—— prune

~—— pruned_top_err ~—— pruned_top_err

Train Err
Layer

x
<
e

©
<
s
<3
a

a

Epoch Epoch

0.910

0.905

0.900

Train Err
o
IS
Val Err
Layer

0.895

Diagonal rank

0.02

ar
pruned_bot_err 0.890

—— pruned_top_err
1

25 50 1 25 50 1 25 50 25 50 0.00

1 25 50
Epoch Epoch Epoch Epoch Epoch

(a) Train Err. (b) Val. Err. (c) SVs (d) Eff. Rank (e) Alignment

Figure 8: Dynamics with random labels for VGG. Top row: results with true labels. Bottom row:
results with random labels. We see that the middle layers have a lower effective rank when using
true labels and that alignment in the middle layers persists throughout training. The results are less
stark in the VGG case, but similar to the MLP.

A EXPLANATION OF BALANCEDNESS

Prior work on deep linear networks (Arora et al., 2019; Milanesi et al., 2021) suggests that rank
minimization may describe implicit regularization in deep matrix factorization better than simple
matrix norms. See Arora et al. (2018) (Appendix A) for a detailed argument. However, a criti-
cal assumption used in these works is “balanced initialization.” This means that for consecutive
matrices W; and Wi, in the product matrix []; W;, we have W, Wis1 = W;W," at initial-
ization. Decomposing these matrices with SVDs and leveraging orthogonality, this simplifies to
Vig132,,V;1, = U;S2U;" where U; and V; 4 are orthogonal matrices. Since these are orthogonal
decompositions of the same matrix, their diagonals must be equivalent, allowing for the permuta-
tion of elements with the same value. This leads to U; = V; 10 up to signs, where O is a block
diagonal permutation matrix that may permute the rows of equivalent diagonal elements. Notably, if
all diagonal elements are distinct and U; and V;; are square matrices, then U; = V¢ up to signs.
This gives us matching singular vectors for consecutive matrices.

B SPECTRAL DYNAMICS WITH RANDOM LABELS

Given the observations connecting generalization and rank thus far, and the enlightening view on
the implicit effects of weight decay, we are interested in seeing whether the perspective developed
sheds any light on the classic random label memorization experiments of Zhang et al. (2021).

Similar to Zhang et al. (2021), we train a MLP, VGG and an LSTM to fit random or true labels.
Please see Appendix D for the details regarding the experimental setup. Zhang et al. (2021) decay the
learning rate to zero, and the random label experiments only converge late in training. Consequently,
we use a constant learning rate to control this phenomenon. We see in Figure 7 that both cases are
able to achieve zero error, though with different singular value evolution and alignment in the middle
layer.

Surprisingly in Figure 7, we see that with true labels the inner layers are low rank, while with
random labels they are much higher rank. This may be explained by the shared structure in the
true classes of the dataset, which manifests in the parameters. Even more surprisingly, we find
here that even without weight decay, inner layers align with true labels, while with random labels,
this alignment occurs and then disappears with more training. This is particularly intriguing as
there are non-linearities that could theoretically separate the network from the linear case, and yet
strong alignment occurs despite that. Such alignment has not yet been leveraged by existing theory,
and might provide structured assumptions for new understanding. Results on the VGG (Figure 8)
are qualitatively quite similar, including on the alignment point. Results on the LSTM (Figure 9)

19

r71.00

0.5

0.4

0.3

—— pruned_bot_cer
~—— pruned_top_cer

Train Cer
o
>
Layer

x
=
e
©
<
S
=)
]
a

0.2

0.1

0.0

1 100 200 1 100 200 1 100 200

Epoch Epoch Epoch Epoch

0.5
0.4

0.90 §0.975
0.85 S 0.950

0.3

Train Cer
Layer

0.2

Diagonal rank

0.1

0.0

100 200 1 100 200 1 100 200 100 200

1 100 200
Epoch Epoch Epoch Epoch Epoch

(a) Train Err. (b) Val. Err. (c) SVs (d) Eff. Rank (e) Alignment

Figure 9: Dynamics with random labels for LSTM. Top row: results with true labels. Bottom row:
results with random labels. We see that the middle layers have a lower effective rank when using
true labels and that alignment in the middle layers persists throughout training. Though the LSTM
doesn’t fit the random labels perfectly, the results are qualitatively similar to the other cases, except
alignment is almost nonexistent.

are weakly similar, though the alignment is much weaker. In summary, these results suggest that
viewing generalization through the lens of rank and alignment may be fruitful.

C BEYOND GENERALIZATION

We have seen over the course of many experiments that deep models are biased toward low rank, and
that there is a tempting connection between rank minimization and generalization. Still, the lens of
spectral dynamics can be applied more broadly. In the following subsections, we explore two phe-
nomena: lottery tickets (Frankle & Carbin, 2018) and linear mode connectivity (Frankle et al., 2020).
Beyond shedding further light on neural networks, these phenomena have implications for more ef-
ficient inference and storage, as well as understanding the importance of pretraining (Neyshabur
et al., 2020). We find that lottery tickets are a sparse approximation of final-checkpoint top singular
vectors. The ability to linearly interpolate between faraway checkpoints and improve performance
coincides strongly with top singular vector sharing between checkpoints. Such observations may
form a foundation for a better understanding compression and model averaging (Wortsman et al.,
2022; Ilharco et al., 2022).

C.1 ToP SINGULAR VECTORS BECOME STABLE EARLIER

Before we explore the phenomena, we first make another observation that will be helpful. As top
singular values grow disproportionately large, it would be natural that top singular vectors become
stable in direction as the gradients remain small. To demonstrate this, for a given matrix in the

network W;(t) = 21‘11 o;(t)u;(t)v;(t) " at training time t, we compute

Stk = [uj (t)v;(6) " ur (T)or(T) 1)1, (5)

where 7' is the final step of training, and the absolute value is taken to ignore sign flips in the SVD
computation. We then plot the diagonal of this matrix S(¢);; V ¢ < 100 over time. We also use a
scalar measure of the diagonal to summarize like in the alignment case: s(t) = 15>, S(t);;. In
Figure 10, we see that top singular vectors converge in direction earlier than bottom vectors.

