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1 Supplement for Mathematical Formulation

In this supplementary section, we give more details on the mathematical aspects underlying SimplEx.

1.1 Precision of the corpus approximation in output space

If the corpus representation of h ∈ H has a residual rC(h), Assumption 2.1 controls the error between
the black-box prediction for the test example f(x) = l(h) and and its corpus representation l(ĥ).

Proposition 1.1 (Precision in output space). Consider a latent representation h with corpus residual
rC(h). If Assumption 2.1 holds, this implies that the corpus prediction l(ĥ) approximates l(h) with a
precision controlled by the corpus residual:

‖ l(ĥ)− l(h) ‖Y ≤ ‖ l ‖op · rC(h),

where ‖ · ‖Y is a norm on Y and ‖ l ‖op= inf
{
λ ∈ R+ : ‖ l(h̃) ‖Y ≤ λ ‖ h̃ ‖H ∀h̃ ∈ H

}
is the

usual operator norm.

Proof. The proof is immediate:

‖ l(ĥ)− l(h) ‖Y = ‖ l(ĥ− h) ‖Y
≤ ‖ l ‖op · ‖ ĥ− h ‖H
= ‖ l ‖op · rC(h),

where we have successively used the linearity of l, the definition of the operator norm ‖ · ‖op and
Definition 2.2.

1.2 Uniqueness of corpus decomposition

As we have mentioned in the main paper, the corpus decomposition is not always unique. To illus-
trate, we consider the following corpus representation: g(C) =

{
h1,h2,h3 = 0.5 · h1 + 0.5 · h2

}
.

Consider the following vector in the corpus hull: h = 0.75 · h1 + 0.25 · h2. We note that this vector
can also be written as h = 0.5 · h1 + 0.5 · h3. In other words, the vector h ∈ g(C) admits more
than one corpus decomposition. This is not a surprise for the attentive reader: by paying a closer
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look to g(C), we note that h3 is somewhat redundant as it is itself a combination of h1 and h2. The
multiplicity of the corpus decomposition results from a redundancy in the corpus representation.

To make this reasoning more general, we need to revisit some classic concepts of convex analysis. To
establish a sufficient condition that guarantees the uniqueness of corpus decompositions, we recall
the definition of affine independence.

Definition 1.1 (Affine independence). The vectors {hc | c ∈ [C]} ⊂ Rd are affinely independent if

C∑
c=1

λchc = 0 ∧
C∑
c=1

λc = 0 =⇒ λc = 0 ∀ c ∈ [C]

If a set of vectors is not affinely independent, it means that one of the vectors can be written as
an affine combination of the others. This is precisely what we called a redundancy in the previous
paragraph. We now adapt a well-known result of convex analysis to our formalism:

Proposition 1.2 (Uniqueness of corpus decomposition). If the corpus representation g(C) = {hc |
c ∈ [C]} is a set of affinely independent vectors, then every vector in the corpus hull h ∈ CH(C)
admits one unique corpus decomposition.

Proof. The existence of a decomposition is a trivial consequence of the definition of CH(C). We
prove the uniqueness of the decomposition by contradiction. Let us assume that a vector h ∈ CH(C)
admits two distinct corpus decompositions:

h =

C∑
c=1

wchc =

C∑
c=1

w̃chc

where wc, w̃c ≥ 0 for all c ∈ [C],
∑C
c=1 w

c =
∑C
c=1 w̃

c = 1 and (wc)Cc=1 6= (w̃c)Cc=1. It follows
that:

C∑
c=1

(wc − w̃c)︸ ︷︷ ︸
≡λc

hc = 0

But
∑C
c=1 λ

c =
∑C
c=1(wc − w̃c) = 1 − 1 = 0. It follows that g(C) is not affinely independent, a

contradiction.

This shows that affine independence provides a sufficient condition to ensure the uniqueness of
corpus decompositions. If one wants to produce such a corpus, a possibility is to gradually add new
examples in the corpus by checking that the latent representation of each new example is not an affine
combination of the previous latent representations. Clearly, the number of examples in such a corpus
cannot exceed dH + 1.

1.3 Integrated Jacobian and Integrated Gradients

Integrated Gradients is a notorious method used to discuss feature saliency [1]. It uses a black-box
output to attribute a saliency score to each feature. In the original paper, the output space Y is
assumed to be one-dimensional: dY = 1. We shall therefore relax the bold notation that we have used
for the outputs so far. In this way, the black-box is denoted f and the latent-to-output map is denoted
l. Although the original paper makes no mention of corpus decompositions, it is straightforward to
adapt the definition of Integrated Gradients to our set-up:

Definition 1.2 (Integrated Gradient). The Integrated Gradient between a baseline x0 an a corpus
example xc ∈ X associated to feature i ∈ [dX ] is

IGci =
(
xci − x0i

) ∫ 1

0

∂f

∂xi

∣∣∣∣
γc(t)

dt ∈ R,

where γc(t) ≡ x0 + t ·
(
xc − x0

)
for t ∈ [0, 1].
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In the main paper, we have introduced Integrated Jacobians: a latent space generalization of Integrated
Gradients. We use the word generalization for a reason: the Integrated Gradient can be deduced from
the Integrated Jacobian but not the opposite1. We make the relationship between the two quantities
explicit in the following proposition.

