
A Proof for theorem 3.11

Let D = {(xi, yi)} denote the train dataset of size N . Then the minima over the dataset D, is2

obtained by solving,3

min
ψ

Eτ∼U [0,1]

[
1

N

∑
i

ρ(I[ψ(xi, τ) ≥ 0], yi; τ)

]
(1)

Let Q(x, τ) denotes the solution obtained using the algorithm 1. Let P(x, τ) denote the solution4

obtained by solving equation 1.5

We aim to show that I[Q(xi, τ) ≥ 0.5] = I[P(xi, τ) ≥ 0] for all the points in D = {(xi, yi)}.6

First, observe that, since the base classifier fθ(x) is obtained using MAE we have that I[Q(xi, 0.5) ≥7

0.5] = I[fθ(xi) > 0.5] = I[P(xi, 0.5) ≥ 0]. This is because the loss in equation 1 at τ = 0.5 is8

nothing but the MAE loss.9

Next for arbitrary τ , we show that I[Q(xi, τ) ≥ 0.5] = I[P(xi, τ) ≥ 0] over the dataset D =10

{(xi, yi)}.11

We approximate the indicator function as I[x ≥ 0] ≈ limk→∞Kk(x). For instance one can consider12

Kk(x) = σ(xk). Observe that a solution to minimize equation 1 can be obtained by13

P(x, τ) = lim
k→∞

argmin
ψ

Eτ∼U [0,1]

[
1

N

∑
i

ρ (Kk (ψ(xi, τ)) , yi; τ)

]
(2)

Let14

P(k)(x, τ) = argmin
ψ

Eτ∼U [0,1]

[
1

N

∑
i

ρ (Kk (ψ(xi, τ)) , yi; τ)

]
(3)

Also, since f(x) optimizes MAE, we have for some k, Kk(P(k)(x, 0.5)) = f(x). That is, for some15

k,16

I[f(x) ≥ 1− τ ] = I[Kk(P(k)(x, 0.5)) ≥ 1− τ ]

= I[Kk(P(k)(x, τ)) ≥ 0.5]

= I[P(k)(x, τ)) ≥ 0]

(4)

where the second equality follows from the duality in equation 5. However, for any k, k′, we have17

that I[Kk(P(k)(x, τ)) ≥ 0.5] is equivalent to I[Kk′(P(k′)(x, τ)) ≥ 0.5]. Since both P(k′)(x, τ)18

and P(k)(x, τ) would be able to classify the points perfectly at τ . So, we have that19

I[f(x) ≥ 1− τ ] = I[P(x, τ) ≥ 0] (5)

On the other hand, for all data points in D (from the definition of on the construction of Q(x, τ)),20

I[f(xi) ≥ 1− τ ] = I[Q(xi, τ) ≥ 0.5] (6)

Since, I[Q(xi, τ) ≥ 0.5] = I[P(xi, τ) ≥ 0] for all datapoints in D, it follows that Q(xi, τ)21

optimizes equation 1.22

B Proof for theorem 4.123

The proof follows from the fact that24

Q(xi, τ) ≥ 0 ⇔ f(xi) ≥ (1− τ) ⇔ P (g(xi) + ϵ(xi) ≥ 0) ≥ 1− τ (7)

Assuming that τ∗ = P (g(xi) + ϵ(xi) ≥ 0), So, we have25 ∫ 1

τ=0

I[Q(xi, τ) ≥ 0]dτ =

∫ 1

τ=0

I[τ∗ ≥ (1− τ)]dτ =

∫ 1

τ=0

I[τ∗ ≥ (1− τ)]dτ

=

∫ 1

τ=0

I[τ ≥ (1− τ∗)]dτ =

∫ 1

τ=(1−τ∗)

1dτ = τ∗
(8)

Thus the theorem follows.26
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Table 1: Comparison of Quantile-Representations with baseline for OOD Detection. Observe that
Quantile-Representations outperform the baseline in all the cases.