C.2 LOTTERY TICKETS PRESERVE FINAL TOP SINGULAR VECTORS
As large singular vectors will become stable late in training, we wonder about the connection to

magnitude pruning and the lottery ticket hypothesis. Frankle & Carbin (2018) first showed evidence
for the lottery ticket hypothesis, the idea that there exist sparse subnetworks of neural networks that

20

0 1.0 0 1.0 0 1.0 0 1.0
v 4 4 Aé
& 25 & 25 & 25 G 25
250 0.5 E50 0.5 €50 05 E50 0.5
o o o [e]
(@] ()] [@)] (o))
© 75 © 75 © 75 ©75
a a) a [a)
1 82 164 0.0 50 100 0.0 0 0.0 0.0
Epoch Epoch Epoch Epoch
i 1.0 1.0 1 1.0 1 1.0
g 05 2 05 % 05 % 0.5
S 3 8 8
14 16 7
1 82 164 0.0 1 50 100 0.0 1 25 50 0.0 >0 1 5 10 0.0
Epoch Epoch Epoch Epoch
(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 10: Top row: Singular vector agreement for a single matrix in the middle of each model
(diagonal of Eqn. 5). Notice top singular vectors become stable in direction earlier. Bottom row:
Summary score for each matrix across architectures. As we move down the y-axis, the depth of
the parameters in the model increases, while the x-axis tracks training time. The sharp transition
midway through training in the VGG case is likely due to a 10x learning rate decay.

can be trained to a comparable performance as the full network, where the sparse mask is computed
from the largest magnitude weights of the network at the end of training. Frankle et al. (2020)
build further on this hypothesis and notice that, for larger networks, the masking cannot begin at
initialization, but rather at some point early in training. Still, the mask must come from the end of
training.

The reason for this particular choice of mask may be connected to the dynamics we previously
observed. Specifically, at the end of training large singular values are disproportionately larger, so
high-magnitude weights may correspond closely to weights in the top singular vectors at the end
of training. If magnitude masks were computed at the beginning, the directions that would become
the top singular vectors might be prematurely masked as they have not yet stabilized, which may
prevent learning on the task.

Here we train an unmasked VGG-16 (Simonyan & Zisserman, 2014) on CIFARI10, then compute
either a random mask, or a global magnitude mask from the end of training, and rewind to an early
point (Frankle et al., 2020) to start sparse retraining. We also do the same with an LSTM (Hochreiter
& Schmidhuber, 1997b) on LibriSpeech (Panayotov et al., 2015). Please see Appendix D for details.
In Figures 11 and 12, we plot the singular vector agreement (SVA, Eqn. 5) between the final model,
masked and unmasked, where we see exactly that magnitude masks preserve the top singular vectors
of parameters, and with increasing sparsity fewer directions are preserved. Even though prior work
has remarked that it is possible to use low-rank approximations for neural networks (Yu et al., 2017),
and others have explicitly optimized for low-rank lottery tickets (Wang et al., 2021; Schotthofer
et al., 2022), we rather are pointing out that the magnitude pruning procedure seems to recover a
low-rank approximation.

We also compute the singular vector agreement (SVA) between the masked model trajectory and the
original unmasked model trajectory (diagonal of Eqn. 5). We see in Figures 11 and 12 that there is
no agreement between the bottom singular vectors at all, but there is still loose agreement in the top
singular vectors. Thus, it seems the mask allows the dynamics of only the top singular vectors to
remain similar, which we know are most important from the pruning analysis in Figure 4.

Preserving top singular vectors by pruning seems like a natural outcome of large matrices, so as a
control, we follow exactly the same protocol except we generate the mask randomly with the same
layerwise sparsity. We can see in Figures 11 and 12 that this results in much lower preservation of

21

0 L0 1.0
Y4
23] 0.75 <25
o — loss = =
é ~—— pruned_bot_loss <>E 0.50 © 50 0.5 g
‘S 1 = pruned_top_loss v S ’ ©
= 0.25 275
0 T | e 14
1 82 164 0.00 0 10
Epoch Layer Epoch Epoch
0 710 71.0
v

Qo 525
o —— loss = .
é ~—— pruned_bot_loss © 50 0.5 g 0.5
T ~— pruned_top_loss S ’ E :
E 1 875

I — s 14

1 82 164 0 50 ’ ’ 10 1 82 164 0.0 1 82 164 0.0

Epoch Rank i Layer Epoch Epoch
(a) Loss (b) Pruned SVA (c) All Layers (d) SVA evol. (e) All Layers

Figure 11: Pruning results for VGG. Top row: Magnitude pruning. Bottom row: random pruning.
First column: Training loss. We see that at 5% sparsity magnitude pruning is significantly better
than random pruning of the same layerwise sparsity. 2nd column: Singular vector alignment pre-
and post-pruning at the end of training for a single layer (the 3rd convolution). We see that magnitude
pruning approximates the top singular vectors, while random pruning at the same level does not.
3rd column: Singular vector alignment score pre- and post-pruning across all layers. Agreement
is higher across all layers for magnitude pruning, though later layers do not agree, likely as later
layers are wider so weights are lower magnitude. 4th column: Singular vector alignment between
the pruned and unpruned models along the training trajectory. We see that the magnitude pruning
still has similar dynamics in its top singular vectors, while random pruning does not. Last column:
Singular vector alignment score between pruned and unpruned models across layers and time. Again
evolution is similar for early layers with magnitude pruning, and completely different for random
pruning.

