
Published as a conference paper at ICLR 2024

APPENDIX

A MODEL SETTING

In this section, we give more details about the settings of our models.

A.1 HYPERPARAMETERS

The full set of hyperparameters can be seen in Table S1.

Table S1: Hyperparameters of our model

Name Abbreviation Value

RL parameters

Minimum expression lengths lmin 4
Maximum expression lengths lmax 35

Maximum number of parameters cmax 10
Length discount rate η 0.99

Training rounds tr 50
UCT constant c

√
2

Minimum selected times n0 3
Learning rate of double Q-learning lr 10−3

Genetic Programming parameters

GP rounds tgp 30
GP population pgp 500

GP number of best expressions lb 20
GP Mate rate pmate 0.5

GP Mutate rate pmutate 0.5

MSDB parameters

Error of Symmetry Esym 10−5

Selection ratio ks 0.1
Expression percentage ratio kp 0.1

Maximum select number N 5

A.2 EXPRESSION CONSTRAINT

In this study, we incorporate a prior constraint inspired by the DSR (Petersen et al., 2019) method to
effectively reduce the search space for expressions. The following constraints are applied:

• Length constraint: The length of expressions is restricted within pre-defined minimum and
maximum values. If the current length falls below the minimum threshold, variables (x, y,
C, etc.) and parameters will not be generated. Conversely, if the current length, combined
with the number of nodes to be generated, reaches the maximum length, only these nodes
will be considered.

• Unary operator constraint: The direct successor node of a unary operator should not be
the inverse of that same operator. This constraint ensures that the generated expressions
adhere to the intended structure and prevent redundant combinations.

• Trigonometric function constraint: The successor node of a trigonometric function node
should not be another trigonometric function. This constraint prevents the generation of
expression structures that lead to unnecessary complexity or redundancy.

• Maximum parameter limit: A specified maximum number of parameters is imposed to
control the complexity of the expressions and prevent overfitting.

13

Published as a conference paper at ICLR 2024

+
x÷

logx
×

x x
RL/GP

+

+
x÷

logx
×

x
x x

ℱ = � + �log(�)

�

.....

+
� 100

�log(�) 30
�

���(�2)
5

... ...

�
�

� +
�

���(�2)

�����

Sort by ℛ

� +
�

���(2�2)

�
���(�2)

�

�
���(2�2)

Figure S1: Schematic of the proposed Form-discovery. We first obtain the output of RL/GP and select
the equations in which the loss is relatively small. After that, we separate these equations by plus and
minus signs and count the number of times these sub-expressions occur overall, and use the smaller
equations with more occurrences to cobble together to create new expression forms.

By applying these expression constraints, we aim to enhance the search efficiency and guide the
generation of meaningful expressions that align with the desired properties of the target problem.

A.3 GENETIC PROGRAMMING

Following the generation of expressions by each reinforcement learning algorithm, we engage in the
optimization of a predetermined set of expressions. For this purpose, we employ a genetic algorithm,
utilizing the DEAP library in Python. This algorithm initializes half of the population using the
outcomes of the reinforcement learning process, while the remaining half is generated randomly.
Subsequently, we retain the most promising expressions and subject them to further analysis using a
subtree analyzer. This process serves to update and refine the expression form, enhancing the overall
efficacy of our approach.

A.4 FORM DISCOVERY

Presented below is an elucidative diagram (refer to Figure S1) pertaining to the process of form
discovery as outlined in Algorithm 2. This visual aid serves to elucidate the sequential progression
within the algorithm and delineates the roles and interpretations of variables such as Ssym, G, D, and
more.

B BASELINE MODELS

In this section, we give more details about the settings of baselines.

• SPL (Sun et al., 2023): Rooted in the use of MCTS, SPL employs various greedy strategies
to ensure efficient exploration. It utilizes full expressions as sub-trees to maximize the use
of past information. While excelling in shorter expressions, it falls short in handling longer
ones.

• DSR (Petersen et al., 2019): DSR takes a gradient-based RL approach along with a recurrent
neural network (RNN) that generates a probability distribution over expressions. While
effective for longer expressions, it may exhibit limitations in generalization ability.

• NGGP (Mundhenk et al., 2021a): Building upon DSR, NGGP enhances its capabilities.
Expressions sampled via probability distribution undergo further optimization using GP.
The refined expressions then train the RNN with risk-seeking policy gradient.

14

Published as a conference paper at ICLR 2024

• uDSR (Landajuela et al., 2022): The uDSR amalgamates DSR, AIFeynman, LSPT (Large-
scale pre-training), GP, and LM (Linear models). It excels in discovering formulas with
constants (favoring polynomial type expressions), but albeit at the cost of increased compu-
tation time.

• DGSR (Holt et al., 2022): This model leverages pre-trained deep generative models to
capture the inherent patterns and structures within equations. This pre-training phase
establishes a robust foundation for the subsequent optimization steps conducted through
genetic programming.

• gplearn(Stephens, 2016): The gplearn offers an efficient and rapid GP-based SR implemen-
tation. While proficient in speed, it may exhibit instability and poor scalability.

• AFP-FE (Schmidt & Lipson, 2010): Age-Fitness Pareto Optimization is an optimization
technique that combines two important factors, age, and fitness, to enhance the performance
of evolutionary algorithms. FE means Co-evolved Fitness Predictors.

The full set of hyperparameters can be seen below.

