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Figure 8: Architecture of the EasyTPP library. The dashed arrows show the different implementation possi-
bilities, either to use pre-defined SOTA TPP models or provide a custom implementation. All dependencies
between the configurations and modules are visualized by solid arrows with additional descriptions.

Appendices
A EASYTPP’S SOFTWARE INTERFACE DETAILS

In this section, we describe the architecture of our open-source benchmarking software EasyTPP in
more detail and provide examples of different use cases and their implementation.

A.1 HIGH LEVEL SOFTWARE ARCHITECTURE

The purpose of building EasyTPP is to provide a simple and standardized framework to allow users
to apply different state-of-the-art (SOTA) TPPs to arbitrary data sets. For researchers, EasyTPP pro-
vides an implementation interface to integrate new recourse methods in an easy-to-use way, which
allows them to compare their method to already existing methods. For industrial practitioners, the
availability of benchmarking code helps them easily assess the applicability of TPP models for their
own problems.

A high level visualization of the EasyTPP’s software architecture is depicted in Figure 8. Data
Preprocess component provides a common way to access the event data across the software and
maintains information about the features. For the Model component, the library provides the possi-
bility to use existing methods or extend the users’ custom methods and implementations. A wrapper
encapsulates the black-box models along with the trainer and sampler. The primary purpose of the
wrapper is to provide a common interface to easily fit in the training and evaluation pipeline, inde-
pendently of their framework (e.g., PyTorch, TensorFlow). See Appendix A.2 and Appendix A.3
for details. The running of the pipeline is parameterized by the configuration class - RunnerConfig
(without hyper-parameter tuning) and HPOConfig (with hyper-parameter tuning).

A.2 WHY DOES EASYTPP SUPPORT BOTH TENSORFLOW AND PYTORCH

TensorFlow and PyTorch are the two most popular Deep Learning (DL) frameworks today. PyTorch
has a reputation for being a research-focused framework, and indeed, most of the authors have imple-
mented TPPs in PyTorch, which are used as references by EasyTPP. On the other hand, TensorFlow
has been widely used in real world applications. For example, Microsoft recommender,3 NVIDIA

3https://github.com/microsoft/recommenders.
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Figure 9: Illustration of TensorFlow and PyTorch Wrappers in the EasyTPP library.

Merlin4 and Alibaba EasyRec5 are well-known industrial user modeling systems with TensorFlow as
the backend. In recent works, TPPs have been introduced to better capture the evolution of the user
preference in continuous-time (Bao & Zhang, 2021; Fan et al., 2021; Bai et al., 2019). To support
the use of TPPs by industrial practitioners, we implement an equivalent set of TPPs in TensorFlow.
As a result, EasyTPP not only helps researchers analyze the strengths and bottlenecks of existing
models, but also facilitates the deployment of TPPs in industrial applications.

A.3 HOW DOES EASYTPP SUPPORT BOTH PYTORCH AND TENSORFLOW

We implement two equivalent sets of data loaders, models, trainers, thinning samplers in TensorFlow
and PyTorch, respectively, then use wrappers to encapsulate them so that they have the same API
exposed in the whole training and evaluation pipeline. See Figure 9.

A.4 EASYTPP FOR RESEARCHERS

The research groups can inherit from the BaseModel to implement their own method in EasyTPP.
This opens up a way of standardized and consistent comparisons between different TPPs when
exploring new models.

Specifically, if we want to customize a TPP in PyTorch, we need to initialize the model by inheriting
the class TorchBaseModel:

from easy tpp.model.torch model.torch basemodel import TorchBaseModel

# Custom Torch TPP implementations need to
# inherit from the TorchBaseModel interface
class NewModel(TorchBaseModel):

def init (self, model config):
super(NewModel, self). init (model config)

# Forward along the sequence, output the states / intensities at the event
times

def forward(self, batch):
...
return states

# Compute the loglikelihood loss
def loglike loss(self, batch):

....
return loglike

# Compute the intensities at given sampling times
# Used in the Thinning sampler
def compute intensities at sample times(self, batch, sample times, ∗∗kwargs):

...
return intensities

4https://developer.nvidia.com/nvidia-merlin.
5https://github.com/alibaba/EasyRec.
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Listing 3: Pseudo implementation of customizing a TPP model in PyTorch using EasyTPP.