6 0 — 110 1 1.0

B

@ 525

S 4 | — loss = =

= —— pruned_bot_loss ®50 0.5 %

© 2! —— pruned_top_loss g i}

R 87"
[a)

17

1 25 50 10
Epoch Layer Epoch Epoch
6—————————— 0 1 1.0
=
a 25
§ 4| — loss E =
- —— pruned_bot_loss T 50 g 0.5
s —— pruned_top_loss % c
[a)
L . . 17 0.0
1 25 50 0 50 10 1 25 50 1 25 50
Epoch Rank i Layer Epoch Epoch
(a) Loss (b) Pruned SVA (c) All Layers (d) SVA evol. (e) All Layers

Figure 12: Pruning results for LSTM. Top row: Magnitude pruning. Bottom row: random pruning.
See Figure 11 for details. Results are quite similar for the LSTM at 25% pruning as the VGG in
Figure 11.

top singular vector dynamics, and also performs worse, as in (Frankle et al., 2020). It would not
be surprising that random pruning is worse if simply evaluated at the end of training, but masking
is applied quite early in training at epoch 4 of 164 long before convergence, so it’s striking that
the network now fails to learn further even though it is far from convergence. We interpret this as
evidence that the mask has somehow cut signal flow between layers, so it is now impossible for the
network to learn further, while magnitude pruning and rewinding still allows signals to pass that
eventually become important.

22

C.3 SPECTRAL DYNAMICS AND LINEAR MODE CONNECTIVITY

We come to the final phenomenon that we seek to describe: linear mode connectivity. Linear mode
connectivity (LMC) is the property that one can interpolate linearly between two different minima
in weight space and every parameter set along that path performs well, which gives the impression
that the loss surface of neural networks is somehow convex despite its theoretical nonconvexity.
This was first demonstrated in small networks with the same initialization (Nagarajan & Kolter,
2019), then expanded to larger networks and connected to lottery tickets (Frankle et al., 2020; Paul
et al., 2022). Entezari et al. (2021) first conjecture that two arbitrary minima show LMC up to
permutation, and demonstrate it in simple models. This was expanded to wide models (Ainsworth
etal., 2022; Jordan et al., 2022; Qu & Horvath, 2024), and can be proven in various ways (Kuditipudi
et al., 2019; Brea et al., 2019; Simsek et al., 2021; Ferbach et al., 2023), but it does not hold for
standard models (Qu & Horvath, 2024). LMC has also been exploited for model-averaging and
performance gains (Wortsman et al., 2022; Ilharco et al., 2022; Rame et al., 2022). Still despite all
of this work, we lack a description for why LMC occurs. In particular: why is there a convex, high
dimensional (Yunis et al., 2022) basin that models find shortly in training (Frankle et al., 2020), or
after pretraining (Neyshabur et al., 2020; Sadrtdinov et al., 2023)? We do not answer this question
in full, but find an interesting view through the singular vectors.

C.3.1 LINEAR MODE CONNECTIVITY CORRELATES WITH TOP SINGULAR VECTOR
AGREEMENT

As we saw earlier directional convergence of top singular vectors in Figure 10, it suggests the dy-
namics of those components are more stable, so we might expect mode-connected solutions to share
these components. To examine this, we plot agreement between the singular vectors of the weight
matrices at either endpoint of branches:

R

wO(T) = Z o (T)u; (T)v;(T) ",
"

WOT) =3 oh(T)ul (T (T)T
k

spawned from the same initialization in training. If the branches are split from an initialization
on a trunk trajectory W (t), we call ¢ the split point or epoch. We visualize the diagonal of
|(u; (T)vi (T) ",) (T)v}, (T))| vs. split epoch, where the absolute value is taken to ignore sign
flips in SVD computation.

To remind the reader, LMC only occurs after a small amount of training time has passed. Too early
and the final models of each branch will show a bump, or barrier, in the loss surface along the linear
interpolation (Frankle et al., 2020). To measure this precisely, we use the definition from Neyshabur
et al. (2020), which is the maximum deviation from a linear interpolation in the loss, an empirical
measure for convexity in this linear direction. When this deviation is 0, we consider the checkpoints
to exhibit LMC. Please see Appendix D.10 for details on the calculation. Given evidence in Figure 4
that top components are the most important for prediction, and that top components become stable
before training has finished, it is plausible that LMC is connected to the stability of top singular
vectors in the later portion of training.

This would mean that checkpoints that do not exhibit the LMC property should not share top singular
vectors, while checkpoints that do exhibit the LMC property should share top singular vectors.
We see in Figure 13 that this is the case across models and tasks, where the alignment between
endpoints is much stronger in top singular vectors. We also see no LMC and poor agreement in
top components between branches that have initializations from different trunk trajectories, but with
the same split epoch ¢ and the same branch data order in Figure 14. Thus, these top directions are
not a unique property of the architecture and data, but rather are dependent on initialization. It is
notable that concurrent work (Ito et al., 2024) arrives at a similar conclusion: permutation solvers
between optima match top singular vectors. Though the conclusions are similar, their experiments
are primarily conducted on smaller scale settings, and only for permutation matching at the end of
training. Here we connect these observations to the optimization behavior of networks throughout
training.

23

0.06 0.6
1.5 4
310 50-04 022 504
80,5 £0.02 3 302
0.0 0.00 0 0.0
0 1 2 5 0 1 25 0 1 2 5 0 1 2 5
Split epoch Split epoch Split epoch Split epoch
0 0
java v v ¥4
& 25 4 G § 25 0.75 25 0.75
S50 ‘_c" T 50 0.50 €50 0.50
> 2 &) >
& 75 .© .8 75 0.25 ®©75 0.25
[a) [a) [a) [a)
125 7 0 ' 125000 125000
Spllt epoch Split epoch Spllt epoch Spllt epoch
0.75 1
0.75 0.75 0.75
5 0.50 % = o
g 4 050 = 050 2 0.50
8 8 8 3
0.25 0.25 0.25 0.25
16
135 0.00) i35 0.00 135 0.00 500 125 0.00
Spllt epoch Split epoch Spllt epoch Split epoch
(a) VGG (b) UNet (¢c) LSTM (d) Transformer

Figure 13: Top row: Barrier size vs. split step. Middle row: singular vector agreement for a single
matrix parameter between branch endpoints that share a common trunk. Bottom row: summary
statistic for singular vector agreement across layers vs. split step. We see that as models exhibit
LMC, they also share top singular vectors.