• SPL: In line with the original paper, we maintain the same parameter settings for SPL.
The discount rate is set to η = 0.9999, and the candidate operators include addition (+),
subtraction (−), multiplication (×), division (÷), cosine (cos(·)), sine (sin(·)), exponential
(exp(·)), natural logarithm (log(·)), and square root (

√
·). Other parameter values are as

follows: Maximum Module Transplantation: 20, Episodes Between Module Transplantation:
50000, Maximum Tree Size: 50, and Maximum Augmented Grammars: 5.

• DSR/NGGP/uDSR: In our study, we adopt the standard parameter configurations as pro-
vided in the publicly available implementation of Deep Symbolic Optimization (DSO). This
approach entails adjusting two primary hyperparameters. The entropy coefficient is set
λH = 0.05 and the risk factor is set ϵ = 0.005. Candidate operators are the same as those
employed in the SPL. Additionally, NGGP incorporates other hyperparameters related to
hybrid methods based on genetic programming. The specific values are listed in Table S2.

• Genetic Programming (GP): We employ the gplearn library for GP-based methods. The
hyperparameters for genetic programming are identical to those presented in Table S2.

• DGSR/AFP-FE: For both of these models, we exclusively utilized the results obtained from
the srbench dataset (La Cava et al., 2021), and the parameters were meticulously tested in
accordance with the specifications provided in the official srbench dataset and its associated
article.

Table S2: Genetic Programming Hyperparameters on baselines

Name Value

Rounds 20
Population 1000
Mate rate 0.5

Mutate rate 0.5

C BASIC BENCHMARK RESULT

C.1 OVERALL RESULT

In this section, we give more details about the Min Depth and Min Complexity of difficult equations
in each benchmark in Table S3.

In this table, the performance of uDSR appears to be subpar, even falling short of its pre-
decessor NGGP. This outcome can be attributed to two primary reasons. Firstly, our appli-
cation of symbolic learning lacks parameter optimization, except for the Nyugen-c dataset,
in which uDSR notably excels due to its compatibility with parameterized scenarios. Sec-
ondly, uDSR exhibits a stronger tendency towards generating polynomial functions, whereas

15

Published as a conference paper at ICLR 2024

our tests predominantly involve a substantial number of trigonometric and exponential functions.
For instance, expressions such as x1x2x3(sin(x4) + cos(x5)) result in complex equations like
x1

[
−0.0437x13 − 5.84x3− 0.01x43 + 0.0038x2

4x5− 0.492x4x5 + x4(x2 + sin(x5))...
]
.

C.2 NYUGEN BENCHMARK RESULT

Nyugen Benchmark is a standard benchmark for symbolic learning with one or two independent
variables and equations randomly sampled over a range. And Nyugenc is a parametric version of the
Nguyen benchmark, allowing the use of parametric optimization to test equations with parameters. In
this section, we provide additional details about the results obtained from the Nyugen and Nyugenc

Benchmark experiment.

By referring to Table S4, readers can obtain more detailed information about the performance of each
model on each expression, their comparative analysis, and any other relevant insights derived from
the experiment.

C.3 LIVERMORE BENCHMARK RESULT

LiverMore Benchmark contains challenging equations rarely encountered in symbolic learning,
including high exponentials, trigonometric functions, and complex polynomials. In this section, we
provide additional details about the results obtained from the LiverMore Benchmark experiment.

By referring to Table S5, readers can obtain more detailed information about the performance of each
model on each expression, their comparative analysis, and any other relevant insights derived from
the experiment.

C.4 R BENCHMARK RESULT

R Benchmark consists of three built-in rational equations with numerous polynomials as divisors and
devisees, increasing the learning difficulty. In this section, we provide additional details about the
results obtained from the R Rational Benchmark experiment.

By referring to Table S6, readers can obtain more detailed information about the performance of each
model on each expression, their comparative analysis, and any other relevant insights derived from
the experiment.

Table S3: Minimum Depth of expression tree and Minimum tokens of expression tree as Minimum
Complexity of several difficult equations in each benchmark.

BenchMark Equation Min Depth Min Complexity

Nguyen-5 sin(x2
1)cos(x1)− 1 6 12

Nguyen-12 x4
1 − x3

1 − 0.5x2
2 + x2 7 24

Nguyen-2c 0.48x4
1 + 3.39x3

1 + 2.12x2
1 + 1.78x1 6 25

Nguyen-9c sin(1.5x1) + sin(0.5x2
2) 5 11

LiverMore-3 sin(x3
1)cos(x

2
1)− 1 6 15

LiverMore-7 sinh(x1) 6 15
LiverMore-16 x

2/5
1 7 17

LiverMore-18 sin(x2
1)cos(x1)− 5 6 19

AIFeynman-9 x1 + x2 + 2
√
x1x2 cos(x3) 6 17

AIFeynman-10 1
2x1(x

2
2 + x2

3 + x2
4) 6 20

R-1 (x1 + 1)3/(x2
1 − x1 + 1) 6 21

R-2 (x5
1 − 3x3

1 + 1)/(x2
1 + 1) 7 31

R-3 (x5
1 + x6

1)/(x
4
1 + x3

1 + x2
1 + x1 + 1) 7 35

16

Published as a conference paper at ICLR 2024

Table S4: Average Recovery Rate (%) of the Nyugen Benchmark over 100 parallel runs