Proposition 1.3. The Integrated Gradient can be deduced from the Integrated Jacobian via

IGci = l (jci ) .

Proof. We start from the definition of the Integrated Gradient:

IGci =
(
xci − x0i

) ∫ 1

0

∂f

∂xi

∣∣∣∣
γc(t)

dt

=
(
xci − x0i

) ∫ 1

0

∂(l ◦ g)

∂xi

∣∣∣∣
γc(t)

dt

=
(
xci − x0i

) ∫ 1

0

l

(
∂g
∂xi

∣∣∣∣
γc(t)

)
dt

=
(
xci − x0i

)
l

(∫ 1

0

∂g
∂xi

∣∣∣∣
γc(t)

dt

)

= l

((
xci − x0i

) ∫ 1

0

∂g
∂xi

∣∣∣∣
γc(t)

dt

)
= l (jci ) ,

where we have successively used: Assumption 2.1, the linearity of the partial derivative, the linearity
of the integration operator, the linearity of l and the definition of Integrated Jacobians.

Note that Integrated Jacobians allow us to push our understanding of the black-box beyond the output.
There is very little reason to expect a one dimensional output to capture the model complexity. As we
have argued in the introduction, our paper pursues the more challenging ambition of gaining a deeper
understanding of the black-box latent space.

1.4 Properties of Integrated Jacobians

We give a proof for the proposition appearing in the main paper.

Proposition 2.1 (Properties of Integrated Jacobians). Consider a baseline (x0,h0 = g(x0)) and a
test example together with their latent representation (x,h = g(x)) ∈ X × H. If the shift h − h0

admits a decomposition (2), the following properties hold.

(A) :

C∑
c=1

dX∑
i=1

wcjci = h− h0 (B) :

C∑
c=1

dX∑
i=1

wcpci = 1.

Proof. Let us begin by proving (A). By using the chain rule for a given corpus example c ∈ [C], we
write explicitly the derivative of the curve g ◦ γc with respect to its parameter t ∈ (0, 1):

d (g ◦ γc)
dt

∣∣∣∣
t

=

dX∑
i=1

∂g
∂xi

∣∣∣∣
γc(t)

dγci
dt

∣∣∣∣
t

=

dX∑
i=1

∂g
∂xi

∣∣∣∣
γc(t)

(xci − x0i ),

1Unless in the degenerate case where dH = 1. However, this case is of little interest as it describes a situation
where Y and H are isomorphic, hence the distinction between output and latent space is fictional.
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where we used γci (t) = x0i + t · (xci − x0i ) to obtain the second equality. We use this equation to
rewrite the sum of the Integrated Jacobians for this corpus example c:

dX∑
i=1

jci =

dX∑
i=1

∫ 1

0

∂g
∂xi

∣∣∣∣
γc(t)

(xci − x0i ) dt

=

∫ 1

0

dX∑
i=1

∂g
∂xi

∣∣∣∣
γc(t)

(xci − x0i ) dt

=

∫ 1

0

d (g ◦ γc)
dt

∣∣∣∣
t

dt

= g ◦ γc(1)− g ◦ γc(0)

= hc − h0,

where we have successively used: the linearity of integration, the explicit expression for the curve
derivative, the fundamental theorem of calculus and the definition of the curve g ◦ γc. We are now
ready to derive (A):

C∑
c=1

dX∑
i=1

wcjci =

C∑
c=1

wc
(
hc − h0

)
= h− h0,

where we have successively used the exact expression for the sum of Integrated Jacobians associated
to corpus example c and the definition of the corpus decomposition of h. We are done with (A), let us
now prove (B). We simply project both members of (A) on the overall shift h− h0. Projecting the
left-hand side of (A) yields:

projh−h0

(
C∑
c=1

dX∑
i=1

wcjci

)
=

C∑
c=1

dX∑
i=1

wc projh−h0 (jci )︸ ︷︷ ︸
pci

,

where we used the linearity of the projection operator. Projecting the right-hand side of (A) yields:

projh−h0(h− h0) =
〈 h− h0 , h− h0 〉
〈 h− h0 , h− h0 〉

= 1.

By equating the projected version of both members of (A), we deduce (B).

1.5 Pseudocode for SimplEx

We give the pseudocode for the two modules underlying SimplEx: the corpus decomposition (Algo-
rithm 1) and the evaluation of projected Jacobians (Algorithm 2).