C.3.2 PERTURBING BREAKS LINEAR MODE CONNECTIVITY AND SINGULAR VECTOR
AGREEMENT SIMULTANEOUSLY

To make the connection between top singular vectors and LMC even tighter, we intervene in the
normal training process. If we add random perturbations to destabilize the components that will
become the top components long before they have converged, and if singular vector agreement is
tied to LMC, we would like to see that final models no longer exhibit the LMC property. Indeed
this is the case. In Figure 15, when increasingly large random perturbations are applied, the barrier
between final checkpoints increases and the LMC behavior disappears. Please see Appendix D
for details. In addition, the previously-strong singular vector agreement disappears simultaneously.
Thus it seems this agreement is tied to linear mode connectivity.

We speculate that, due to the results in Figure 4 that show the top half of the SVDs are much
more critical for performance, if these components are shared then interpolating will not affect
performance much. Rather, interpolation will eliminate the orthogonal bottom components which
may only make a minor impact on performance. If however the top components are not shared,
then interpolating between two models will remove these components, leading to poor performance
in between. Such observations may help in explaining the utility of pretraining (Neyshabur et al.,
2020), weight averaging (Rame et al., 2022; Wortsman et al., 2022; Ilharco et al., 2022) or the use
of LoRA (Huh et al., 2022) to replace full finetuning.

24

3.6
4.40

200 15 34 N

@ o (T @
£1.75 E |[~—— | E £4.35 \/\N

ke ks 835 8

104 :
1.50 4.30
3.0
0 1 25 0 1 2 5 0 1 2 5 0 1 25
Split epoch Split epoch Split epoch Split epoch
0 0 0 0.04 0

&25 0.03 25 & 25 & 25 0.03

— — 0.02 = —
250 0.02 250 g 50 0.02 250 0.02

=) > 001 o =)
& 75 0.01 ®©75 ' 875 & 75 0.01

[a) [a) [a) a
125 0.00 125 0.00 125 0.00 125 0.00

Spllt epoch Spllt epoch Spllt epoch Spllt epoch

0.04 0.03 0.02 0.02

> 2 002 & o}
8 0.02 8 8 0.01 S 0.01

0.01
4
0 125 0.00 125 0.00 i35 0.00 125 0.00
Split epoch Spllt epoch Spllt epoch Spllt epoch
(a) VGG (b) UNet (¢c) LSTM (d) Transformer

Figure 14: Top row: Barrier size vs. split step. Middle row: singular vector agreement for a single
matrix parameter between branch endpoints that do not share a common trunk, but do share split
time and branch data order. Bottom row: summary statistic for singular vector agreement across
layers. We see that when branches do not share a common trunk, there is neither LMC nor singular
vector agreement, even though the optimization is otherwise the same.

D EXPERIMENTAL DETAILS

For all experiments, we use 3 random seeds and average all plots over those 3. This is relatively
small, but error bars tend to be very tight, and due to the high volume of runs required for this work
we lack the resources to run much more.

In order to compute alignment we consider only pairs of layers that directly feed into each other,
and ignore the influence of residual connections so as to cut down on the number of comparisons.
Specifics on individual architectures are given below.

D.1 IMAGE CLASSIFICATION WITH VGG

We train a VGG-16 (Simonyan & Zisserman, 2014) on CIFAR-10 (Krizhevsky, 2009) for 164
epochs, following hyperparameters and learning rate schedule in (Frankle et al., 2020), but with-
out data augmentation. For the optimizer we use SGD with batch size 128, initial learning rate 0.1
and momentum of 0.9. We also decay the learning rate 3 times by a factor of 10 at epoch 82, epoch
120, and finally at epoch 160. We also use a minor amount of weight decay with coefficient 0.0001.

VGG-16 uses ReLLU activations and batch normalization (Ioffe & Szegedy, 2015), and includes both
convolutional and linear layers. For linear layers we simply compute the SVD of the weight matrix.
For convolutional layers, the parameters are typically stored as a 4D tensor of shape (coy, Cin, 2, W)
for the output channels, input channels, height and width of the filters respectively. As the filters
compute a transformation from each position and input channel to an output channel, we compute
the SVD of the flattened tensor (cou, Cin-h-w), which maps all inputs to outputs, similar to Praggastis

25

0.4 L5 1.0
—_ —_ —_ 2 —_
L 010 k9] k9]
0.2 o] G 1 5 0.5
m mQ.5 m m
0.0 0.0 0 0.0
0 010.2505 1.0 25 0 010.250.5 1.0 255 0 0102505 10 25 0 010.2505 10 25
Pert. magnitude Pert. magnitude Pert. magnitude Pert. magnitude
0 0.6 0 0 0
Aé v v V4
& 25 04 & 25 0.75 §25 0.75 §25 0.75
50 T 50 0.50 €50 0.50 E50 0.50
S 02 § : g
875 T &8T5 0.25 ®75 0.25 .® 75 0.25
a a a a
0.0 0.00 0.00 0.00

0 0.10.250.5 1..0 25
Pert. magnitude

0 0.10.250.51.02.5

Pert. magnitude

0 0.10.250.51.02.5

Pert. magnitude

0 0.10.250.5 1.(.) 25
Pert. magnitude

Layer
Layer
Layer
Layer

1 1 1 1
0.6 0.75 0.75 0.75
0.4 0.50 0.50 0.50
0.2 0.25 0.25 0.25
14 00 16 000 17 0.00 50 0.00

0 0.10.250.5 1..0 25 0 0.10.250.5 1.(.) 25 0 0.10.250.5 1.? 25 0 0.10.250.5 1.(.) 25
Pert. magnitude Pert. magnitude Pert. magnitude Pert. magnitude

(a) VGG (b) UNet (c) LSTM (d) Transformer
Figure 15: Top row: Barrier size vs. perturbation magnitude. Middle row: singular vector agree-
ment for a single matrix parameter between branch endpoints vs. perturbation magnitude. Bottom
row: summary statistic for singular vector agreement across layers with perturbation magnitude.
We see that whereas without perturbation models would exhibit LMC after training, with increasing
perturbations the LMC property disappears simultaneously with the agreement in top singular vec-
tors.

et al. (2022). This is not the SVD of the entire transformation of the feature map to the next feature
map, but rather the transformation from a set of adjacent positions to a particular position in the next
layer. For the individual SV evolution plot, we use the 12th convolutional layer.