Name Equation Ours SPL uDSR NGGP DSR GP

Nguyen-1 x3
1 + x2

1 + x1 100 100 100 100 100 99
Nguyen-2 x4

1 + x3
1 + x2

1 + x1 100 100 100 100 100 90
Nguyen-3 x5

1 + x4
1 + x3

1 + x2
1 + x1 100 100 100 100 100 34

Nguyen-4 x6
1 + x5

1 + x4
1 + x3

1 + x2
1 + x1 100 99 100 100 100 54

Nguyen-5 sin(x2
1)cos(x1)− 1 100 95 45 80 72 12

Nguyen-6 sin(x1) + sin(x1 + x2
1) 100 100 100 100 100 11

Nguyen-7 log(x1 + 1) + log(x2
1 + 1) 100 100 98 100 35 17

Nguyen-8
√
x1 100 100 100 100 96 100

Nguyen-9 sin(x1) + sin(x2
2) 100 100 91 100 100 17

Nguyen-10 sin(x1)cos(x2) 100 100 100 100 100 86
Nguyen-11 xx2

1 100 100 87 100 100 13
Nguyen-12 x4

1 − x3
1 − 0.5x2

2 + x2 100 28 30 21 0 0

Average 100.00±0.0 93.50±11.7 87.58±13.6 91.75±13.0 83.58±18.5 44.42±22.1

Nguyen-1c 3.39x3
1 + 2.12x2

1 + 1.78x1 100 100 58 100 100 0
Nguyen-2c 0.48x4

1 + 3.39x3
1 + 2.12x2

1 + 1.78x1 100 94 100 100 100 0
Nguyen-5c sin(x2

1)cos(x1)− 0.75 100 95 67 98 0 1
Nguyen-7c log(x1 + 1.4) + log(x2

1 + 1.3) 100 0 100 100 93 2
Nguyen-8c

√
1.23x1 100 100 100 100 100 56

Nguyen-9c sin(1.5x1) + sin(0.5x2
2) 100 98 0 96 0 0

Nguyen-10c sin(1.5x1)cos(0.5x2) 100 0 0 100 100 0

Average 100.00±0.0 69.57±35.2 60.71±33.2 99.14±1.2 70.43±35.7 8.43±15.6

Table S5: Average Recovery Rate (%) of the LiverMore Benchmark over 100 parallel runs
Name Equation Ours SPL uDSR NGGP DSR GP

Livermore-1 1/3 + x1 + sin(x1) 100 94 100 100 67 100
Livermore-2 sin(x2

1)cos(x1)− 2 100 29 58 61 26 1
Livermore-3 sin(x3

1)cos(x
2
1)− 1 55 50 0 2 0 0

Livermore-4 log(x1 + 1) + log(x2
1 + x1) + log(x1) 100 61 100 100 72 100

Livermore-5 x4
1 − x3

1 + x2
1 − x2 100 100 100 100 55 100

Livermore-6 4x4
1 + 3x3

1 + 2x2
1 + x1 100 8 100 100 100 100

Livermore-7 sinh(x1) 100 18 0 24 0 0
Livermore-8 cosh(x1) 100 6 8 30 0 0
Livermore-9

∑9
i=1 x

i
1 100 21 100 99 18 0

Livermore-10 6sin(x1)cos(x2) 100 75 100 100 70 23
Livermore-11 (x2

1x
2
2)/(x1 + x2) 100 0 100 100 78 95

Livermore-12 x5
1/x

3
2 100 100 100 100 13 100

Livermore-13 x
1/3
1 100 12 100 100 59 0

Livermore-14 x3
1 + x2

1 + x1 + sin(x1) + sin(x2
1) 100 100 100 100 91 100

Livermore-15 x
1/5
1 100 0 100 100 28 2

Livermore-16 x
2/5
1 100 0 60 26 0 0

Livermore-17 4sin(x1)cos(x2) 100 89 100 100 100 84
Livermore-18 sin(x2

1)cos(x1)− 5 100 18 59 33 37 0
Livermore-19 x5

1 + x4
1 + x2

1 + x1 100 89 98 100 100 100
Livermore-20 exp(−x2

1) 100 100 100 100 100 100
Livermore-21

∑8
i=1 x

i
1 100 52 100 100 13 12

Livermore-22 exp(−0.5x2
1) 100 100 100 100 82 100

Average 97.95±4.0 51.00±16.9 81.05±14.6 80.68±14.0 50.41±15.7 50.77±20.4

Table S6: Average Recovery Rate (%) of the R Rational Benchmark over 100 parallel runs

Name Equation Ours SPL uDSR NGGP DSR GP

R0-1 (x1 + 1)3/(x2
1 − x1 + 1) 5 0 82 15 0 0

R0-2 (x5
1 − 3x3

1 + 1)/(x2
1 + 1) 80 0 0 40 0 0

R0-3 (x5
1 + x6

1)/(x
4
1 + x3

1 + x2
1 + x1 + 1) 100 0 0 100 0 0

R∗-1 (x1 + 1)3/(x2
1 − x1 + 1) 48 0 17 2 0 0

R∗-2 (x5
1 − 3x3

1 + 1)/(x2
1 + 1) 89 0 0 0 0 0

R∗-3 (x5
1 + x6

1)/(x
4
1 + x3

1 + x2
1 + x1 + 1) 91 0 0 3 0 0

Average 68.83±28.9 0.00±0.0 16.50±26.2 26.67±31.1 0.00±0.0 0.00±0.0

C.5 AIFEYNMAN BENCHMARK RESULT

AIFeynman Benchmark contains lots of equations with physical meaning (as part of SRBench
(La Cava et al., 2021)), such as expressions for gravity, kinetic energy, and light intensity superposi-

17

Published as a conference paper at ICLR 2024

tion. In this section, we provide additional details about the results obtained from the AIFeynman
Benchmark experiment.

By referring to Table S7, readers can obtain more detailed information about the performance of each
model on each expression, their comparative analysis, and any other relevant insights derived from
the experiment.

