the intra-bucket attention removes three
quarters of negative samples, which depletes the model’s ability to learn meaningful representations.
At the same time, we see lower fairness, despite the heavy debiasing scheme. This may support the
conclusion that to learn effectively debiased representations, the model needs sufficiently many sam-
ples to learn to attend over and focus on bias-reducing samples. With too few samples in the batch,
the model is ignoring too many samples, including ones that would help it learn debiased represen-
tations.

D.2 FAIRNESS-ACCURACY TRADEOFF

The two metrics that capture both representation quality and fairness are Accuracy and Equalized
Odds (EO). Table 2 showed that SparseFARE Pareto dominates all kernel baselines in terms of
both fairness and accuracy, with the exception of CCLK-Linear and CCLK-Polynomial, which were
able to attain slightly higher accuracy. We therefore further compare SparseFARE to these two
models by plotting the fairness-accuracy tradeoff curves in Figure ??. The curves are produced by
plotting EO and Accuracy at four stages during training - after 25, 50, 75, and 100 epochs. We
see that for every level of accuracy, SparseFARE achieves better fairness (lower EO). This implies
that SparseFARE attains a better fairness-accuracy tradeoff. Additionally of interest, we find that
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SparseFARE is even able to simultaneously minimize EO while increasing accuracy, implying that
it can learn representations that do not necessarily need to compromise fairness for higher accuracy.

D.3 COMPARISON
WITH WORK IN PARTIAL
ACCESS TO SENSITIVE ATTRIBUTES

Model Test Accuracy (1) EO ()
Supervised Models

CGL + G-DRO (Sagawa et al., 2019)  71.4 21.9

CGL + FSCL (Park et al., 2022) 74.0 25.6

Unsupervised Models

CGL + VFAE (Louizos et al., 2015) 72.7 28.7
CGL + GRL (Raff & Sylvester, 2018)  73.8 26.9
SimCLR (Chen et al., 2020) 71.7 39.6
FairCL (Zhang et al., 2022) 74.1 24.5
FARE (ours) 73.7 23.5
SparseFARE (ours) 70.4 18.7

Table 4: CelebA Results. Fare and SparseFARE in comparison with unsupervised and supervised
models under partial sensitive label access.

This paper uses the same experimental setup on
CelebA as Zhang et al. (2022) in terms of train-
ing procedure and evaluation protocol. Zhang
et al. (2022) differs, however, in the sense that
the authors assumes only partial access to sensi-
tive attributes and therefore use auxiliary mod-
els, for example an editor (Zhang et al., 2022)
or CGL (Jung et al., 2022), to solve this prob-
lem. Given the experimental setups are the
same, we include their results as well for ref-
erence, however we do not feature these results
in the main body given the important difference
regarding sensitive attribute access.

E FAIR ATTENTION-CONTRASTIVE
CRITERION

We do not include a learnable value transfor-
mation Wy, on the raw similarity scores such
that V = UWy where U = [ef(®::%3)],; as do-
ing so allows the optimization process to obtain
0 loss without learning meaningful representa-
tions. This is seen immediately from the crite-
rion, where allowing Wy, gives individual sim-
ilarity scores as wijef(’”“yf) in the criterion:

el (xiyi)
Sl;pE{(m""y"’z")}LlNPg“’Z o8 rtarm + 30 (i, zj)wijel @ivi)
JES;

hence the loss is minimised by sending w;; —
oo Vi, j.
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F ETHICAL CONSIDERATIONS

We note that there are two, interconnected
prevalent ethical issues in fair ML. The first
is that almost all fair ML literature simpli-
fies the problem of fairness to simple binaries
and the second is that fairness metrics (which
are typically built atop these binaries) and the
choice of which to use themselves involve value
judgements that can disadvantage certain peo-
ple. People have intersectional identities and
invariably belong to multiple groups simultane-
ously. When it comes to choosing fairness met-
rics, inherent to the majority of approaches in
fair ML is that the researcher or practitioner de-
cide what definition of fairness to use for their
model. It has been shown that various defini-
tions of fairness are not only mutually inconsis-
tent but also prioritise different groups in dif-
ferent scenarios (Garg et al., 2020). In a sense
then, solving for fairer ML models only pushes
the problem from the model and onto the practi-
tioner, as a ‘fairer’ model itself advantages and
disadvantages different groups under different settings.

These two ethical considerations motivate the
approach of our paper to conceptualise fair-
ness in a more general setting where sensi-
tive attributes can be continuous and multi-
dimensional and fairer models are measured in
terms of sensitive information removal. This
conception avoids the ethical issues of binaries
and fairness metrics.

We do note however that there still exist ethi-
cal concerns with our approach in terms of ex-
plainability. Measuring fairness by sensitive
information removal (by measuring loss from
a trained classifier) does not have an intuitive
scale or unit of measurement for discussing the
fairness or unfairness of a model. Although we
can compare two models in terms of which is
fairer, saying a model is fair because it scores
some number in MSE has little intuitive mean-
ing. Being unable to communicate the specifics
of how a learned representation has removed
sensitive information and how will affect down-
stream classifiers risks undermining confidence
in fair ML as well.

Despite the explainability issue, we nonetheless
believe that this approach represents a promis-
ing and exciting direction in fair ML that deal
with substantive existing ethical issues. We
hope that one area of future research may be
deriving theoretical frameworks that can de-
rive guarantees between sensitive information
removal from debiased representations and up-
per bounds on downstream fairness metrics.
This would develop a practical link to well-
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known ideas of fairness and how unfair out-
comes could appear in worst-case scenarios.
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