Algorithm 1: SimplEx: Corpus Decomposition
Input: Test latent representation h ; Corpus representation {hc | c ∈ [C]}
Result: Weights of the corpus decomposition w ∈ [0, 1]C ; Corpus residual rC(h)
Initialize pre-weights: w̃← 0;
while optimizing do

Normalize pre-weights: w← softmax [w̃];

Evaluate loss: L [w̃]←∑dH
i=1

(
hi −

∑C
c=1 w

chci

)2
;

Update pre-weights: w̃← Adam step (L [w̃]);
end
Return normalized weights: w← softmax [w̃];

Return corpus residual: rC(h)←
[∑dH

i=1

(
hi −

∑C
c=1 w

chci

)2]1/2
;
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Where we used a vector notation for the pre-weights and the weights: w = (wc)
C
c=1. For the Adam

optimizer, we use the default hyperparameters in the Pytorch implementation: lr = 10−3 ; β1 = .9
; β2 = .999 ; eps = 10−8. Note that this algorithm is a standard optimization loop for a convex
problem where the normalization of the weights is ensured by using a softmax.

When the size of the corpus elements to contribute has to be limited to K, we use a similar strategy
as the one used to produce extremal perturbations [2, 3]. This consists in adding the following L1

term to the optimized loss L:

Lreg [w̃] =

C−K∑
d=1

∣∣vecsortd [w̃]
∣∣ ,

where vecsort is a permutation operator that sorts the components of a vector in ascending order.
The notation vecsortd refers to the dth component of the sorted vector. This regularization term will
impose sparsity for the C −K smallest weights of the corpus decomposition. As a result, the optimal
corpus decomposition only involves K non-vanishing weights. We now focus on the evaluation of
the Projected Jacobian.

Algorithm 2: SimplEx: Projected Jacobian
Input: Test input x ; Test representation h ; Corpus {xc | c ∈ [C]} ; Corpus representation

{hc | c ∈ [C]} ; Baseline input x0 ; Baseline representation h0 ; Black-box latent map g ;
Number of bins Nb ∈ N∗

Result: Jacobian projections P = (pci ) ∈ RC×dX
Initialize the projection matrix: P = (pci )← 0 ;
Form a matrix of corpus inputs: XC ← (xci ) ∈ RC×dX ;
Form a matrix of baseline inputs: X0 ← (x0i ) ∈ RC×dX ;
for n ∈ [Nb] do

Set the evaluation input: X̃← X0 + n
Nb

(
XC − X0

)
;

Increment the Jacobian projections: pci ← pci + ∂g
∂xi

∣∣
x̃c ·

h−h0

‖h−h0‖22
∀(c, i) ∈ [C]× [dX ] ;

end
Apply the appropriate pre-factor: P← 1

Nb

(
XC − X0

)
� P ;

This algorithm approximates the integral involved in the definition of the Projected Jacobian with
a standard Riemann sum. Note that the definition of X0 implies that the baseline vector x0 is
broadcasted along the first dimension of the matrix. More explicitly, the components of this matrix
are X0

c,i = x0i for c ∈ [C] and i ∈ [dX ]. Also note that the projected Jacobians can be computed
in parallel with packages such as Pytorch’s autograd. We have used the notation � to denote the
conventional Hadarmard product. In our implementation, the number of bins Nb is fixed at 200,
bigger Nb don’t significantly improve the precision of the Riemann sum.

1.6 Choice of a baseline for Integrated Jacobians

Throughout our analysis of the corpus decomposition, we have assumed the existence of a baseline
x0 ∈ X . This baseline is crucial as it defines the starting point of the line γc that we use to compute
the Jacobian quantities. What is a good choice for the baseline? The answer to this question depends
on the domain. When this makes sense, we choose the baseline to be an instance that does not
contain any information. A good example of this is the baseline that we use for MNIST: an image
that is completely black x0 = 0. Sometimes, this absence of information is not well-defined. A good
example is the prostate cancer experiment: it makes little sense to define a patient whose features
contain no information. In this set-up, our baseline is a patient whose features are fixed to their
average value in the training 2 set x0 = |Dtrain|−1

∑
x∈Dtrain

x. In this way, a shift with respect to the
baseline corresponds to a patient whose features differ from the population average.

2This average could also be computed with respect to the corpus itself.
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Feature Range

Age 60− 73
PSA 5− 11

Comorbidities 0, 1, 2,≥ 3
Treatment Hormone Therapy (PHT), Radical Therapy - RDx (RT-RDx),

Radical Therapy -Sx (RT-Sx), CM
Grade 1, 2, 3, 4, 5
Stage 1, 2, 3, 4

Primary Gleason 1, 2, 3, 4, 5
Secondary Gleason 1, 2, 3, 4, 5

Table 1: Features for the SEER Dataset.

2 Supplement for Experiments

In this section, we give more details on the experiments that we have conducted with SimplEx. All our
experiments have been performed on a machine with Intel(R) Core(TM) i5-8600K CPU @ 3.60GHz
[6 cores] and Nvidia GeForce RTX 2080 Ti GPU. Our implementation is done with Pytorch 1.8.1.