The selection of 12 AI Feynman equations was based on a stratified representation of difficulty levels.
The chosen expressions include easy ones, such as x1x2 and 3

2x1x2; medium complexity expressions
like x1x2x3 sin(x4) and x1x2+x3x4+x5x6; medium-hard expressions such as 0.5x1(x

2
2+x2

3+x2
4)

and x1x2x3(
1
x4

− 1
x5
); and hard expressions like x1x2x3

(x4−x5)2+(x6−x7)2+(x8−x9)2
and 1 + x1x2

1−x1x2/3
,

providing a comprehensive coverage of the AIFeynman benchmark.

The comprehensive coverage of the AIFeynman benchmark is reflected in Figure 3b of the results
section, showcasing the outcomes for all AI Feynman equations considered in the problem set.
Notably, our model achieves a state-of-the-art 80% recovery rate, indicating its proficiency in
capturing the underlying mathematical structures across a diverse range of expressions.

Table S7: Average Recovery Rate (%) of the AIFeynman Benchmark over 100 parallel runs

Name Equation Ours SPL uDSR NGGP DSR GP

AIFeynman-1 x1x2 100 100 100 100 100 100
AIFeynman-2 3

2x1x2 100 99 97 100 97 87
AIFeynman-3 x1x2x3 100 100 100 100 100 100
AIFeynman-4 x1x2x3 sin(x4) 100 98 90 100 100 78
AIFeynman-5 x1x2 + x3x4 + x5x6 100 100 100 100 100 82
AIFeynman-6 x1(1 + x2 cos(x3)) 100 100 80 100 100 100
AIFeynman-7 x1x2x3(

1
x4

− 1
x5
) 100 100 87 100 100 80

AIFeynman-8 x1(x2 + x3x4 sin(x5)) 100 100 100 100 100 100
AIFeynman-9 x1 + x2 + 2

√
x1x2 cos(x3) 67 0 8 7 0 0

AIFeynman-10 1
2x1(x

2
2 + x2

3 + x2
4) 15 0 0 0 0 0

AIFeynman-11 x1x2x3

(x4−x5)2+(x6−x7)2+(x8−x9)2
0 0 0 0 0 0

AIFeynman-12 1 + x1x2

1−x1x2/3
0 0 0 0 0 0

Average 73.50±24.1 66.42±27.8 63.50±26.0 67.25±27.4 66.42±27.8 60.58±25.7

C.6 CONST-OPTIMIZATION EXPERIMENT

We conducted an experiment considering different initialization approaches for constant optimization.
Specifically, we explored seven methods:

• Case 1. Initializing constants with a vector of ones.
• Case 2. Initializing constants with a vector of random uniform values between 0 and 1.
• Case 3. Initializing constants with a vector of random uniform values between 0.5 and 1.5.
• Case 4. Initializing constants with a vector of random Gaussian values with a mean of 0 and

standard deviation of 1.
• Case 5. Initializing constants with a vector of random Gaussian values with a mean of 1 and

standard deviation of 1.
• Case 6. Initializing constants with a vector of random Gaussian values with a mean of 1 and

standard deviation of 0.5.
• Case 7. Initializing constants with a vector of random Gaussian values with a mean of 0 and

standard deviation of 1
3 .

We evaluated the recovery rate of each expression using different constant initialization methods
across diverse benchmarks, employing ranges of input values such as [0,1], [-1,1], [0,10], [-10,10],
[0,50], [-50,50], and data sizes of 20 or 500. Notably, Table S8 demonstrates that the average recovery
rates across all initializing methods are remarkably close.

Examining the distribution of expression recovery rates below 50%, 10%, and 0%, it becomes
apparent that the method employing a vector of ones exhibits the highest percentage in Table S9.
This observation indicates that the vector of ones initialization method has the highest number of
expressions unable to converge across 100 parallel runs.

18

Published as a conference paper at ICLR 2024

Table S8: Average Recovery Rate (%) of the Const Optimization Benchmark over 100 parallel runs
on each size and each range

Name Equation Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

Keijzer-1 0.3x1 sin(6.28x1) 33.6 33.8 33.6 33.7 33.7 33.6 34.3
Keijzer-4 (30.0x1x2x3)/((x1 − 10.0)x2

2) 34.2 13.3 35.7 14.8 20.7 24.3 24.1
Keijzer-14 8.0/(2.0 + x2

1 + x2
2) 100.0 99.8 100.0 82.0 95.8 99.6 99.8

Keijzer-15 x0.6
1 + x1.5

2 − x2 − x1 88.0 83.2 90.3 75.5 83.8 88.3 88.7

Nguyen-1c 3.39x3
1 + 2.12x2

1 + 1.78x1 97.2 97.5 97.5 96.8 95.9 96.9 97.4
Nguyen-2c 0.48x4

1 + 3.39x3
1 + 2.12x2

1 + 1.78x1 98.0 92.3 97.9 92.9 95.0 97.5 96.2
Nguyen-5c sin(x2

1) cos(x1) − 0.75 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Nguyen-7c log(x1 + 1.4) + log(x2