DenseNet (Baseline/Quantile-Rep)

LSUN(C) LSUN(R) iSUN Imagenet(C) Imagenet(R)

CIFAR10
AUROC 92.08/93.64 93.86/94.61 92.84/93.74 90.93/91.72 90.93/92.06

TNR@TPR95 58.19/64.56 63.07/66.89 59.64/64.68 53.94/56.34 54.44/58.22
Det. Acc 85.58/87.14 87.66/88.60 86.29/87.42 84.11/84.93 84.10/85.33

SVHN
AUROC 91.80/92.29 90.75/90.70 91.21/91.30 91.93/91.97 91.93/92.01

TNR@TPR95 54.61/58.77 47.67/48.55 48.24/50.15 52.38/53.68 52.43/53.64
Det. Acc 85.10/85.37 84.32/84.16 84.80/84.77 85.42/85.55 85.46/85.50

Resnet34 (Baseline/Quantile-Rep)

CIFAR10
AUROC 91.43/91.76 92.64/93.08 91.89/92.34 90.59/90.81 89.12/89.39

TNR@TPR95 54.96/56.76 63.24/65.75 58.56/60.94 52.86/54.89 47.41/49.93
Det. Acc 84.63/84.96 85.41/86.06 84.39/85.17 83.24/83.44 81.74/82.05

SVHN
AUROC 94.80/94.87 94.37/94.46 95.13/95.22 95.73/95.85 95.62/95.70

TNR@TPR95 76.19/76.15 72.10/72.87 75.88/76.25 79.16/79.53 78.34/78.82
Det. Acc 89.58/89.72 88.82/88.87 89.78/89.85 90.72/90.87 90.54/90.60

C Results when training only the last layer27

The same observations as done in the main article also hold true when training is done only in the last28

layer by considering the features.29

OOD Detection : These experiments were performed using Densenet and Resnet34 architectures30

on CIFAR10 and SVHN datasets. The OOD datasets are the same as in the main article. Table 131

shows the results obtained when quantile representations are used only on the last layer.32

(a) Quantile Representations
(Resnet34) (b) Original Features (Resnet34) (c) Scatterplot

Figure 1: Do quantile representations capture the relevant information for classification? (a) Cross-
correlations obtained using Quantile representations for Resnet34 on CIFAR10 (b) Cross-correlations
obtained using train features for Resnet34 on CIFAR10. (c) Scatterplot with best fit line (using
Locally Weighted Scatterplot Smoothing[1]) of the cross-correlation of features. Observe that as the
correlation becomes important (i.e close to −1 or 1) quantile representations are more consistent with
raw features.

Calibration Experiments The same observations - Quantile probabilities have calibration error33

which does not change with distortion and that these could not be corrected using simple Platt34

Scaling/Isotonic Regression, hold true when training only the last layer as well. This is illustrated in35

figure 3.36

Cross-correlation of features To illustrate that the quantile representations capture the aspects37

of data-distrbution relevant to classification, we perform the following experiment - Construct the38
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(a) Quantile Representations
(Densenet) (b) Original Features (Densenet) (c) Scatterplot

Figure 2: Do quantile representations capture the relevant information for classification? (a) Cross-
correlations obtained using Quantile representations for Densenet on CIFAR10 (b) Cross-correlations
obtained using train features for Densenet on CIFAR10. (c) Scatterplot with best fit line (using
Locally Weighted Scatterplot Smoothing[1]) of the cross-correlations. Observe that as the correlation
becomes important (i.e close to −1 or 1) quantile representations are more consistent with raw
features.

(a) ECE (Resnet34) (b) Accuracy (Resnet34) (c) ECE (Densenet) (d) Accuracy (Densenet)

Figure 3: Quantile representations can be effective for calibration because they estimate probabilities
using Equation equation 8, which has been shown to be robust to corruptions. As demonstrated using
the CIFAR10C dataset [2], the Expected Calibration Error (ECE) of the probabilities obtained from
quantile representations (QUANT) does not increase with the severity of the corruptions. In contrast,
when using the standard Maximum Softmax Probability (MSP) method, the calibration error increases
as the severity of the corruptions increases.

cross-correlation between features using (i) Quantile Representations and (ii) Feature values extracted39

using the traindata. If our hypothesis is accurate, then cross-correlations obtained using quantile-40

representations and feature values would be similar.41

In Figures 1 and 2, we present the results of using features from Resnet34 and Densenet on the42

CIFAR10 dataset. Figures 1a and 1b show the results for Resnet34, and Figures 2a and 2a show the43

results for Densenet. To visualize the cross-correlations, we use a heatmap with row and column44

indices obtained by averaging the linkage of train features. This index is common for both quantile45

representations and extracted features. It is evident from the figure that the cross-correlation between46

features is similar whether it is computed using extracted features or quantile representations.47