Equivalent, if we want to customize a TPP in TensorFlow, we need to initialize the model by inher-
iting the class TfBaseModel:

from easy tpp.model.torch model.tf basemodel import TfBaseModel

# Custom Torch TPP implementations need to
# inherit from the TorchBaseModel interface
class NewModel(TfBaseModel):

def init (self, model config):
super(NewModel, self). init (model config)

# Forward along the sequence, output the states / intensities at the event
times

def forward(self, batch):
...
return states

# Compute the loglikelihood loss
def loglike loss(self, batch):

....
return loglike

# Compute the intensities at given sampling times
# Used in the Thinning sampler
def compute intensities at sample times(self, batch, sample times, ∗∗kwargs):

...
return intensities

Listing 4: Pseudo implementation of customizing a TPP model in TensorFlow using EasyTPP.

A.5 EASYTPP AS A MODELING LIBRARY

A common usage of the package is to train and evaluate some standard TPPs. This can be done by
loading black-box-models and data sets from our provided datasets, or by user-defined models and
datasets via integration with the defined interfaces. Listing 5 shows an implementation example of
a simple use-case, fitting a TPP model method to a preprocessed dataset from our library.

import argparse

from easy tpp.config factory import Config
from easy tpp.runner import Runner

def main():
parser = argparse.ArgumentParser()

parser.add argument(’−−config dir’,
type=str,
required=False,
default=’configs/experiment config.yaml’,
help=’Dir of configuration yaml to train and evaluate the

model.’)

parser.add argument(’−−experiment id’,
type=str,
required=False,
default=’IntensityFree train’,
help=’Experiment id in the config file.’)
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args = parser.parse args()

# Build up the configuation for the runner
config = Config.build from yaml file(args.config dir, experiment id=args.

experiment id)

# Intialize the runner for the pipeline
model runner = Runner.build from config(config)

# Start running
model runner.run()

if name == ’ main ’:
main()

Listing 5: Example implementation of running a TPP model using EasyTPP.

B MODEL IMPLEMENTATION DETAILS

We have implemented the following TPPs

• Recurrent marked temporal point process (RMTPP) (Du et al., 2016). We implemented both
the Tensorflow and PyTorch version of RMTPP by our own.

• Neural Hawkes process (NHP) (Mei & Eisner, 2017) and Attentive neural Hawkes process
(AttNHP) (Yang et al., 2022). The Pytorch implementation mostly comes from the code from the
public GitHub repository at https://github.com/yangalan123/anhp-andtt (Yang et al.,
2022) with MIT License. We developed the Tensorflow version of NHP and ttNHP by our own.

• Self-attentive Hawkes process (SAHP) (Zhang et al., 2020) and transformer Hawkes process
(THP) (Zuo et al., 2020). We rewrote the PyTorch versions of SAHP and THP based on the
public Github repository at https://github.com/yangalan123/anhp-andtt (Yang et al.,
2022) with MIT License. We developed the Tensorflow versions of the two models by our own.

• Intensity-free TPP (IFTPP) (Shchur et al., 2020). The Pytorch implementation mostly comes
from the code from the public GitHub repository at https://github.com/shchur/ifl-tpp
(Shchur et al., 2020) with MIT License. We implemented a Tensorflow version by our own.

• Fully network based TPP (FullyNN) (Omi et al., 2019). We rewrote both the Tensorflow and
PyTorch versions of the model faithfully based on the author’s code at https://github.com/
omitakahiro/NeuralNetworkPointProcess. Please not that the model only considers the
number of the types to be one, i.e., the sequence’s K = 1.

• ODE-based TPP (ODETPP) (Chen et al., 2021). We implement a TPP model, in both Tensorflow
and PyTorch, with a continuous-time state evolution governed by a neural ODE. It is basically the
spatial-temporal point process (Chen et al., 2021) without the spatial component.

B.1 LIKELIHOOD COMPUTATION DETAILS

In this section, we discuss the implementation details of NLL computation in Equation (4).

