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A PROOFS

Proof of Proposition 1} First let us present the DA-ERM solution:
foaerm(w) =E [(wll' + way — y)2 + (wiz + wa(ay +n) — y)z}
=E [wiz® + (w2 — 1)%y* + 2w (wa — 1)zy]
+E [wiz? + (wea — 1)y + win?]
+ E 2wy (wea — 1)zy 4 2wy wean + 2ws(wea — 1)yn]
—wdo? + (ws — 1)2(02 + 02) + 2w (ws — 1)o
+wiol + (wea —1)%(0F + 02) + wion
+ 2wy (wea — 1)0?
=(wy +wy — 1)%62 + (wg — 1)%0?
+ (w1 + waa — 1)202 + (waa — 1)%02 + wio?.
Hence, the solution of w* = arg min,, fpa-grm(w) is given by
2wi + (1 +a)ws —2 =0,
(wi 4+ ws —1)o2 + (wh — 1)o? + a(w] +wia —1)o2 + a(wsa — 1)o? +wior = 0.
Subsequently,

a®(o2+02)—2a(02+02)+02+02+207
a?(024202)—2a02+0,+2(c2+02)

* _
WpA-ERM =
2(a+1)o?
a?(024202)—2ac2+02+2(c2+40y,)

WHARR = arg muin foar(w)
= arg ngn]E (w1 + way — y)? + (wiz + wa(ay +n) — y)g]

+ [M(Jwiz + way — y| — [wrz + wa(ay + 1) — y|)?] .

When A — oo, we have w,;r, = 0 and hence:
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We then evaluate the testing loss assuming the spurious feature is absent, i.e., Xt = (2, S
T
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Proof of Lemma [1| We proceed as follows:

re,(2,2;0) — 14q(2,2;0) = 2\/min{ﬂ(z; 0),0(z;6)} ‘\/E(g; 0) —

We break it into two cases: if £(Z;0) > {(z;0):

e, (2,%,0) — rq(2,%;0) = £(Z;0) — £(2;,0) — (VE(E;0) — V/{(2;0))?
= 0(Z;0) — (2;0) — £(Z;0) — £(2:0) + 23/1(Z; 0)\/1(z; 0)
= —2((2;0) + 2\/@@
= 2/ 0)(\/15:0) — /(= )

If £(Z;0) < ¢(z;0):

re, (2,2:0) — 1ryq(2,2;0) = (2;6) — (VI(Z:0) — \/U(20))?
:Z(Z;Q)—E(zﬁ)—E(ZH 0(z;0) + 24/4(Z;0)\/ U(2; 6)
= —20(Z;0) + 2/ £(Z;0)\/£(z;0)
= 2\/U(Z0)(VU(z:0) — VI(0))

If we combine the two cases, we have:

re,(2,2:0) — 14q(2,2;0) = 2\/min{ﬂ(z;9),£(5; 0)} ‘\/6(5;9) - \/5(2;9)‘ .

B MODEL ARCHITECTURE AND TRAINING PARAMETERS FOR MNIST

EXPERIMENTS
Layer Type Shape
Convolution + ReLU 4x4x6
Max Pooling 2x2
Convolution + ReLU 4x4x16
Max Pooling 2x2
Convolution + ReLU 4 x4x96
Fully Connected + ReLU 64
Fully Connected C

Table 5: Model Architecture, C' = 1 for Colored MNIST and C' = 10 for Rotated MNIST

Parameter

Learning Rate  0.005  0.0005
Epochs 20 20
Batch-size 64

Table 6: Training parameter

C SETUP AND ADDITIONAL RESULTS FOR VQA

We modify the official code released by |/Agarwal et al. (2020) to suit our formulation. All the methods
are trained for 40 epochs with a learning rate of 0.001 and a batch size of 96.
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Lambda VQA v2val (%) Predictions flipped (%) pos — neg (%) neg— pos (%) neg— neg (%)

0.37 58.52 11.92 4.48 5.28 2.17
0.72 58.21 11.28 4.13 5.08 2.07
1.39 57.54 10.37 3.80 4.65 1.91
2.68 56.24 9.68 3.56 4.39 1.73
5.18 54.19 8.75 3.40 3.66 1.69
10 51.32 7.94 3.01 3.40 1.53

Table 7: Accuracy-Consistency Tradeoff on VQA v2 val and IV-VQA test set controlled by A

Scheme z Color |y =0

c1 withp =0.8, 2 =y Red
withp=02,2=1—y Green

2 withp=0.9,2z=1y Red
withp=0.1,z=1—y Green

C3 withp=0.1,2 =y Red
withp=0.9,2z2=1—y Green

Cc4 z2=2 Random

Table 8: Color schemes in Colored MNIST. Random color means that the value of each channel of
the image is uniformly random chosen from 0 to 255.