In order to compute alignment of bases between consecutive convolutional layers, VZL U; we need
to match the dimensionality between U; and V;;. For convolutional layers we are presented with
a question as to how to handle the spatial dimensions h and w as naively the input dimension of
the next layer will be a factor of i - w larger dimension. We experimented with multiple cases,
including aligning at each spatial position individually or averaging over the alignment at all spatial
positions, and eventually settled at aligning the output of one layer to the center spatial input of the
next layer. That is, for a 3x3 convolution mapping to a following 3x3 convolution, we compute the
alignment only for position (1,1) of the next layer. This seemed reasonable to us as on average the
edges of the filters showed poorer alignment overall. For the individual alignment plot, we use the
alignment between the 11th and 12th convolutional layers at the center spatial position of the 12th
convolutional layer.

D.2 IMAGE GENERATION WITH UNETS

We train a UNet (Ronneberger et al., 2015) diffusion model (Sohl-Dickstein et al., 2015; Ho
et al.,, 2020) on MNIST (LeCun, 1998) generation. We take model design and hyperparame-
ters from (Wang & Vastola, 2022). In particular we use a 4-layer residual UNet and train with
AdamW (Loshchilov & Hutter, 2017) with batch size 128, and learning rate of 0.0003 for 100

26

epochs. This model uses swish (Ramachandran et al., 2017) activations and a combination of linear
and convolutional, as well as transposed convolutional layers.

Computing SVDs and alignment is similar to the image classification case described above, except
in the case of the transposed convolutions where an extra transpose of dimensions is needed as
parameters are stored with the shape (cin, Cout, I, w). For the individual SV evolution plot, we use
the 3rd convolutional layer. For the alignment plot, we use the alignment between the 3rd and 4th
convolutional layers at the center spatial position of the 4th convolutional layer.

D.3 SPEECH RECOGNITION WITH LSTMs

We train a bidirectional LSTM (Hochreiter & Schmidhuber, 1997a) for automatic speech recognition
on LibriSpeech (Panayotov et al., 2015). We tune for a simple and well-performing hyperparameter
setting. We use AdamW (Loshchilov & Hutter, 2017) with batch size 32, learning rate 0.0003 and
weight decay 0.1 for 50 epochs. We also use a cosine annealing learning rate schedule from 1 to 0
over the entire 50 epochs.

The LSTM only has matrix parameters and biases, so it is straightforward to compute SVDs of
the matrices. For individual SV evolution plots, we plot the 3rd layer input parameter. In the case
of alignment, we make a number of connections: first down depth for the input parameters, then
connecting the previous input parameter to the current hidden parameter in both directions, then
connecting the previous hidden parameter to the current input parameter. In particular the LSTM
parameters are stored as a stack of 4 matrices in PyTorch, and we find alignment is highest for
the ”gate” submatrix, so we choose that for all plots. For the individual layer alignment, we plot
alignment between the 3rd and 4th layer input parameters.

D.4 LANGUAGE MODELING WITH TRANSFORMERS

We train a Transformer (Vaswani et al., 2017) language model on Wikitext-103 (Merity et al., 2016).
We base hyperparameter choices on the Pythia suite (Biderman et al., 2023), specifically the 160
million parameter configuration with sinusoidal position embeddings, 12 layers, model dimension
768, 12 attention heads per layer, and hidden dimension 768. We use AdamW (Loshchilov & Hutter,
2017) with batch size 256, learning rate 0.0006 and weight decay 0.1. We use a context length of
2048 and clip gradients to a maximum norm of 1. We also use a learning rate schedule with a linear
warmup and cosine decay to 10% of the learning rate, like Biderman et al. (2023).

For SVDs, for simplicity we take the SVD of the entire (3dmodel, dmodel) Parameter that computes
queries, keys and values from the hidden dimension inside the attention layer, without splitting into
individual heads. This is reasonable as the splitting is done after the fact internally. We also take
the SVD of the output parameters, and linear layers of the MLPs, which are 2 dimensional matrices.
For the individual SV evolution plot, we plot the SVs of W; of the 8th layer MLP

For alignment, we consider the alignment of W and Wx matrices, Wy, and W matrices, com-
puting alignment between heads individually then averaging over all heads. We also consider the
alignment between Wy and W of the MLP block, between W; and W5 of the MLP block, and
between W, and the next attention layer. For the individual layer alignment, we plot alignment
between W7 and W5 of the 8th layer MLP.

D.5 SPECTRAL DYNAMICS WITH SCALE (PYTHIA)

Here we apply the perspective developed in Section 4 to larger scale models. As we lack the re-
sources to train these models ourselves, we leverage the Pythia (Biderman et al., 2023) family which
provides training trajectories for language models across a range of scales (70m to 12b parameters).
We are further constrained to the 2.8b parameter model at the largest due to memory requirements
when computing SVDs and alignment.