1 + 1.3) 100.0 53.4 78.4 50.6 56.0 70.4 97.1
Nguyen-8c

√
1.23x1 100.0 100.0 100.0 99.5 100.0 100.0 100.0

Nguyen-9c sin(1.5x1) + sin(0.5x2
2) 35.3 47.9 43.4 42.6 43.8 45.6 46.3

Nguyen-10c sin(1.5x1) cos(0.5x2) 35.1 47.7 38.7 42.8 42.7 44.3 42.3
Nguyen-11c 2.7x

x2
1 99.2 88.2 98.5 79.3 89.3 95.8 100.0

Jin∗-1 2.5x4
1 − 1.3x3

1 + 0.5x2
1 − 1.7x1 98.3 97.5 96.3 97.0 94.7 97.7 97.4

Jin∗-2 8.0x3
1 − 8.0x2

1 + 15.0x1 81.0 83.0 81.4 83.2 83.1 82.9 82.5
Jin∗-3 0.7x3

1 − 1.7x1 100.0 54.1 92.2 52.9 76.1 83.3 87.9
Jin∗-4 1.5 exp(x1) + 5.0 cos(x1) 87.7 93.8 94.6 88.1 92.3 94.5 93.6
Jin∗-5 6.0 sin(x1) cos(x1) 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Jin∗-6 1.35x2

1 + 5.5 sin((x1 − 1)2) 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Average 81.06 76.19 80.90 73.46 77.17 79.74 81.08

Table S9: Persentage (%) of expressions under certain recovery rate about the Const Optimization
Benchmark over each initializing method

Recovery Rate Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

<50% 18.04 25.26 18.04 26.29 19.07 17.53 17.01
<10% 15.98 11.34 13.92 11.86 11.86 11.34 12.37

0% 7.22 4.12 6.19 3.61 4.64 3.61 3.09

C.7 TRADE-OFF EXPERIMENT

We used five different configurations for symbolic regression on the Nyugen dataset and obtained five
different sets of results. We calculated the curves of the average number of tests about the expression
recovery rate for all data/ Nyugen-4/ Nyugen-5/ Nyugen-11/ Nyugen-12 for the five different data
with different configurations as shown in Figure S2.

25 50 75 100 125 150 175 200
Numbers of Evaluations (1000x)

0%

20%

40%

60%

80%

100%

Re
co

ve
r-r

at
e

trade-off experiment

ALL
Nyugen-4
Nyugen-5
Nyugen-11
Nyugen-12

Figure S2: Trade-off between accuracy and number of evaluations in Nyugen Benchmark.

The evaluation count of the RMSM exhibits a discernible pattern, roughly falling within two ranges:
the first encompasses around 80% of the recovery rate, while the second spans from 80% to 100%.

19

Published as a conference paper at ICLR 2024

Table S10: Trade-off experiment: Average Evaluation Number /Average Recovery Rate (%) of the
Nyugen Benchmark over 100 parallel runs

Name 5 epochs 15 epochs 25 epochs 35 epochs 45 epochs

ALL 15654/53 27543/77 41525/87 55395/98 58240/100
Nyugen-4 28389/5 41638/43 54151/75 58483/100 76216/100
Nyugen-5 25084/0 57033/33 77075/80 118661/83 149868/100

Nyugen-11 20932/41 36487/62 67237/88 77757/100 84902/100
Nyugen-12 26345/0 65122/13 123571/41 175970/89 207889/98

0 20 40 60 80
Solution Rate (%)

RSRM
AIFeynman

AFP_FE
DSR
AFP

gplearn
GP-GOMEA

ITEA
EPLEX
Operon

SBP-GP
BSR

FEAT
FFX

MRGP

Target Noise
0.0
0.001
0.01
0.1

0 50 100
Solution Rate (%)

RSRM
AIFeynman

AFP_FE
DSR
AFP

gplearn
GP-GOMEA

ITEA
EPLEX
Operon

SBP-GP
BSR

FEAT
FFX

MRGP

 Feynman

0 50 100
Solution Rate (%)

 Strogatz

Target Noise
0.0
0.001
0.01
0.1

Figure S3: Result of SRBench with 10 parallel runs for each dataset.

Both ranges can be approximated with linear functions; however, the second range displays a notably
steeper slope, indicating that achieving higher recovery rates beyond 80% becomes considerably
more challenging.

We categorized RSRM into using 5, 15, 25, 35, 45 epochs and tested the average number of tests and
the average recovery rate for each different environment and different data respectively in Table S10.

D SRBENCH RESULT

We used the full set of SRBench for testing, and the overall results are as follows in Figure S3,
including both the AIFeynman dataset and the Strogatz dataset.

E FREE-FALLING BALLS DATASET RESULT

In this section, we provide additional details about the results obtained from the Falling-Balls
dataset experiment. To improve the performance of the SPL model, we incorporated the operators
log(cosh(·)). This addition aimed to enhance the model’s ability to capture the underlying patterns
in the data.

The complete results of the experiment, including the functions found, can be found in Table S11.

20

Published as a conference paper at ICLR 2024

Table S11: Functions generated in Falling-Balls Experiment

Name Model Equation

baseball
Ours −4.43t2 + 0.36 sin(t2 + 1.51)2 + 47.35

Model A 0.09t3 − 5.47t2 + 2.47t+ 46.52 + cos(t2 − 2.5t)0.5

SPL −4.54t2 + 0.625t+ 47.8

blue basket ball
Ours −1.66t3 − 4.95t2 cos(

√
t) + 46.46

Model A −0.1t3 − 4.49t2 + 37.54t+ 46.49− t(cos(t) + 36.77)
SPL −0.25t4 + t3 − 5.11t2 + 46.47

bowling ball
Ours −4.63t2 + sin(0.83t) sin(t) + 46.13

Model A 0.18t3 − 6.0t2 + 2.15t+ 45.43 + |t− 0.62|
SPL −0.285t3 − 3.82t2 + 4.14× 10−5 exp(20.74t2 − 12.45t3) + 46.1

golf ball
Ours −0.09t3 − 4.44t2 + 5.26× 10−5t/ log(t) + 49.51

Model A −2.18t3 + 11.75t2 + 1.96t+ 25.86− 2.36 exp(t) + 25.98 cos(t)
SPL −4.9633t2 + log(cosh(t)) + 49.5087

green basket ball
Ours 46.34− 4.15t2

Model A −0.09t3 − 4.59t2 + 1.6t+ 45.26 + (0.02
√
t

t−exp(cos(t))
− t+ 1) cos(t)