2.1 Details for the corpus precision experiment

Metrics We give the explicit expression for the two metrics used in the experiment. By keeping
the notation of Section 3, we assume that we are given a set of test samples T ⊂ X . For each test
representation h ∈ g(T ) and test output y ∈ f(T ), we build build an approximation ĥ and ŷ with
several methods. To evaluate the quality of these approximations, we use the following R2 scores:

R2
H = 1−

∑
h∈g(T ) ‖ h− ĥ ‖22∑
h∈g(T ) ‖ h− h̄ ‖22

h̄ =
1

|T |
∑

h∈g(T )

h

R2
Y = 1−

∑
y∈f(T ) ‖ y− ŷ ‖22∑
y∈f(T ) ‖ y− ȳ ‖22

ȳ =
1

|T |
∑

y∈f(T )

y.

These R2 scores compare the approximation method to a dummy approximator that approximates
every representation and output with their test average. A negative value for R2 indicates that the
approximation method performs more poorly than the dummy approximator. Ideally, the R2 score
should be close to 1.

SEER Dataset The SEER dataset is a private dataset consisting in 240,486 patients enrolled in the
American SEER program [4]. All the patients from the SEER dataset have been de-identified. We
consider the binary classification task of predicting cancer mortality for patients with prostate cancer.
Each patient in the dataset is represented by the couple (x, z), where x contains the patient features
and z ∈ {0, 1}2 is a vector indicating the patient mortality. The features characterizing each patient
are their age, PSA, Gleason score, clinical stage and which, if any, treatment they are receiving. These
features are summarized in Table 1. The original dataset is severely imbalanced as 93.8% patients
survive or have a mortality unrelated to cancer. We extract a balanced subset of 42,000 patients that
we split into a training set Dtrain of 35,700 patients and a test set Dtest of 6,300 patients. We train a
multilayer perceptron (MLP) for the mortality prediction task on Dtrain.

MNIST Dataset MNIST is a public dataset consisting in 70,000 MNIST images of handwritten
digits [5]. We consider the multiclass classification task of identifying the digit represented on each
image. Each instance in the dataset is represented by the couple (x, z), where x contains the image
itself and z ∈ {0, 1}10 is a vector indicating the true label for the image. The images are characterized
by 28× 28 pixels with one channel. The dataset is conventionally split into a training set Dtrain of
60,000 images and a test set Dtest of 10,000 images. We train a convolutional neural network (CNN)
for the image classification task on Dtrain. Yann LeCun and Corinna Cortes hold the copyright of
MNIST dataset, which is a derivative work from original NIST datasets. MNIST dataset is made
available under the terms of the Creative Commons Attribution-Share Alike 3.0 license.
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Layer Input Dimension Output Dimension Activation Remark

Batch Norm 3 3 Only acts on Age, PSA
and Comorbidities

Dense 1 26 200 ReLU
Dropout 200 200
Dense 2 200 50 ReLU
Dropout 50 50 Output: h = g(x)
Linear 50 2 Output: y = l(h)

Softmax 2 2 Output: p = f(x)

Table 2: Mortality Prediction MLP for SEER.

Convolution 1 Max-Pool 1 Convolution 2 Max-Pool 2 Dense

1@28x28
10@24x24 10@12x12

20@8x8 20@4x4

1x50
1x10

Figure 1: Architecture of MNIST classifier.

Prostate Cancer Model The model that we use for mortality prediction on the SEER dataset is a
simple MLP with two hidden layers. Its precise architecture is described in Table 2. The model is
trained by minimizing the following loss:

Ltrain (θ) =
∑

(x,z)∈Dtrain

−z� log [fθ(x)] + λ· ‖ θ ‖2, (1)

where we have introduced a L2 regularization, as required by the representer theorem. The regular-
ization coefficient is chosen to be λ = 10−5 (a bigger λ significantly decreases the performance of
the model on the testing set). We train this model with Adam (default Pytorch hyperparameters) for 5
epochs. Across the different runs, the accuracy of the resulting model on the test set ranges between
85− 86%.

MNIST Model The model that we use for image classification on the MNIST dataset is the CNN
represented in Figure 1. Its precise architecture is described in Table 3. The model is trained
by minimizing the loss (1) with λ = 10−1. We train this model with Adam (default Pytorch
hyperparameters) for 10 epochs. Across the different runs, the accuracy of the resulting model on the
test set ranges between 94− 96% (note that the weight decay decreases the performances, training
the same model with λ = 0 yields a test accuracy above 99%).

Representer theorem Previous works established that the pre-activation output of classification
deep-networks can be decomposed in terms of contributions arising from the training set [6]. In our
set-up, where the neural network takes the form f = φ ◦ l ◦ g, the decomposition can be written as

y = l ◦ g(x)

= − 1

2λ|Dtrain|
∑

(x′,z′)∈Dtrain

∂Ltrain

∂ [l(x′)]

=
1

2λ|Dtrain|
∑

(x′,z′)∈Dtrain

[z′ − f(x′)] · [g(x′)]> [g(x)] ,
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Layer Input Dimension Output Dimension Activation Remark

Convolution 1 28× 28× 1 24× 24× 10 Kernel Size: 5
Max-Pool 1 24× 24× 10 12× 12× 10 ReLU Kernel Size: 2