In Figure 16, we see similar rank dynamics across a variety of scales. We choose to select the 7th
layer MLP to compare between models as it is present at all scales. We do see an unequal evolution
in singular values, but also a contraction as training proceeds for longer. The difference between
scales is not very obvious, but slightly fewer of the singular values evolve to be large in the 2.8b
model as opposed to the 410m model, which one can see from the thickness of the light magenta

27

10 1 Lo 0.10 [l

1
25— oss 0.30
—— pruned_bot_loss
20 = pruned_top_loss 8 0.9 x 0.08 0.25
9 6 _ g K 0.20
S15 > g 08 ® 0.06 =
3 @ z 5 g 0.15
s 4 - > 004 m
10 s 07 & 0.10
s 0.02 0.05
0 48 0.6 000 6L 0.00
0 1k 20k 143k 0 1k 20k 143k 0 1k 20k 143k 1k 20k143k 0 1k 20K143k
Step Step Step Step Step
25| — 1oss 12 1 Lo Boos 1 M
= pruned_bot_loss. 10
40| — Prmedton_los 09 0.20 03
a 8 [=
. = 015 &
J1s %6 2 *% 5 5 02
B 3 > 010 ®
10 4 07 & 108
a 0.1
2 0.05
5 0.6
, : 0 % 000 121 0.0
0 1k 20k 143k 0 1k 20k 143k 0 1k 20k 143k 1k 20k143k 0 1k 20k143k
Step Step Step Step Step
20| — joss 1 ﬁ 71.00 M 1 _ o
— pruned_bot_loss /\/ 125 0.95 0125 -
= pruned_top_loss -
15 10.0 090 ¥ 0100 0.3
" g 5
3 5 75 g 085 3 0075 o
35 5 g 0.2
5 10 3 080 © g
> 5.0 g 0.050 J
075 B
0.1
25
5 0.70 0.025
0.0 % - 0.000 0.0
[1k 20k 143k 0 1k 20k 143k 0 1k 20k143k 1k 20k143k 0 1k 20k143k
Step Step Step Step Step
— oss [1 — |10 0.25 1 0.4
20{ = pruned_bot_loss. 15.0 =
= pruned_top_loss 12.51 ; 09 ¥ 0.20 0.3
715 . = @ =
[10.0 5 = 015 &
= 3 75! > - 2 5 0.2
210 3 - 010 &
5.0 2 ~
o 0.1
5 25 0.7 0.05
0.0+ -
0 1k 20k 143k 0 T 20k Wk B0 1k 20k Tk 20k1ask 000 ML soktask 00
Step Step Step Step Step
(a) Val. Loss (b) SVs (c) Eff. Rank (d) Alignment (e) Alignment Score

Figure 16: Spectral dynamics of Pythia suite. From top to bottom we examine the 160m, 410m,
1.4b and 2.8b parameter models. Notably, much less noise appears in the alignment plot with in-
creasing scale. Presumably this could be due to the fact that larger dimensional vectors have higher
probability to be orthogonal, which may play a role in making optimization easier. We see stronger
alignment score (Eqn. 4) in all layers in the larger model, perhaps because of that cleaner signal.

color. The lack of alignment except for the top rank is quite consistent with earlier observations, and
such alignment happens much later for the largest model.

D.6 WEIGHT DECAY EXPERIMENTS

All tasks are trained in exactly the same fashion as mentioned previously, with increasing weight
decay in the set {0, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0}. For ease of presentation we consider a subset
of settings across tasks. In Figure 18 we include trained model performance and pruned model
performance to show that, even with high levels of weight decay, models do not entirely break
down. More so, the approximation of the pruned model to the full model gets better with higher
weight decay.

D.7 GROKKING EXPERIMENTS

For the Trasnformer, we mostly follow the settings and architecture of Nanda et al. (2023), except
we use sinusoidal positional encodings instead of learned.

For the slingshot case we follow hyperparameter settings in Thilak et al. (2022), Appendix B except
with the 1-layer architecture from Nanda et al. (2023) instead of the 2-layer architecture specified.
W perform addition modulo 97. The original grokking plot in Thilak et al. (2022) appears much
more dramatic as it log-scales the x-axis, which we do not do here for clarity.

28

o

1

o
N
G
o
o
N

14
IS
O

o

i
o
N

< o N
=)
=)
=

Layer pair

x
c
e

®
c
I
=

8

a

< N
3
Layer pair

Diagonal rank

x
c
e

T
c
S
=)
]

a

G
G

1 82 164 1 82 164
Epoch Epoch Epoch

1 82 164 1 82 164
Epoch Epoch Epoch

1 82 164

Diagonal rank
g N
385 o

o o o

5 = o~
Layer pair

o
o

00 22
Epoch

o
o

o

o
G o
o
IS

-
G o
o
N}

o
>

o
N
o
N
o
i

Diagonal rank
< w N
3
Diagonal rank
Layer pair
Diagonal rank
< o N
S
Layer pair

G
G

Diagonal rank
g N
388 o

o o o

S5 B~
Layer pair

o
o

00 22

o
°

Epoch
0

o6

G
o
N

0.4

Layer pair

o
=

0.2

(RN
g S

Diagonal rank

Diagonal rank
S o N
G 3 & o

o o o o

o b N W
Layerpair

o o o o

o N » o
Diagonal rank
< o N
G 5 & o

=
Diagonal rank
o o
[NIS
Layer pair

-

1 82 164 1 50 100 ™ 00 22 0.0

12550' 15 10 15 10

Epoch Epoch Epoch Epoch Epoch Epoch
0 0 0 - 1 o
x 0.3 £’ '3 x -, N !
525 ‘;, 02 §25 = 5 e 02 52s[eas (075 = 0.75
Es0 0z 5 Tso o0 = g Py Bso 050 & 050
g g o1 & g g wl o1 & g
875 0158 275 005 3 & 5 8 025 8 025
° 13 e 17 ° 2 °
1 8 164 0 1 82 164 00 1 50 100 000 7 50, 100 00 00 1 25 50 o0 15 10 000 ELTRTST,T0.00
Epoch Epoch Epoch Epo Epoch Epoch Epoch
(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 17: Diagonal of alignment for a single pair over time (Eqn. 3) and alignment metric across
pairs of matrices over time (Eqn. 4) where the y-axis represents depth. From top to bottom, for VGG
we use coefficients {0,0.001, 0.01, 0.1}, while for other networks we use coefficients {0, 0.1, 1, 10}.
We see that the maximum alignment magnitude is higher with large weight decay, and in particular,
the Transformer has the strongest alignment even when nonlinearities separate the MLP layers.