The integral term in Equation (4) is computed using the Monte Carlo approximation given by Mei
& Eisner (2017, Algorithm 1), which samples times t. This yields an unbiased stochastic gradient.
For the number of Monte Carlo samples, we follow the practice of Mei & Eisner (2017): namely, at
training time, we match the number of samples to the number of observed events at training time, a
reasonable and fast choice, but to estimate log-likelihood when tuning hyperparameters or reporting
final results, we take 10 times as many samples.

At each sampled time t, the Monte Carlo method still requires a summation over all events to obtain
λ(t). This summation can be expensive when there are many event types. This is not a serious
problem for our EasyTPP implementation since it can leverage GPU parallelism.
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B.2 NEXT EVENT PREDICTION

It is possible to sample event sequences exactly from any intensity-based model in EasyTPP, us-
ing the thinning algorithm that is traditionally used for autoregressive point processes (Lewis &
Shedler, 1979; Liniger, 2009). In general, to apply the thinning algorithm to sample the next event at
time ≥ t0, it is necessary to have an upper bound on {λe(t) : t ∈ [t0,∞)} for each event type t. An
explicit construction for the NHP (or AttNHP) model was given by Mei & Eisner (2017, Appendix
B.3).

Section 3 includes a task-based evaluation where we try to predict the time and type of just the next
event. More precisely, for each event in each held-out sequence, we attempt to predict its time given
only the preceding events, as well as its type given both its true time and the preceding events.

We evaluate the time prediction with average L2 loss (yielding a root-mean-squared error, or RMSE)
and evaluate the argument prediction with average 0-1 loss (yielding an error rate).

Following Mei & Eisner (2017), we use the minimum Bayes risk (MBR) principle to predict the
time and type with the lowest expected loss. For completeness, we repeat the general recipe in this
section.

For the i-th event, its time ti has density pi(t) = λ(t) exp(−
∫ t

ti−1
λ(t′)dt′). We choose∫∞

ti−1
tpi(t)dt as the time prediction because it has the lowest expected L2 loss. The integral can

be estimated using i.i.d. samples of ti drawn from pi(t) by the thinning algorithm.

Given the next event time ti, we choose the most probable type argmaxe λe(ti) as the type predic-
tion because it minimizes expected 0-1 loss.

B.3 LONG HORIZON PREDICTION

The TPP models are typically autoregressive: predicting each future event is conditioned on all the
previously predicted events. Following the approach in (Xue et al., 2022), we set up a prediction
horizon and use OTD to measure the divergence between the ground truth sequence and the predicted
sequence within the horizon. For more details about the setup and evaluation protocol, please see
Section 5 in Xue et al. (2022).

C DATASET DETAILS

To comprehensively evaluate the models, we preprocessed one synthetic and five real-world datasets
from widely-cited works that contain diverse characteristics in terms of their application domains
and temporal statistics. All preprocessed datasets are available at Google Drive.

• Synthetic. This dataset contains synthetic event sequences from a univariate Hawkes process
sampled using Tick (Bacry et al., 2017) whose conditional intensity function is defined by

λ(t) = µ+
∑
ti<t

αβ · exp(−β(t− ti))

with µ = 0.2, α = 0.8, β = 1.0. We randomly sampled disjoint train, dev, and test sets with 1200,
200 and 400 sequences.

• Amazon (Ni, 2018). This dataset includes time-stamped user product reviews behavior from Jan-
uary, 2008 to October, 2018. Each user has a sequence of produce review events with each event
containing the timestamp and category of the reviewed product, with each category corresponding
to an event type. We work on a subset of 5200 most active users with an average sequence length
of 70 and then end up with K = 16 event types.

• Retweet (Ke Zhou & Song., 2013). This dataset contains time-stamped user retweet event se-
quences. The events are categorized into K = 3 types: retweets by “small,” “medium” and
“large” users. Small users have fewer than 120 followers, medium users have fewer than 1363,
and the rest are large users. We work on a subset of 5200 most active users with an average
sequence length of 70.
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DATASET K # OF EVENT TOKENS SEQUENCE LENGTH

TRAIN DEV TEST MIN MEAN MAX

RETWEET 3 369000 62000 61000 10 41 97
TAOBAO 17 350000 53000 101000 3 51 94
AMAZON 16 288000 12000 30000 14 44 94
TAXI 10 51000 7000 14000 36 37 38
STACKOVERFLOW 22 90000 25000 26000 41 65 101
HAWKES-1D 1 55000 7000 15000 62 79 95

Table 1: Statistics of each dataset.