Table[7]indicates a tradeoff between the accuracy on the VQA v2 ‘val’ set and the consistency metrics.
As the A value increases, the consistency between the predictions increases, while the accuracy on
original examples decreases. For instance, A ) value of 10 strongly boosts consistency thus lowering
the "Predictions flipped’ percentage to only 7.9% but sacrifices the predictive power causing the
accuracy to drop to 51.3 %

D MNIST SETUP

We apply the proposed loss function on the following two datasets: Colored MNIST and
Rotated MNIST. We compare the performance of DAIR with plain data augmentation, and invariant
risk minimization (IRM) as a strong baseline. One crucial difference between our work and IRM is is
the motivation. IRM is designed to take two examples from two different environments and learn
representations that are invariant to the environment, e.g., in cases where we are aggregating multiple
datasets. On the other hand, we are interested in promoting invariance when we have a single dataset.
As such, we artificially generate the second environment in IRM using data augmentation. For a
given example z, we design an augmenter A(-) and use it to generate additional samples that adhere
to the invariance we have in mind. Hence, IRM will be applied in the same way that examples from
different environments are augmenting pairs.

Our Colored MNIST is an extension of the original Colored MNIST |Arjovsky et al. (2019). The
label is a noisy function of both digit and color. The digit has a correlation of 0.75 with the label
and a certain correlation with the label depending on the color scheme. Besides the two colors in
the original dateset, we introduce fully random colored scheme to the dateset, which is the best
augmenter one can think of. The three color schemes are detailed in Table

Our Rotated MNIST is a variant of the original Rotated MNIST (Ghifary et al.;[2015)). The original
dataset contains images of digits rotated d degrees, where d € D = {0, 15, 30,45, 60, 75}. Similarly,
we introduce the random degree scheme here to serve as the best possible augmenter. To further
exploit the potential of the proposed algorithm, we make this dataset more difficult by introducing
more challenging degree scheme; The rotation schemes are summarized in Table[9]

Note all the augmented images are generated on the fly. Examples of images from some transformation
schemes are shown in Figures [§]to
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Scheme Rotation
R1 0°
R2 90°
R3 0°,180°
R4 90°, 270°
R5 [0°,360°]

R6  [22.5°,67.5°],[202.5°,247.5°]

Table 9: Rotation schemes in Rotated MNIST. [a, b] means that degrees are unformly random chosen
between a and b.

Setup Name Train Aug Test A

Adv. Aug. C1 c2 C3 1000
Rnd. Aug. Cl1 Cc4 C3 100

Table 10: Training procedure of Colored MNIST.

BEE EBE
FHE EE BE OE
HE A 22

Figure 8: C2  Figure 9: C3  Figure 10: C4 Figure 11: R4 Figure 12: R5 Figure 13: R6

Setup: We train a model consisted of three convolutional layers and two fully connected layers with
20,000 examples. For each dataset we are defining several different schemes on how the dataset
could be modified: Table [8] (Colored MNIST) and Table 0 (Rotated MNIST). Then, we define
several setups. Each setup is consisted of one original dataset, one augmentation dataset, and one
test dataset, each of which is selected among the defined schemes. These setups are provided in
Table @ (Colored MNIST) and Table [E (Rotated MNIST). For each setup, we train the model
with the following four algorithms and compare their performances: ERM, DA-ERM, DAIR and
Invariant Risk Minimization (IRM). Each experiment is repeated for 10 times; the mean and the
standard derivation are reported. The value of A are chosen base on the validation results. Detailed
architectures and training parameters can be found in Appendix [B]

D.1 COLORED MNIST

We conduct two sets of experiments for this dataset: Adversarial Augmentation Setup (Table [I0)
follows the exact same color schemes from the original Colored MNIST |Arjovsky et al. (2019). For
Random Augmentation Setup, we train the model with the strongest possible augmenter: uniformly
random color. The entire procedure is summarized in Table

Setup Train Aug Test A

Strong Aug. Rl R5 R2 1
Weak Aug. R4 R6 R3 10

Table 11: Training procedure of Rotated MNIST
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D.2 ROTATED MNIST

We start with the strongest augmenter case. One may notice that there is a chance that the augmented
images bear the same rotation degrees as the testing set. To make the task more difficult, we will use
R6 as the augmented test to test how the trained model generalize to entirely unseen domain. The
training procedure is summarized in Table
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