D A case where quantile representations do not capture the entire48

distribution49

In figure 4 we illustrate an example where quantile representations do not capture the entire distri-50

bution. Here we use the same data as in figure 1, but with different class labels. This is shown in51

figure 4a. When we perform the OOD detection we get the region as in figure 4b. Observe that while52

it does detect points far away from the data as out-of-distribution, the moon structure is not identified.53
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(a) Original Data (b) OOD Detection using quantile representations

(c) OOD Detection using Probabilities (d) Using Random Labels

Figure 4: Illustrating a case where quantile representations do not capture the distribution perfectly.
(a) Original Dataset. (b) The region detected as in-distribution by using quantile representations. (c)
Region detected as in-distribution by using the outputs from a single classifier. Observe that quantile
representations still perform better than single classifier outputs. (d) Using random labels instead
of ground-truth. Observe that the two moons structure is faithfully preserved in this image. The
brightness of Red indicates the chance of being in-distribution.

In particular, the spaces between the moons is not considered OOD. This illustrates a case when54

quantile representations might fail.55

However, OOD detection using a single classifier also fail, as illustrated in figure 4c. Observe that56

the region identified by quantile representations is much better than the one obtained using a single57

classifier.58

A simple fix for OOD detection: If OOD detection were the aim, then it is possible to change59

the approach slightly by considering random labels instead of the ground-truth labels. This allows60

us to identify arbitrary regions where the data is located. This is illustrated in figure 4d. Observe61

that this method can be used to identify any region in the space by suitably sampling and assigning62

pseudo-labels. In this case, we identify the training data perfectly.63

E Sanity Check - Preserving Monotonicity Property64

Note that quantile representations obtained by optimizing the simulateneous loss equation 2, should65

follow the monotonicity property - Q(x, τ0) ≤ Q(x, τ1) ↔ τ0 ≤ τ1. Since our approach is an66

alternate, the quantile representation learnt using algorithm 1 should satisfy this property as well. We67

verify this as follows - Considering the ResNet34 architecture trained on CIFAR10 dataset, we plot68

the logits obtained at different quantiles.69
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Figure 5: Checking that the quantile representations learnt using algorithm 1 satisfies the monotonicity
property.

F Matching Quantile-Representations to correct the distribution70

In this part we illustrate the matching of quantile-representations to correct for distribution shifts71

following the ideas from [6]. Let X denote the original distribution of the data, and let Φ(X) denote72

the modified distribution. We assume that the function Φ(.) is deterministic but unknown.73

If both X and Φ(X) are known, then it is easy to estimate Φ(.) using some model such as neural74

networks. However, in reality we do not have this information. Once the environment changes, the75

data collected will be very different from the original ones and we do not know how Φ(.) distorts the76

original data. So, the aim is to estimate Φ(.) without the knowledge of X and Φ(X). This is where77

the fact that - quantile-representations capture the distribution information becomes relevant.78

Is this even possible? Let Q(x, τ) denote the quantile representation obtained using X , and79

QΦ(x, τ) denote the quantile representation obtained using Φ(X). Let the data collected in the new80

environment be {x̂i}, then we should have that81 ∫ 1

τ=0

|Q(Φ−(x̂i), τ)−QΦ(x̂i, τ)| = 0 (9)

Using this it is possible to estimate Φ− and hence Φ.82

Observe the following - Functions Q(., .) and QΦ(., .) are learnt from the data using the labels, and83

depends on it. So, one needs the labels to specify the directions in which distribution should be the84

same.85

For instance, consider the following example - Assume we wish to classify the candidates as86

suitable/not-suitable for a job based on a set of features. Now, what is suitable/not-suitable changes87

with with time. As well as the ability (represented in features) of the general population. So, we88

collect data at time t = t0, {(xi,t0 , yi,t0)} and at time t = t1, {(xi,t1 , yi,t1)}. However we do not89
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know the relation between xi,t0 and xi,t1 . In such cases, matching quantile representations can be90

useful.91

(a) Original Dataset (Xt0 ) (b) Shifted Dataset (Xt1 )

(c) Boundaries at different quantiles (Original data) (d) Boundaries at different quantiles (Shifted data)

(e) Distribution of Xt1 (f) Distribution of data Φ(Xt0)

Figure 6: Matching quantile representations. Observe that the estimated distribution at time t1 is
similar to the actual distribution at time t1. This shows that the estimate of Φ() is accurate.

