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1 INTRODUCTION
This supplemental material provides:

• More qualitative results to showcase the effectiveness and
practicality of our method. These results consist of in-the-
wild images or videos captured using a smartphone or from
the internet in Sec. 1.1,

• More detailed qualitative analysis of how the proposed de-
coupling strategy works in Sec. 1.2,

• Details of the Feature Interaction between Joints and the
Image in Sec. 1.3,

• More ablation experiment. in Sec. 1.4.
Please note that all the notation and abbreviations in this supple-

mentary material are consistent with those in the main manuscript.

1.1 More qualitative results
In this section, we provide more qualitative results on images cap-
tured by a smartphone Fig. 2 and sourced from the Internet Fig.
3. Our model is only trained on the InterHand2.6M dataset. We
compare our method with the previous state-of-the-art model-free
work [2]. We obtained the result by utilizing a hand detector to
extract the hand region from an in-the-wild image while preserving
the aspect ratio. Our method achieves robust results even in cases of
severe self-similarity compared to [2] (For more qualitative results,
please refer to the video demo).

1.2 More qualitative Analysis
More heatmaps are provided to illustrate the effectiveness of the
decoupling strategy further in Fig. 1. Due to the entanglement of
the two types of features, the baseline method struggles to precisely
focus on the positions of the joints in the presence of severe self-
similarity. After incorporating our decoupling strategy, the two
types of features mutually enhance by leveraging visual and spatial
cues. As a result, both the position and appearance features can
localize the positions of the joints in the image.

1.3 Details of the Feature Interaction between
Joints and the Image

In this section, we provide more mathematical details about the
implementation of feature interaction between joints and the image.
In the main paper, we fuse the relationships between position and
appearance and use these relationships to guide the enhancement
of two types of features:

Q𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡 (J𝑎
′

𝑡 , J𝑝
′

𝑡 ),K𝑡 = V𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡 (F𝑎𝑡 , F
𝑝
𝑡 ),

J𝑎𝑡+1, J
𝑝

𝑡+1 = 𝑆𝑝𝑙𝑖𝑡 (𝐴𝑡𝑡𝑛(Q𝑡 ,K𝑡 ,V𝑡 )).
(1)

where 𝐴𝑡𝑡𝑛(𝑞, 𝑘, 𝑣) denotes multi-head attention [4]. 𝑆𝑝𝑙𝑖𝑡 and
𝐶𝑜𝑛𝑐𝑎𝑡 represent the operations of separating and concatenating
along the last dimension, respectively. Assuming the number of
heads in the multi-head attention is 1, the attention mechanism

Table 1: Ablation study on InterHand2.6M [3].

ID MPJPE (mm)↓
Single Two All

Best model 7.35 9.82 8.67
w/o Multi-scale 7.54 9.84 8.77
w/o Identity Info 7.56 9.86 8.78

w/o All 7.62 9.88 8.82

first applies linear transformations to the position and appearance
features using weight matrices. For brevity of exposition, we as-
sume that the weight matrices are identity matrices similar to the
proof in [5]. We keep the notation for the position and appearance
features unchanged after the identity mapping. Then, the attention
mechanism performs similarity calculations as:

A = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐷𝑃 (
[
J𝑎

′
𝑡 , J𝑝

′

𝑡

]
,

[
F𝑎𝑡 , F

𝑝
𝑡

]𝑇
)) . (2)

where 𝐷𝑃 (M1,M2) denotes Dot Product computation representing
the pairwise dot product operation between the row vectors of
matrixM1 and the column vectors of matrixM2. A ∈ R2𝐽 ×(𝐻𝑡𝑊𝑡 )

is the normalised attention map. For simplification, we disregard
constants. We can rewrite it as:

A = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐷𝑃 (J𝑎
′

𝑡 , F𝑎𝑡 ) + 𝐷𝑃 (J𝑝
′

𝑡 , F𝑝𝑡 ))
= 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (A𝑎 + A𝑝 )

(3)

where the differences in constants are disregarded. This equation
represents the extraction of respective relationships from each
feature and the fusion of them. Afterwards, the relationships are
used to aggregate each feature.

1.4 Ablation Study
In our best model, we incorporate multi-scale features and part seg-
mentation to improve performance. Multi-scale features allow the
model to capture information at different scales. Part segmentation,
on the other hand, helps provide identity information for individual
pixels, improving the model’s ability to classify different hand parts
as mentioned in [1]. As indicated in Table 1, both designs resulted
in a performance improvement of approximately 0.1mm. If both
designs are removed, the MPJPE drops 0.15mm.
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Figure 1: Illustration of the 3-iteration attention maps from the feature interaction between joints and image. The heatmaps
from the baseline method without the decoupling strategy are presented first, followed by the heatmaps of the appearance and
position from our method. The ground truth joint positions are marked with an orange cross.
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Figure 2: Qualitative results of A2J [2] and ours on images captured using a smartphone.
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Figure 3: Qualitative results of A2J [2] and ours on images sourced from the Internet.
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