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A THEORETICAL SPEED-UP ANALYSIS

In the following, we make the simplifying assumptions and definitions:

• A perfectly balanced b-ary tree of depth h, so the total number of leaf classes is NC = bh.

• A constant pruning ratio 0 < K ≤ 1 at each level.

• A fixed number of Monte-Carlo samples M per evaluated node.

• Each Monte-Carlo sample requires one diffusion-model forward pass, at cost Cε .

1. Cost of the Standard (Flat) Diffusion Classifier. Evaluates all NC classes with M Monte Carlo
samples each:

Cflat = NC ×M×Cε = bh MCε . (1)

2. Cost of the Hierarchical Diffusion Classifier (HDC). At level d (1 ≤ d ≤ h), HDC visits
Sd = bd K d−1 nodes. Summing over all levels:

CHDC =
h

∑
d=1

Sd ×M×Cε = MCε

h

∑
d=1

bd K d−1

= MCε b
h−1

∑
i=0

(bK)i = MCε b
(bK)h −1

bK −1
. (2)

3. Theoretical Speed-up Ratio

S =
Cflat

CHDC
=

bh MCε

MCε b
(bK)h −1

bK −1

=
bh−1 (bK −1)
(bK)h −1

. (3)

Note that as K → 1, S → 1, and for K < 1 the speed-up increases up to roughly 1/K.

4. Asymptotic Complexity in NC Since NC = bh, we have h = logb NC. Then

Cflat = O
(
NC ·M ·Cε

)
, CHDC = O

(
(bK)h ·M ·Cε

)
.

But
(bK)h = (bK)logb NC = blogb NC Klogb NC = NC ×Nlogb K

C = N 1+logb K
C .

Thus, HDC scales sublinear in the number of classes NC.

B ADDITIONAL METHOD VISUALIZATION AND ALGORITHM

Figure 1 illustrates the classification pipeline. Starting from an input image x, Gaussian noise
ε ∼ N (0, I) is added to generate noisy variants xt across multiple diffusion timesteps t. A diffusion-
based classifier then operates on these noisy samples using hierarchical textual prompts (e.g., “A
photo of a synclass / class name”), enabling coarse-to-fine classification guided by the label tree.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

...Children ...

Monte Carlo Estimate (Eq. 7)
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Figure 1: Overview of our Hierarchical Diffusion Classifier (HDC). Starting with an input image x,
noise ε ∼ N (0, I) is added to generate a noisy image, resulting in xt for multiple timesteps t. Next,
we use the diffusion classifier with a reduced number of ε-predictions and hierarchical conditioning
prompts like “A photo of a {synclass / class name}” to progressively refine the classification through
multiple levels of the label tree. By doing so, we keep track of the most promising classes (highlighted
in green) and ignore the rest (highlighted in red). The set of selected nodes during the pruning stage
is denoted as S d

selected, where d denotes the step count during traversal from 1 to h, the depth of the
tree. Subsequently, the classical diffusion classifier pipeline is applied to the pruned, more specific
subcategories (leaf nodes), which results in faster classification overall.

At each level of the hierarchy, the classifier evaluates a reduced set of candidate classes, identifying
the most promising ones (shown in green) and discarding others (shown in red). The set of retained
class nodes at depth d is denoted by S d

selected, as the classifier traverses from the root down to depth
h. Finally, the diffusion classifier is applied more thoroughly to these pruned leaf nodes, significantly
accelerating inference by focusing only on the most relevant subcategories.

Algorithm 1 formalizes this pruning process. For each level of the label tree, it computes prediction
errors across a small number of Monte Carlo samples and retains the top-Kd child nodes based on
these errors. This iterative pruning continues until the classifier reaches the leaf level, at which point
the final subset of class labels is returned for final classification. All experiments using this algorithm
were conducted on an RTXA6000 GPU with 100G memory.

C DATASET HIERARCHY CREATION

We organize our datasets into multilevel label trees—reusing an existing taxonomy whenever possible
(for example, ImageNet’s WordNet–derived hierarchy or CIFAR-100’s two-tier structure). When
explicit hierarchy exists, we prompt a large language model to create one by using the prompt:
“Create a hierarchy for the dataset <dataset> with X levels, ending in the leaf-node class labels.”

This approach works even when the semantic gap between coarse- and fine-groups is small: we
exploit subtle inter-class distinctions. For instance, in the Oxford-IIIT Pets dataset we ask for a
two-level taxonomy: first “Cat” vs. “Dog,” then the individual breed names as leaves. Furthermore,
we can ask the LLM to group classes by color palettes (“red object,” “green object”), by shape
(“square-shaped vs. oval-shaped”), or by any other perceptual or conceptual feature.

This highlights the domain adaptability of our method as well as its flexibility to be applied on new
datasets or even open-set ones.
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Algorithm 1 Hierarchical Diffusion Classifier (HDC) in the pruning stage for classifying one image
Input: test image x, Th = (N,E) with nodes N, edges E and depth h, root node nroot, label inputs
{ci}Nc

i=1, pruning ratios Kd , and number of random samples M.
1: // initialization
2: Selected = list(Children(nroot))
3: Errors = dict()
4: ErrorsCalculated = dict()
5: for each node n ∈ N do
6: Errors[cn] = list()
7: ErrorsCalculated[cn] = false
8: end for
9:

10: // modified diffusion classifier error calculations
11: for tree depth d = 1, . . . ,h do
12: for stage i = 1, . . . ,M do
13: Sample t ∼ [1,1000]
14: Sample ε ∼ N (0, I)
15: xt =

√
ᾱtx+

√
1− ᾱtε

16:
17: // calculate child errors
18: for each node ns in Selected do
19: for each child node n ∈ Children(ns) do
20: // check if error already calculated
21: if ErrorsCalculated[cn] then
22: continue
23: end if
24:
25: Errors[cn].append(∥ε − εθ (xt ,cn)∥2)
26: end for
27: end for
28: end for
29:
30: // descend in the tree and select top-k
31: ErrorsCalculated[Selected] = true
32: SelErrors = mean (Errors[Selected])
33: Selected = TopK(SelErrors,K = Kd)
34: end for
35:
36: // return pruned class label set
37: Return: Selected
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