SPL −4.1465t2 + 45.9087 + log(cosh(1))

tennis ball
Ours 47.78 cos(0.43t− 0.02)

Model A 0.33t3 − 4.9t2 + 0.66t+ 47.74
SPL −4.0574t2 + log(cosh(0.121t3)) + 47.8577

volleyball
Ours 48.15− 3.67(t+ 0.03)2

Model A 1.59t3 − 11.1t2 + 0.93t+ 58.53− 10.53 cos(t)
SPL −3.78t2 + 48.0744

whiffle ball1
Ours −t2(3.83− 0.31t) + 47.07

Model A −0.08t3 − 2.17t2 − 1.69t+ 46.29 +
√

t+ sin(3t)
SPL −t3 + 4.16t2 + 47.01 exp(−0.15t2)

whiffle ball2
Ours −2.18t2 + 0.1t cos(t) + 3.35 cos(t) + 43.88

Model A 0.46t3 − 4.39t2 + 0.19t+ 47.26− 0.05 cos(exp(t))
SPL 65.86 exp(−0.0577t2)− 18.61

yellow whiffle ball
Ours (cos(1.75t) + 47.59) cos(0.36t)

Model A −0.27t3 − 2.58t2 − 2.5t+ 48.25 + (t+ 0.41) exp(
√

t+ t2 − 2
√
t3)

SPL (148.99− 14.58t2 + 48.96 log(cosh(x)))/(log(cosh(t)) + 3.065)

orange whiffle ball
Ours −17.82t− 33.11/ exp(t)0.5 + 80.94

Model A 0.42t3 − 3.81t2 − 1.4t+ 47.84
SPL −1.66t+ 47.86 exp(−0.0682t2)

F GENERALIZATION EXPERIMENT RESULT

To compare the generalization ability of our model with other methods, we conducted an experiment
on generalization performance. The dataset was generated using the cumulative distribution function
(CDF) defined as

F (x, µ, σ) =

∫ x

−∞

1√
2πσ

e−
(t−µ)2

2σ2 dt

with varying means (µ) and variances (σ). The dataset consisted of 201 points spanning the range
from −100 to 100. Each dataset is divided into three subsets: a training set, a test set, and a validation
set. The training set comprises points ranging from 30 to 80, while the test set consists of points
ranging from 10 to 25. The validation set covers a broader range, spanning from 0 to 100.

Because this equation lacks an explicit elementary expression, it’s impossible to obtain an analytical
solution for the entire curve by reducing the training error to zero. Therefore, learning this function

21

Published as a conference paper at ICLR 2024

−100 −50 0 50 100
0.0

0.2

0.4

0.6

0.8

1.0

training/validationextrapolation

Curve-1 σ=1/30

Target
Ours
NGGP
Cubic Spline
MLP

−100 −50 0 50 100
0.0

0.2

0.4

0.6

0.8

1.0

training/validationextrapolation

Curve-2 σ=1/40

Target
Ours
NGGP
Cubic Spline
MLP

−100 −50 0 50 100
0.0

0.2

0.4

0.6

0.8

1.0

training/validationextrapolation

Curve-3 σ=1/50

Target
Ours
NGGP
Cubic Spline
MLP

Figure S4: Result of generalization test experiment.

requires balancing between training error and generalization error, demanding a stronger ability to
generalize. Moreover, only half of the curve data is provided, necessitating strong generalization
skills from the model to extrapolate and accurately fit the missing portion of the curve. This calls for
the proficiency of the model in capturing the distribution of the entire curve.

To evaluate the performance of our approach and compare it with baselines, we define the following
settings for each method:

• Ours: The training set is utilized for generating expressions and calculating the correspond-
ing rewards. The test set is employed to evaluate the quality of the generated expressions.
Finally, the validation set is employed to select the most promising expressions from the
outputs.

• NGGP(Mundhenk et al., 2021a): Both the training set and the test set are used for generating
expressions and computing rewards. The HallOfFame, which contains the best expressions,
is then leveraged to choose expressions using the validation set.

• Linear regression: The training set and the test set are employed for training the linear
regression model.

• Cubic splines: The training set and the test set are used to train the cubic spline model.
• Deep learning: In the deep learning approach, we employ a Multilayer Perceptron (MLP)

architecture with one input, one output, and a hidden layer ranging in size from 30 to
50. We set the learning rate to 10−3 and train 100 epochs. We experiment with different
configurations of the hidden layer and select the model that yields the best performance. The
MLP is trained using the training set, and the test set is used to evaluate the performance of
each model. By varying the size of the hidden layer, we aim to find the optimal architecture
that achieves the highest accuracy or lowest error on the given task.

The full results of the generalization experiment can be found in Table S12 and Figure S4. This table
presents a detailed overview of the performance of the model and the baselines. Additionally, Table
S13 presents the equations discovered by the model and the baselines. These tables demonstrate that
our model outperforms the baseline methods in terms of generalization ability. The curves fitted by
our model exhibit better accuracy and capture the underlying patterns in the data more effectively.