In the case of the deep MLP, we follow Fan et al. (2024), where we use a 12-layer MLP with ReLU
activations and width 400, trained on MSE loss on MNIST (LeCun, 1998). We use 2000 examples,
a batch size of 100, weight decay 0.01, and initialization scale 8 (Liu et al., 2023).

D.8 RANDOM LABEL EXPERIMENTS

We train a 4-layer MLP on CIFAR10 (Krizhevsky, 2009) with either completely random labels, or
the true labels. We use SGD with momentum of 0.9 and constant learning rate of 0.001, and train
for 300 epochs to see the entire trend of training. The major difference to the setting of Zhang et al.
(2021) is the use of a constant learning rate, as their use of a learning rate schedule might conflate
the results.

For the VGG case, we follow our previous hyperparameters, except we leave out weight decay and
learning rate scheduling, instead using a constant learning rate of 0.01.

For the LSTM case, we follow our previous hyperparameters, and extend the training budget to 200
epochs allow for the random label setting to train longer. In this case, our network does not have
sufficient capacity to memorize the data completely.

D.9 MAGNITUDE PRUNING EXPERIMENTS

We use the same VGG setup as described previously. In this case we train til the end, then compute a
global magnitude mask. To do this we flatten all linear and convolutional weights into a single vector,
except for the last linear layer, and sort by magnitude. Then we keep the top 5% of weights globally,
and reshape back to the layerwise masks. This results in different sparsity levels for different layers,
so when generating the random masks, we use the per-layer sparsities that resulted from the global
magnitude mask.

To retrain the network, we rewind to epoch 4, then continue training with the mask, always setting
other weights and their gradients to 0. We average all results over 3 random seeds.

For the LSTM we follow exactly the same procedure, except our mask only reaches a level of 25%
sparsity, due to large performance degradations past that.

29

-_—
— loss 6 — loss
3 0 5 pruned_bot_loss " . ~—— pruned_bot_loss
A v — d_top_| I | - d top |
§ >||l— loss 3 10 pruned_top_loss § 44| loss 3 20 pruned_top_loss
- = pruned_bot_loss c - —_— prune:{mtﬁ:oss <
‘S — d_top_| © ‘S — pruned_top_loss ©
g 1 pruned_top_loss e 5 g 2 E10
0 0 1 50 100 0 1 25 50 1 5 10
1 82 164
Epoch Epoch Epoch Epoch
e
— loss 6 — loss
0 15 pruned_bot_loss " —— pruned_bot_loss
& 2 3 — pruned_top_loss @ 4 ¥ 20| — pruned_top_loss
S —— loss 10 3 = loss]
c = pruned_bot_loss < - _— PFUHES_:)Ot_:OSS <
=11 — d_top_| © ‘S — pruned_top_loss ©
g pruned_top_loss e 5 |r_£ 2 E10
0] 0 0 - —
1 82 164 1 50 100 1 25 50 1 5 10
Epoch Epoch Epoch Epoch
—— loss T — loss
6| — pruned_bot loss 0 L— pruned_bot_loss " " —— pruned_bot_loss
§ — pruned:top:loss § 10 —— pruned_top_loss § 41— poss § 201 — pruned_top_loss
T:] 4 c = —— pruned_bot_loss -
= © = —— pruned_top_loss | ‘g
£, s Ba R
0 1 50 100 1 25 50 1 10
1 82 164 5
Epoch Epoch Epoch Epoch
2367 — loss
—— loss 15
w — pruned_bot _loss I @ o = pruned_bot_loss
¥ 2.34||— pruned_ top_loss O — loss o —— loss & 5] — pruned_top_loss
=7 =10 __ d_b 4| — -
c pruned_bot_loss p pruned_bot_loss .
£ '© ~— pruned_top_loss ‘S —— pruned_top_loss S
2232 £ s | = £ 10
2.30 0 2
1 82 164 1 50 100 1 25 50 1 5 10
Epoch Epoch Epoch Epoch
(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 18: Training loss over time, where the rows use differing amounts of weight decay. From
top to bottom, for VGG we use coefficients {0,0.001,0.01, 0.1}, while for other networks we use
coefficients {0,0.1,1,10}. We see that it is still possible to achieve low training loss under high
weight decay, and as we increase the amount of weight decay, the gap between pruned and unpruned
parameters closes, lending support to the idea that the parameters become lower rank.

D.10 LMC EXPERIMENTS

We save 5 evenly-spaced checkpoints in the first epoch, as well as at the end of the next 4 epochs
for 10 intializations in total. We train 3 trunks, and split 3 branches from each trunk for a total of 9
branches which we average all plots over.

Following Neyshabur et al. (2020), we compute the barrier between checkpoints as follows: given
W(T) and W) (T) that were branched from W (¢) we compute

b(#) = (max L£((1 -)W M(T) +aW (D)) — (1 = a)L(W (D)) + aL(WE(T))) (6)

when this quantity is 0, we consider the checkpoints to exhibit LMC.

We recompute batch normalization parameters after interpolating for VGG-16, and group normal-
ization parameters for the UNet, as these do not necessarily interpolate well (Frankle et al., 2020).
We also compute singular vector agreement for the same parameter between either branch endpoint.