Convolution 2 12× 12× 10 8× 8× 20 Kernel Size: 5
Dropout 8× 8× 20 8× 8× 20

Max-Pool 2 8× 8× 20 4× 4× 20 ReLU Kernel Size: 2
Flatten 4× 4× 20 320
Dense 320 50 ReLU

Dropout 50 50 Output: h = g(x)
Linear 50 10 Output: y = l(h)

Softmax 10 10 Output: p = f(x)

Table 3: MNIST Classifier CNN.
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(a) Norm of the latent error
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0.4

0.5

0.6

‖ŷ
−
y
‖

SimplEx

KNN Uniform

KNN Distance

(b) Norm of the output error

Figure 2: Precision of corpus decomposition for prostate cancer (avg ± std).

where λ is the L2 regularization coefficient used in the training loss (1). In our work, we decompose
the same output in terms of a corpus C that is distinct from the training set Dtrain. In this experi-
ment, the corpus is a random subset of the training set C ⊂ Dtrain (in our implementation of the
representer theorem, the true labels associated to the corpus example are included). To give a corpus
approximation of the output with the representer theorem, we restrict the above sum to the corpus:

ŷ =
1

2λ|C|
∑

(x′,z′)∈C

[z′ − f(x′)] · [g(x′)]> [g(x)] .

The R2
Y score reported in the main paper measure the quality of this approximation. It turns out that

R2
Y < 0 in both experiments, which indicates that the representer theorem offers poor approximations.

We have two explanations: (1) As previously mentioned, the representer theorem assumes that the
decomposition involves the whole training set. By making a decomposition that involves a subset C of
the training set, we violate a first assumption of the representer theorem. (2) The representer theorem
assumes that the trained model fθ∗ corresponds to a stationnary point of the loss: ∇θLtrain |θ∗= 0.
This assumption is rarely verified in non-convex optimization problems such as the optimization of
deep networks.

Plots with an alternative metric In Figures 2 & 3, we report the norm of the error associated to each
method as a function of the number of active corpus members K. With this metric, SimplEx remains
the most interesting approximation method in latent and output space. Note that for SimplEx, when
K = C, the error in latent space is equivalent to the corpus residual rC(h).

On the measure of consistency In our experiments, we use the standard deviation of each metric
across different runs to study the consistency of the corpus approximations. Table 4 details the parts
of the experiment that are modified from one run to another.
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(a) Norm of the latent error
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(b) Norm of the output error

Figure 3: Precision of corpus decomposition for MNIST (avg ± std).

Modified on each run Dataset
Prost. Cancer MNIST AR

Data X
Train-Test Split X X
Model X X X
Corpus X X X

Table 4: Characterization of a run for each dataset.

2.2 Details for the clinical use case

Description In this subsection, we detail the detection of British patients that is described in Sec-
tion 3.3 of the main paper.

Metrics Each method produces an ordered list (xm)
|T |
m=1 of elements of T . We inspect its elements

in order and count the number of examples that are in T ∩ DUK. This count is represented by the
sequence (un)

|T |
n=1 where un = |(xm)nm=1

⋂DUK|. A sequence (un)
|T |
n=1 that increases more quickly

is better as it corresponds to a more efficient detection of the British patients. The maximal baseline
corresponds to the upper bound. The experiments are repeated 10 times to report the average metrics
together with their standard deviations.

Baselines We compare SimplEx with 5 indicative baselines. Each method produces an ordered list
(xm)

|T |
m=1 of elements of T . In the case of SimplEx, this list is produced by sorting the examples in

decreasing order of corpus residual. We use the two Nearest Neighbours baselines from the previous
examples by fixing K to the value that produced the best approximations (K = 7). For both of these
baselines, we sort the examples in decreasing order of residual ‖h− ĥ‖. We consider the random
baseline where the order of the list is chosen randomly. Finally, we introduce the ideal baseline that
detects all outliers with |T |/2 = 100 inspections: (xm)

|T |/2
m=1 = T ∩ Dout.

CUTRACT Dataset The CUTRACT dataset is a private dataset consisting in 10,086 patients enrolled
in the British Prostate Cancer UK program [7]. All the patients from the CUTRACT dataset have
been de-identified. We consider the binary classification task of predicting cancer mortality for
patients with prostate cancer. Each patient in the dataset is represented by the couple (x, z), where x
contains the patient features and z ∈ {0, 1}2 is a vector indicating the patient mortality. The features
characterizing the patient are the same as for the SEER dataset. These features are summarized in
Table 5. Once again, the full dataset is unbalanced, we then choose DUK as a balanced subset of
2,000 patients. This dataset is private.

Model We use the same mortality predictor as in the previous experiment (see Table 2). The only
difference is that no weight decay is included in the optimization (λ = 0).
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Feature Range

Age 64− 76
PSA 8− 21

Comorbidities 0, 1, 2,≥ 3
Treatment Hormone Therapy (PHT), Radical Therapy - RDx (RT-RDx),

Radical Therapy -Sx (RT-Sx), CM
Grade 1, 2, 3, 4, 5
Stage 1, 2, 3, 4

Primary Gleason 1, 2, 3, 4, 5
Secondary Gleason 1, 2, 3, 4, 5

Table 5: Features for the CUTRACT Dataset.