G PARITY DETERMINATION EXPERIMENT

In this section, we conduct an experiment to compare the efficiency and effectiveness of form
discovery by AIFeynman(Udrescu & Tegmark, 2020) and our method.

According to AIFeynman (Udrescu & Tegmark, 2020), it is also possible to use MLP as a learning
curve to determine the parity of a function, so we compared the efficiency and effectiveness of MLP
and cubic splines in determining parity.

The configuration of the MLP follows the structure employed in AIFeynman. It consists of a five-layer
neural network with a balanced training set and validation set ratio of 5:5. The input layer accepts
one variable and yields an output of 128. Subsequent to the input layer, the hidden layers encompass
input-output feature pairs of 128-128, 128-64, and 64-64. The output layer produces a single variable.
Optimization is executed using the Adam optimizer, and the activation function for each layer is set

22

Published as a conference paper at ICLR 2024

Table S12: Mean Squared Error (MSE) of each method and each part of the curve in the Generalization
Experiment

Name Ours NGGP Linear Cubic Splines MLP

total error on curve 1 1.05× 10−5 0.00215 0.0114 0.000381 0.0142
total error on curve 2 9.79× 10−6 0.00163 0.0297 0.00162 0.261
total error on curve 3 2.61× 10−7 0.327 0.0821 0.00563 0.0762

extrapolation error on curve 1 1.65× 10−5 0.00429 0.0215 0.000758 0.0278
extrapolation error on curve 2 1.41× 10−5 0.00324 0.0565 0.00323 0.518
extrapolation error on curve 3 2.67× 10−7 0.65 0.158 0.0112 0.151

validation error on curve 1 4.46× 10−6 2.59× 10−10 0.00129 2.76× 10−10 0.000532
validation error on curve 2 5.45× 10−6 1.08× 10−10 0.00265 2.87× 10−9 0.00177
validation error on curve 3 2.55× 10−7 2.94× 10−5 0.00518 3.75× 10−8 0.00106

test error on curve 1 6.95× 10−6 9.09× 10−12 0.000545 < 1× 10−12 0.000253
test error on curve 2 2.25× 10−7 < 1× 10−12 0.00127 < 1× 10−12 0.00344
test error on curve 3 8.8× 10−8 < 1× 10−12 0.00272 < 1× 10−12 0.00358

training error on curve 1 3.88× 10−6 3.57× 10−12 0.000254 < 1× 10−12 6.93× 10−5

training error on curve 2 1.26× 10−6 < 1× 10−12 0.000524 < 1× 10−12 8.6× 10−5

training error on curve 3 3.34× 10−7 7.14× 10−12 0.000905 < 1× 10−12 7.9× 10−5

Table S13: Functions generated in Generalization Experiment. Our functions are easier to calculate
and shorter than NGGP’s.

Name Model Equation

curve-1 Ours 0.503 + (117.088x)/(x2 + 14702)
NGGP cos(exp((0.49x log(0.028x+ 29.5/(0.039x+ 9.82))− 2.78)/(0.115x− 60.5)))

curve-2 Ours (6.08x+ 0.785)/(0.0639x2 + 615.179) + 0.50003
NGGP cos(2.95 exp(−0.68 exp(0.41 exp(5.5x exp(24.67/(115.6 exp((4.75x+ 13.3)/x) + 3.2))/(2x+ 214.3)))))

curve-3 Ours (x sin(371.57/(13928/x+ x)) + x)/(0.0024 + 2x)
NGGP cos(log(1 + 1.67 exp(−1.56/(exp(17.7 exp(exp((−12.9 + 4.95 log(x)/x)/x))/x)− 1.16 + 0.656/x))))

to the hyperbolic tangent (tanh). The training process encompasses 2000 rounds, initiated with a
learning rate of 0.01, which is subsequently reduced by a factor of 0.1 whenever the loss increases.

We used seven functions, the top three are odd functions, from easy to hard, then the next three are
even functions, and the last one is a non-odd non-even function.

We first tested the speed of both methods. The cubic spline method takes 0.216, 0.217, 0.219,
0.220, 0.226 milliseconds to run on 10, 100, 1000, 10000, and 100000 data points, respectively.
Correspondingly, MLP takes 3.28, 3.64, 8.97, 64.1, 549.7 seconds to run.

We then tested two loss equations for the corresponding functions, as shown in the Table S14, and the
loss functions are as follows: Lodd =

∑n
i=1(y(x)+y(−x))2/n, Leven =

∑n
i=1(y(x)−y(−x))2/n.

It can be seen in Figure S5 that if 10−4 of MSE is used as the cutoff for whether it is an odd/even
function or not, the amount of data required by MLP is about 100–1000 times more than that of the
spline.

H ABLATION EXPERIMENT RESULT

In this section, we provide more detailed information about the results obtained from the ablation
experiment on LiverMore benchmark. The full results of the ablation experiment can be found in
Table S15. This table presents a comprehensive overview of the performance of the model under
different ablation settings.

23

Published as a conference paper at ICLR 2024

odd-1 odd-2 odd-3 even-1 even-2 even-3
100

102

104

106

nu
m
be

r o
f d

at
a
ne

ed

Comparison of Parity Determination
spline
MLP

Figure S5: The parity determination performance test. We test the ability of parity determination of
two models by three odd functions and even functions from easy to hard. Compete Setting of this
experiment is shown in Table S14.

Table S14: The average loss results for the Parity Determination Experiment across 10 parallel runs
are presented in the table below. Each cell in the table contains two values: the upper value, situated
above the horizontal line, signifies the loss value of the MLP, while the lower value indicates the loss
of the cubic splines.