• Taxi (Whong, 2014). This dataset tracks the time-stamped taxi pick-up and drop-off events across
the five boroughs of the New York City; each (borough, pick-up or drop-off) combination defines
an event type, so there are K = 10 event types in total. We work on a randomly sampled subset
of 2000 drivers and each driver has a sequence. We randomly sampled disjoint train, dev and test
sets with 1400, 200 and 400 sequences.

• Taobao (Xue et al., 2022). This dataset contains time-stamped user click behaviors on Taobao
shopping pages from November 25 to December 03, 2017. Each user has a sequence of item click
events with each event containing the timestamp and the category of the item. The categories of
all items are first ranked by frequencies and the top 19 are kept while the rest are merged into one
category, with each category corresponding to an event type. We work on a subset of 4800 most
active users with an average sequence length of 150 and then end up with K = 20 event types.

• StackOverflow (Leskovec & Krevl, 2014). This dataset has two years of user awards on a
question-answering website: each user received a sequence of badges and there are K = 22
different kinds of badges in total. We randomly sampled disjoint train, dev and test sets with
1400, 400 and 400 sequences from the dataset.

Table 1 shows statistics about each dataset mentioned above.

D EXPERIMENT DETAILS

D.1 SETUP

Training Details. For TPPs, the main hyperparameters to tune are the hidden dimension D of the
neural network and the number of layers L of the attention structure (if applicable). In practice,
the optimal D for a model was usually 16, 32, 64; the optimal L was usually 1, 2, 3, 4. To train
the parameters for a given generator, we performed early stopping based on log-likelihood on the
held-out dev set. The chosen parameters for the main experiments are given in Table 2.

Computation Cost. All the experiments were conducted on a server with 256G RAM, a 64 logical
cores CPU (Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz) and one NVIDIA Tesla P100 GPU
for acceleration. For training, the batch size is 256 by default. On all the dataset, the training of
AttNHP takes most of the time (i.e., around 4 hours) while other models take less than 2 hours.

D.2 SANITY CHECK

For each model we reproduced in our library, we ran experiments to ensure that our implementation
could match the results in the original paper. We used the same hyperparameters as in original
papers; we reran each experiment 5 times and took the average.

In Table 3, we show the relative differences between the implementations on Retweet and Taxi
datasets. As we can see, all the relative differences are within (−5%, 5%), indicating that our
implementation is close to the original.
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MODEL DESCRIPTION VALUE USED

hidden size 32
time emb size 16

RMTPP num layers 2
hidden size 64

time emb size 16
NHP num layers 2

hidden size 32
time emb size 16

SAHP num layers 2
num heads 2
hidden size 64

time emb size 16
THP num layers 2

num heads 2
hidden size 32

time emb size 16
ATTNHP num layers 1

num heads 2
hidden size 32

ODETPP time emb size 16
num layers 2
hidden size 32

FULLYNN time emb size 16
num layers 2
hidden size 32

INTENSITYFREE time emb size 16
num layers 2

Table 2: Descriptions and values of hyperparameters used for models.

MODEL METRICS (TIME RMSE / TYPE ERROR RATE)

RETWEET TAXI

RMTPP −4.1%/− 3.5% −2.9%/− 3.7%
NHP +3.4%/+ 3.1% +2.6%/+ 3.5%
SAHP +1.3%/+ 1.7% +1.1%/+ 1.2%
THP +1.3%/+ 1.8% −1.6%/+ 1.5%
ATTNHP +1.2%/− 1.0% −1.2%/− 1.2%
ODETPP −4.0%/− 3.9% −4.3%/− 4.5%
FULLYNN −5.0%/N.A. −4.1%/N.A.
IFTPP +3.4%/+ 3.1% +3.9%/+ 3.0%

Table 3: The relative difference between the results of EasyTPP and original implementations.

D.3 MORE RESULTS.

For better visual comparisons, we present the results in Figure 5, Figure 6 and Figure 7 also in the
form of tables, see Table 4 and Table 5.