Note on the prostate cancer datasets In the medical literature on prostate cancer [8], the grade of a
patient can be deduced from the Gleason scores in the following way:

Gleason1 + Gleason2 ≤ 6 =⇒ Grade = 1

Gleason1 = 3 ∧ Gleason2 = 4 =⇒ Grade = 2

Gleason1 = 4 ∧ Gleason2 = 3 =⇒ Grade = 3

Gleason1 + Gleason2 = 8 =⇒ Grade = 4

Gleason1 + Gleason2 ≥ 9 =⇒ Grade = 5

We noted that this relationship between the grade and the Gleason score was not always verified among
the patients in our two prostate cancer datasets. After discussing with our curator, we understood
that the data of some patients was collected by using a different convention. Further, some of the
data was missing and has been imputed in a way that does not respect the above rule. Clearly, those
details are irrelevant if we use this data to train a model to illustrate the functionalities of SimplEx as
it is done in our paper. Nonetheless, it should be stressed that this inconsistency with the medical
literature implies that our models are only illustrative and should not be used in a medical context. To
avoid any confusion, we have removed the Gleason scores from the Figures in the main paper. For
completeness, we have included the Gleason scores in Figures 11,12,13. As we can observe, not all
the patients verify the above rule.

2.3 Detection of EMNIST letters

Description We propose an analogue of the detection of British patient from Section 3.3 in the
image classification setting. We train a CNN with a training set extracted from the MNIST dataset
Dtrain ⊂ DMNIST. Next, we sample a corpus C ⊂ Dtrain of size C = 1, 000. We are now interested
in investigating if the latent representation of test examples from another similar dataset can be
distinguished from latent representations of MNIST examples. To that aim, we use the EMNIST-
Letter dataset DEMNIST, which contains images that are similar to MNIST images. There is one major
difference between the two datasets: EMNIST-Letter images represent letters, while MNIST images
represent numbers. To evaluate quantitatively if this difference matters for the model representation,
we consider a mixed set of test examples T sampled from both DMNIST and DEMNIST: T ⊂ DMNIST t
DEMNIST. We sample 100 examples from both sources: | T ∩ DMNIST| = |T ∩ DEMNIST| = 100.
For the rest, we follow the same procedure as in the clinical use-case: we approximate the latent
representation of each example h ∈ g(T ), compute the associated corpus residual rC(h) and sort the
examples by decreasing order of residual.

Metrics We use the same metrics as in Section 2.2.

Baselines We use the same baselines as in Section 2.2.

EMNIST-Letter dataset EMNIST-Letter contains 145,600 images, each representing a handwritten
letter [9]. These images have exactly the same format as MNIST images: 28× 28 pixels with one
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Figure 4: Detection of EMNIST examples.

channel. Ryan Cooper holds the copyright of EMNIST dataset, which is a derivative work from
original MNIST datasets. EMNIST dataset is made available under the terms of the MIT license.

Model As in the previous experiment, we train the CNN from Table 3. In contrast with the previous
experiment, we set the weight decay to zero: λ = 0. The resulting model has more than 99% accuracy
on the test set.

Results Results are shown in Figure 4. This suggests that the difference between the two dataset is
encoded in their latent representation. SimplEx and the baselines offer similar performances in this
case.

2.4 Experiments with synthetic time series

In this section, we describe some further experiments we have performed with synthetic time series.
The two parts of this subsection mirror the experiments that we have performed in Section 3 of the
main paper.

2.4.1 Corpus precision

Description This experiment mirrors the experiments from Section 3.1 of the main paper. We start
with a time series dataset D that we split into a training set Dtrain and a testing set Dtest. We train a
black-box f for a time series forecasting task on the training set Dtrain. We randomly sample a set of
corpus examples from the training set C ⊂ Dtrain (we omit the true labels for the corpus examples)
and a set of test examples from the testing set T ⊂ Dtest. For each test example x ∈ T , we build an
approximation ĥ for h = g(x) with the corpus examples latent representations. In each case, we let
the method use only K corpus examples to build the approximation. We repeat the experiment for
several values of K.

Metrics We use the same metrics as in Section 3.1 of the main paper. We run the experiment 5 times
to report standard deviations across different runs.

Baselines We use the same baselines as in Section 3.1 of the main paper.

Data generation We generate data from the following AR(2) generating process.

xt = ϕ1 · xt−1 + ϕ2 · xt−2 + εt ∀t ∈ [3 : T + 1], (2)

where ϕ1 = .7, ϕ2 = .25 and εt ∼ N (0, 0.1). The initial condition for the time series are sampled
independently: x1, x2 ∼ N (0, 1). Each instance in the dataset D consists in a couple (x, y) ∈ D of
sequences x = (xt)

T
t=1 and y = (yt)

T
t=1. For each time step, the target indicates the value of the time

series at the next step: yt = xt+1 for all t ∈ [1 : T ]. We generate 10,000 such instances that we split
into 9,000 training instances Dtrain and 1,000 testing instances Dtest.