30

1.0 = train/err 1.00
— val/err 8 0.5
0.8 0.95
6 £ 0.4
0.6 5 0.90 = 03
= > ES] .
Foa 4 = 085 B
’ B 0.2
o
0.2 2 0.80 0.1
0.0) PV FU U 0.0
1 20000 40000 1 20000 40000 20000 40000 20000 40000
Epoch Epoch Epoch Epoch
1.0 = train/err 15.0 1.0
= val/err 1 0.8
0.8 12.5
08
0.6 10.0 & 0.6
.
£ > 75 [06 ®©
& 0.4 v g é 0.4
5.0 8
0.2 04 O
2.5 0.2
0.0
0.0 6 0.2 0.0
1 20000 40000 1 20000 40000 1 20000 40000 20000 40000
Epoch Epoch Epoch Epoch
1.0 w— train/err 1.00
s — valjerr 0.95 06
' ~ 0.5
090 S
0.6 . = 0.4
Y o —
= > 085 @©
“o.4 5 S 03
0.80 ®
0.2 e 0.2
0.75 01
0.0 0.70 0.0
50000 100000 1 50000 100000 50000 100000 50000 100000
Epoch Epoch Epoch Epoch
1.0 = train/err 1.00
= val/err
0.8 0.95 0.6
090 &
0.6 . I 0.4
5 g 085 & ’
T
0.4 S S
0.80 .©
0.2 a 0.2
0.75
SPVOU SO
0.0 0.70 0.0
1 20000 40000 1 20000 40000 20000 40000 20000 40000
Epoch Epoch Epoch Epoch
(a) Error (b) SV Evolution (c) Effective Rank (d) Alignment

Figure 19: Grokking and Spectral Dynamics in Modular addition. Top row: 30% data and no
weight decay. 2nd row: 30% data and weight decay 1.0 (grokking), using hyperparameters from
Nanda et al. (2023). 3rd row: 70% data with no weight decay (slingshot), using hyperparameters
from Thilak et al. (2022). Bottom row: 90% data and no weight decay. 1st column: Training and
validation error. 2nd column: Singular value evolution is visualized for the first attention parameter,
where each line represents a single singular value and the color represents the rank. 3rd column:
Effective rank of all layers (Eqn. 1). 4th column: Alignment (Eqn. 3) between the embedding
and the first attention parameter is also visualized, where the y-axis corresponds to index ¢ of the
diagonal. One can see that grokking co-occurs with low-rank weights. In addition, there is an
alignment that begins early in training that evolves up the diagonal. Without weight decay and with
less data, neither grokking nor the other phenomena occur during the entire training budget, but using
more data, even without weight decay, leads to low-rank solutions from the beginning of training.
The slingshot case follows a similar trend, though the validation loss is gradually fit. Across cases
with good generalization, parameters are lower rank, and alignment is also more prevalent in the top
ranks.

To plot the singular vector (dis)agreement and LMC between different modes, we make 11 evenly
spaced measurements interpolating between branch endpoints that had the same split epoch, and the
same branch seed, but different trunk initializations.

31

D.11 PERTURBED LMC EXPERIMENTS

We perturb all weights W after the point of dynamics stability where we expect to see LMC at the
end of training (epoch 4 is sufficiently late in all cases) using randomly sampled normal perturbations
e ~ N(0,1) with ||| = n||W| where € {0.0,0.1,0.25,0.5,1.0,2.5}. We do not perturb the
output layer, as this has a very substantial effect on the optimization. We also do not perturb the
input layer for the Transformer as it is too computationally expensive for our resources.

E LIMITATIONS

There are a few key limitations to our study. As mentioned, we lack the computational resources
to run more than 3 random seeds per experiment, though we do find error bars to be quite tight in
general (except for the generalization epoch in the grokking experiments). In addition, as discussed
we ignore 1D parameters in the neural networks, which may be particularly crucial (especially nor-
malization). In addition, due to computational constraints we do not consider alignment of layers
across residual connections as this quickly becomes combinatorial in depth, thus there may be other
interesting interactions that we do not observe. Finally, due to computational constraints we are un-
able to investigate results on larger models than the 12 layer Transformer, which may have different
behavior.

F COMPUTE RESOURCES

All experiments are performed on an internal cluster with on the order of 100 NVIDIA 2080ti GPUs
or newer. All experiments run on a single GPU in less than 8 hours, though it is extremely helpful to
parallelize across machines. We estimate that end-to-end it might take a few days on these resources
to rerun all of the experiments in this paper. Additionally, the storage requirements for all of the
checkpoints will take on the order of 5 terabytes.

G CODE SOURCES

We use PyTorch (Paszke et al., 2019) and NumPy (Harris et al., 2020) for all experiments and
Weights & Biases (Biewald, 2020) for experiment tracking. We make plots with Matplotlib (Hunter,
2007) and Seaborn (Waskom, 2021). We also use HuggingFace Datasets (Lhoest et al., 2021) for
Wikitext-103 (Merity et al., 2016).

32

	Introduction
	Related Work
	Singular Value Dynamics
	Low-Rank Properties

	Grokking and Rank Minimization
	Spectral Dynamics Across Tasks
	Methodology
	Effective Rank Minimization
	Alignment of Singular Vectors Between Layers

	The Effect of Weight Decay
	Additional Connections
	Discussion
	Explanation of Balancedness
	Spectral Dynamics with Random Labels
	Beyond Generalization
	Top Singular Vectors Become Stable Earlier
	Lottery Tickets Preserve Final Top Singular Vectors
	Spectral Dynamics and Linear Mode Connectivity
	Linear Mode Connectivity Correlates with Top Singular Vector Agreement
	Perturbing Breaks Linear Mode Connectivity and Singular Vector Agreement Simultaneously

	Experimental Details
	Image Classification with VGG
	Image Generation with UNets
	Speech Recognition with LSTMs
	Language Modeling with Transformers
	Spectral Dynamics with Scale (Pythia)
	Weight Decay Experiments
	Grokking Experiments
	Random Label Experiments
	Magnitude Pruning Experiments
	LMC Experiments
	Perturbed LMC Experiments

	Limitations
	Compute Resources
	Code Sources