Name Equation Input Range 10 100 1000 10000 100000

odd-1 x
[−1, 1] 2.84×10−1

1.99×10−16
2.57×10−3

5.58×10−17
1.15×10−3

2.78×10−17
5.88×10−4

3.47×10−18
1.21×10−4

1.35×10−20

[−5, 5] 3.04×10−1

1.40×10−15
3.31×10−3

3.18×10−17
3.37×10−3

0.00×100
9.79×10−4

1.55×10−17
1.22×10−4

4.85×10−19

odd-2 x+ sinh(x) + x3 [−1, 1] 2.15×10−1

5.59×10−4
2.04×10−3

7.02×10−7
1.58×10−3

1.77×10−9
1.40×10−4

4.51×10−13
1.11×10−4

2.16×10−12

[−5, 5] 7.70×10−1

2.85×100
5.37×10−2

2.05×10−3
4.53×10−2

5.22×10−7
1.17×10−3

2.70×10−10
3.96×10−4

1.99×10−12

odd-3 x3 + x+ x5+ [−1, 1] 1.64×10−1

3.10×10−2
1.09×10−3

8.76×10−5
5.76×10−4

2.52×10−8
2.38×10−4

8.57×10−12
8.04×10−5

4.00×10−11

sin(x)× cosh(x) [−5, 5] 7.60×10−2

3.45×102
7.07×10−4

8.16×10−2
7.95×10−4

6.28×10−5
1.55×10−4

2.75×10−8
6.95×10−5

1.62×10−9

even-1 x2 [−1, 1] 2.60×10−1

2.64×10−14
4.33×10−3

5.11×10−15
7.44×10−4

3.01×10−15
1.59×10−4

1.78×10−13
8.76×10−5

7.81×10−13

[−5, 5] 1.85×10−1

1.33×10−13
2.13×10−3

2.73×10−13
6.02×10−4

1.38×10−13
3.53×10−4

1.20×10−12
2.22×10−4

1.95×10−11

even-2 x× sinh(x)
[−1, 1] 7.25×10−2

2.43×10−4
1.20×10−2

2.93×10−7
9.35×10−4

5.77×10−10
2.65×10−4

3.23×10−13
7.32×10−5

2.70×10−12

[−5, 5] 9.94×10−1

5.54×100
7.90×10−1

1.58×10−3
8.06×10−1

1.55×10−5
2.88×10−1

1.00×10−9
3.15×10−4

2.02×10−10

even-3 x4 + log(x2 + 1)+ [−1, 1] 1.09×10−1

3.68×10−2
2.61×10−3

7.85×10−6
1.52×10−3

1.53×10−8
3.09×10−4

3.20×10−12
1.48×10−4

6.55×10−12

cos(x)× exp(0.1x2) [−5, 5] 9.49×10−1

5.20×100
9.30×10−1

3.61×10−2
9.21×10−1

2.10×10−5
6.65×10−1

2.54×10−9
7.76×10−4

3.09×10−10

none x3 + log(x2 + 1)+ [−1, 1] 9.90×10−1

1.68×100
4.99×10−1

7.05×100
5.13×10−1

2.23×101
5.13×10−1

6.81×101
5.16×10−1

2.16×102

x7 + sinh(x) [−5, 5] 9.11×10−1

6.95×102
9.16×10−1

4.22×101
9.22×10−1

1.30×102
6.81×10−1

4.16×102
4.20×10−3

1.31×103

24

Published as a conference paper at ICLR 2024

Table S15: Average Recovery Rate (%) of the Ablation Experiment over 100 parallel runs

Name Equation Ours ModelA ModelB ModelC ModelD

Livermore-1 1/3 + x1 + sin(x1) 100 100 100 100 100
Livermore-2 sin(x2

1)cos(x1)− 2 100 100 100 6 100
Livermore-3 sin(x3

1)cos(x
2
1)− 1 55 20 0 0 55

Livermore-4 log(x1 + 1) + log(x2
1 + x1) + log(x1) 100 100 100 100 100

Livermore-5 x4
1 − x3

1 + x2
1 − x2 100 100 100 100 100

Livermore-6 4x4
1 + 3x3

1 + 2x2
1 + x1 100 100 100 100 100

Livermore-7 sinh(x1) 100 100 100 100 10
Livermore-8 cosh(x1) 100 100 100 100 3
Livermore-9

∑9
i=1 x

i
1 100 83 100 88 100

Livermore-10 6sin(x1)cos(x2) 100 100 100 100 100
Livermore-11 (x2

1x
2
2)/(x1 + x2) 100 91 100 100 100

Livermore-12 x5
1/x

3
2 100 100 100 100 100

Livermore-13 x
1/3
1 100 100 100 67 100

Livermore-14 x3
1 + x2

1 + x1 + sin(x1) + sin(x2
1) 100 100 100 100 100

Livermore-15 x
1/5
1 100 100 100 97 100

Livermore-16 x
2/5
1 100 100 100 12 100

Livermore-17 4sin(x1)cos(x2) 100 100 100 100 100
Livermore-18 sin(x2

1)cos(x1)− 5 100 89 90 0 100
Livermore-19 x5

1 + x4
1 + x2

1 + x1 100 100 100 100 100
Livermore-20 exp(−x2

1) 100 100 100 100 100
Livermore-21

∑8
i=1 x

i
1 100 100 100 100 100

Livermore-22 exp(−0.5x2
1) 100 100 100 100 100

Average 97.95±4.0 94.68±7.2 95.00±8.9 80.45±15.6 89.45±11.9

25

	ICLR 2024.pdf