11



Layer Input Dimension Output Dimension Activation Remark

LSTM 1 t× 1 t× 100
LSTM 2 t× 100 100 Output: ht = g(x1:t)
Linear 100 1 Output: yt = f(x1:t)

Table 6: AR Forecasting LSTM, t denotes the length of the input sequence.
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Figure 5: Precision of corpus decomposition for AR (avg ± std).

Model We train a two layer LSTM to forecast the next value of the time series at each time step. The
precise model architecture is described in Table 6. The model is trained by minimizing the following
loss:

Ltrain (θ) =
∑

(x,y)∈Dtrain

T∑
t=1

[fθ(x1:t)− yt]2 ,

where x1:t ≡ (xt)
T
t=1. We train this model with Adam (default Pytorch hyperparameters) for 20

epochs. Across the different runs, the average RMSE of the resulting model on testing data is always
0.1. This corresponds to ideal performances for a deterministic model due to the noise term εt in the
AR model.

Results The results of this experiment are shown in Figure 5 & 6. As in Section 3.1 of the main
paper, SimplEx offers significantly better and more consistent results across different runs.
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Figure 6: Precision of corpus decomposition for AR (avg ± std).
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2.4.2 Detection of oscillating time series

Description This experiment mirrors the EMNIST detection experiment from Section 2.3. We
train a LSTM with a training set extracted from the previous AR dataset Dtrain ⊂ D. Next, we
sample a corpus C ⊂ Dtrain of size C = 1, 000. We are now interested in investigating if the
latent representation of test examples from another similar dataset can be distinguished from latent
representations of traditional AR examples. To that aim, we use a dataset sampled from a distinct
AR(2) process D̃. To evaluate quantitatively if this difference matters for the model representation,
we consider a mixed set of test examples T sampled from both D and D̃: T ⊂ Dtest t D̃. We sample
1,000 examples from both sources: | T ∩ Dtest| = |T ∩ D̃| = 1, 000. For the rest, we follow the
same procedure as in the clinical use-case: we approximate the latent representation of each example
h ∈ g(T ), compute the associated corpus residual rC(h) and sort the examples by decreasing order
of residual.

Metrics We use the same metrics as in Section 2.2. We run the experiment 5 times to report standard
deviations across different runs.

Baselines We use the same baselines as in Section 2.2.

Data generation We generate D as in the previous experiment. The time series in D̃ are sampled
from the following AR(2) process:

x̃t = −ϕ1 · x̃t−1 + ϕ2 · x̃t−2 + εt ∀t ∈ [3 : T + 1], (3)

where ϕ1, ϕ2 and εt are defined as in (2). The initial condition for the time series are sampled
independently: x̃1, x̃2 ∼ N (0, 1). The only difference between D and D̃ lies in the extra minus sign
from (3) compared to (2). This gives an extra oscillating behaviour to the time series from D̃. We
generate 1,000 such instances that we use for testing purpose.

Model We use the same LSTM as in the previous experiment.

Results The results of this experiment are shown in Figure 7. As in Section 3.3 of the main paper, the
difference between D and D̃ is imprinted in their latent representation. Once again, SimplEx offers
the best detection scheme.
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Figure 7: Detection of oscillating AR.

2.5 A comparison with Influence Functions

Description We note that there is no standard way to reconstruct the explicit black-box output f(x)
with the influence scores [10] for an input x ∈ X ⊂ RdX . In contrast, SimplEx allows to explicitly
decompose a black-box prediction in terms of contributions arising from each corpus example:
f(x) =

∑C
c=1 w

cl(hc). An interesting question to ask is the following: can we interpret influence
scores as reconstruction weights in latent space? To explore this question, we propose the following
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procedure. First, we compute the influence score ic ∈ R for the prediction f(x) and for each corpus
example xc ∈ C. Then, we extract the helpful examples from the corpus: Chelp = {xc ∈ C | ic > 0}.
In the same spirit as in Section 3.1 of the main paper, we select the K most helpful examples from
Chelp. We denote their corpus indices as I = {c1, c2, . . . , cK} ⊂ [C]. Finally, we make a corpus
decomposition with weights proportional to the influence score:

wc =

{
ic∑

k∈I i
k if c ∈ I

0 else
(4)

Metrics We study the quality of influence-based corpus decomposition
∑C
c=1 w

chc as an approxima-
tion of the test example’s latent representation h = g(x). Therefore, we use the same metrics as in
Section 3.1 of the main paper.

Baseline We consider SimplEx as a baseline.

Dataset We perform the experiment with the MNIST dataset.

Results We report the result of this experiment in Figure 8 (average +/- standard deviation over 5 runs).
This confirms that influence functions scores are not suitable to decompose the latent representations
in terms of the corpus.

2.6 More examples

In Figures 9-12, we provide further examples of corpus decompositions with MNIST and SEER.
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Figure 9: Examples of MNIST decompositions (left: test example, right: corpus decomposition).