The relative difference between the results of Torch and TensorFlow implementations can be found
in Table 6.

E ADDITIONAL NOTE

E.1 CITATION COUNT IN ARXIV

We search the TPP-related articles in ArXiv https://arxiv.org/ using their own search engine
in three folds:
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MODEL METRICS (TIME RMSE / TYPE ERROR RATE)

AMAZON RETWEET TAXI TAOBAO STACKOVERFLOW

MHP 0.635/75.9% 22.92/55.7% 0.382/9.53% 0.539/68.1% 1.388/65.0%
RMTPP 0.620/68.1% 22.31/44.1% 0.371/9.51% 0.531/55.8% 1.376/57.3%
NHP 0.621/67.1% 21.90/40.0% 0.369/8.50% 0.531/54.2% 1.372/55.0%
SAHP 0.619/67.7% 22.40/41.6% 0.372/9.75% 0.532/54.6% 1.375/56.1%
THP 0.621/66.1% 22.01/41.5% 0.370/8.68% 0.531/53.6% 1.374/55.0%
ATTNHP 0.621/65.3% 22.19/40.1% 0.371/8.71% 0.529/53.7% 1.372/55.2%
ODETPP 0.620/65.8% 22.48/43.2% 0.371/10.54% 0.533/55.4% 1.374/56.8%
FULLYNN 0.615/N.A. 21.92/N.A. 0.373/N.A. 0.529/N.A. 1.375/N.A.
IFTPP 0.618/67.5% 22.18/39.7% 0.377/8.56% 0.531/55.4% 1.373/55.1%

Table 4: Performance in numbers of all methods mentioned in Figure 5.

MODEL OTD

RETWEET RETWEET TAXI TAXI
AVG 5

EVENTS
AVG 10 EVENTS AVG 5 EVENTS AVG 10 EVENTS

MHP 5.128 11.270 4.633 12.784
RMTPP 5.107 10.255 4.401 12.045
NHP 5.080 10.470 4.412 12.110
SAHP 5.092 10.475 4.422 12.051
THP 5.091 10.450 4.398 11.875
ATTNHP 5.077 10.447 4.420 12.102
ODETPP 5.115 10.483 4.408 12.095
FULLYNN N.A. N.A. N.A. N.A.
IFTPP 5.079 10.513 4.501 12.052

Table 5: Long horizon prediction on Retweet and Taxi data.

• Temporal point process: we search through the abstract of articles which contains the term ‘tem-
poral point process’.

• Hawkes process: we search through the abstract of articles with the term ‘hawkes process’ but
without the term ‘temporal point process’.

• Temporal event sequence: we search through the abstract of articles which include the term ‘tem-
poral event sequence’ but exclude the term ‘hawkes process’ and ‘temporal point process’.

We group the articles found out by the search engine by years and report it in Figure 1.
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MODEL REL DIFF ON TIME RMSE (1ST ROW) AND TYPE ERROR RATE (2ND ROW)

AMAZON RETWEET TAXI TAOBAO STACKOVERFLOW

RMTPP −0.2% +1.0% +0.1% +0.1% +0.4%
+0.5% +1.3% +0.6% +0.2% −0.7%

NHP +0.7% +0.5% −0.2% +0.1% −0.1%
+0.6% +1.4% +0.4% −0.3% −0.1%

SAHP −0.8% +0.7% −0.8% +0.4% 0.3%
+0.6% +0.6% −0.6% +0.4% 0.3%

THP +0.6% +0.6% −0.2% −0.5% 0.6%
+1.2% +0.9% −0.6% +0.7% 0.4%

ATTNHP +0.4% +0.4% +0.3% −0.1% −0.2%
+0.2% −0.7% −0.6% +0.4% +0.2%

ODETPP −0.5% +1.1% +0.9% +0.6% 0.4%
+0.8% +1.3% +1.1% −0.5% −0.5%

FULLYNN +0.5% −0.7% −0.3% −0.3% +0.2%
NA NA NA NA NA

IFTPP −0.9% +1.0% +0.4% +0.6% +0.3%
+0.4% −0.7% −0.3% +0.2% +0.2%

Table 6: Relative difference between Torch and TensorFlow implementations of methods in Figure 5.
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