Figure 10: Examples of MNIST decompositions (left: test example, right: corpus decomposition).
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Figure 11: Examples of SEER decompositions (left: test example, right: corpus decomposition).

Figure 12: Examples of SEER decompositions (left: test example, right: corpus decomposition).
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3 User Study

We have conducted a small scale user study with SimplEx. The purpose of this study was to identify
if the functionalities introduced by SimplEx are interesting for the clinicians. In total, 10 clinicians
took part in the study.

Let us now describe the study. With the SEER Prostate Cancer dataset that is described in the paper,
we have performed a SimplEx corpus decomposition presented in Figure 13. The decomposition
involved 1 test patient that we called Joe and 2 corpus patients that we called Bill and Max. Our
classification model predicted that Joe will die of his prostate cancer. Bill died of his prostate cancer
and Max survived. The SimplEx corpus weights were as follows: 66% for Bill, 34% for Max. For
both Bill and Max, the Jacobian Projections were given and presented as a measure of importance for
each of their features in order to relate them to Joe.

After presenting this explanation to the clinician, we gradually brought their attention to its various
components. We made several statements related to SimplEx’s functionalities and asked the clinicians
if they agree/disagree on a scale from 0 to 5, where 0 corresponds to strongly disagreeing, 3
corresponds to a neutral opinion and 5 corresponds to strongly agreeing.

The first two statements were related to the weights appearing in the corpus decomposition. The
purpose was to determine if those are important for the clinicians and if there is an additional value
in learning these weights, as is done in SimplEx. The first statement was the following: “The value
of the weights in the corpus decomposition is important”. The results were the following: 6 of the
clinicians agreed (1 strongly), 1 remained neutral and 3 disagreed (1 strongly). The second statement
was the following: “Some valuable information is lost in setting the weights to a uniform value” (the
doctors are given the KNN Uniform equivalent of SimplEx’s explanation in the presented case). The
results were the following: 5 of the clinicians agreed (3 strongly), 3 remained neutral, 2 strongly
disagreed. We conclude that the majority of the clinicians found the weights to be important. Most
of them found that hard-coding the weights as in the KNN Uniform baseline hides some valuable
information.

The third statement was related to the Jacobian Projections. The purpose was to determine if
the Jacobian Projections provide valuable information for interpretability. The statement was the
following: “Knowing which feature increases the similarity/discrepancy between two patients is
important”. The results were the following: 9 of the clinicians agreed (5 strongly), 1 disagreed. We
conclude that the Jacobian Projections constitute a crucial part of SimplEx’s explanations.

The fourth statement was related to the freedom of choosing the corpus. The purpose was to determine
if the flexibility of SimplEx is useful in practice. The statement was the following: “It is important

Figure 13: SimplEx example provided in the user study.
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for the clinician to be able to choose the patients in the corpus that is used for comparison”. The
results were the following: 4 of the clinicians agreed (1 strongly), 1 remained neutral, 5 disagreed (3
strongly). Clearly, the clinicians are more divided on this point. However, this additional freedom
offered by SimplEx comes at no cost. A clinician that desires explanations in terms of patients they
are familiar with can use their own corpus. A clinician that is happy with explanations in terms of
any patients can use a corpus sampled from training data.

The last statement was related to the use of SimplEx in order to anticipate misclassification, as it is
suggested in Section 3.2 of the main paper. The statement was the following: “If Bill had not died
due to his prostate cancer, this would cast doubt on the mortality predicted for Joe”. The results were
the following: 6 of the clinicians agreed (2 strongly), 1 remained neutral, 3 disagreed (2 strongly).
We conclude that, for the majority of the clinicians, SimplEx’s explanations affect their confidence in
the model’s prediction.
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Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] All the claims made about SimplEx are verified in
Section 3 and Section 2 of the supplementary material.

(b) Did you describe the limitations of your work? [Yes] Assumption 2.1 describes the
class of model for which our work applies.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] SimplEx
only allows to make machine learning models more easily interpretable to a human
audience. We don’t see any negative societal impact of providing more transparency
in machine learning. We have carefully checked the list of potential negative societal
impacts provided on NeurIPS website and found that none of them applies to our
method.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We have carefully read the ethics review guideline and we can confirm
that our paper respects the guidelines.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] All the
assumptions required for the theorem to hold are stated rigorously in Section 2.

(b) Did you include complete proofs of all theoretical results? [Yes] Proofs for the theoret-
ical results are provided in Section 1 of the supplementary material.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] The
code for our method is available on the Github repository https://github.com/
JonathanCrabbe/Simplex

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] All the details about the experiments are provided in Section 3
and Section 2 of the supplementary material.
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(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Figure 4, 5 & 7.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 2 of the supplementary
material

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See references

[5, 9, 4, 7], all of them are cited in the paper or the supplementary material.
(b) Did you mention the license of the assets? [Yes] The license are mentioned in Section 2

of the supplementary material.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] See Section 2 of the supplementary material.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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