Illustration: Matching of quantile representations The above procedure is illustrated in figure 6.92

Consider the data at t0 as in figure 6a and data at t1 as in figure 6b. This data in figure 6a is generated93

using 2d Gaussian distribution with centers [[0, 0], [1, 1]] and standard deviation [[0.1, 0.3], [0.3, 0.11]].94

We refer to this distribution as Xt0 . Data in figure 6b is obtained by generating a new sample with95

the same distribution as Xt0 and transforming it using a random orthogonal matrix. We refer to this96

distribution using Xt1 . Note that there is no correspondence between the data samples at Xt0 and97

Xt1 . Figures 6c and 6d illustrate the quantile representations obtained using the class labels at both98

these times. We then estimate Φ() using equation 9. Figure 6e shows the density at Xt1 and Figure 6f99

shows the density of Φ(Xt0). Observe that the estimate of the density and the actual density match.100

This shows that quantile representations can be used to correct distribution shifts.101
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Caveat: However, quantile-representations cannot estimate Φ() which do not change the distri-102

bution of the samples. For instance if Xt1 = −Xt0 , and if Xt0 is symmetric around 0, then the103

quantile-representations are identical. Under what conditions can Φ(.) be estimated is considered for104

future work.105

Advantage of using quantile-representations A question which follows is - Why not simply106

retrain the classifier at t0? (i) As can be gleaned from the above experiments, it is not possible to107

estimate Φ() from the single classifier alone, but can be done using quantile-representations (ii)108

The labels considered for constructing the quantile-representations need not be the same as the109

classification labels. They would correspond to important attributes of the data. For instance, one110

can consider aspects like technical skill of the candidate instead of simply suitable/not-suitable111

classification.112

G Training Details and Compute113

Training quantile representations was done on a DGX server using 4 GPUs. It takes around 10 hours114

(40 GPU hours in total) to learn the quantile representations for each model. We use stochastic115

gradient descent with cyclic learning rate for optimization. The base_lr is taken to be 0.02 and116

max_lr is taken to be 1.0, with exponentially decreasing learning rate using γ = 0.99994. The117

batch_size is taken to be 1024 for resnet34. The number of steps for the cyclic learning is taken to be118

2(size_dataset/2batch_size) + 1). The size_dataset describes the size of the training data.119

H Why Quantile Regression?120

If the goal of a regression problem is to predict the likely range of estimates (prediction interval) and121

not just a single estimate as the Ordinary Least Square Regression (OLS) does, the method is required122

to be more general and robust. This method for producing such estimates, relatively unknown in the123

Machine Learning community, is known as quantile regression. While OLS regression minimizes124

the squared-error loss function to predict a single point estimate, quantile regressions minimize the125

quantile loss in predicting a certain quantile. The 50th percentile, otherwise known as the median,126

represents the quantile loss as the sum of absolute errors (MAE). Other quantiles could give endpoints127

of a prediction interval; for example, a middle-80-percent range is defined by the 10th and 90th128

percentiles. The quantile loss differs depending on the evaluated quantile, such that more negative129

errors are penalized more for higher quantiles and more positive errors are penalized more for lower130

quantiles. In other words, quantile loss varies with the error, depending on the quantile, commonly131

interpreted as quantile for under- and over-estimated predictions. The higher the quantile, the more132

the quantile loss function penalizes underestimates and the less it penalizes overestimates. Quantiles133

allow for an understanding of a probability distribution of a data set in which only the specifications of134

the positions are known. Thus, wherever predictions are subject to high uncertainty, quantile should135

be the preferred loss function. Quantiles give some information about the shape of a distribution -136

in particular whether a distribution is skewed or not; are robust to outliers and can model extreme137

events well. Conditional quantiles obtained via regression are used as a robust alternative to classical138

conditional means in econometrics and statistics, as they can capture the uncertainty in a prediction,139

and model tail behaviors, while making very few distributional assumptions140

The quantile regression has started relatively recently being applied in the energy-growth nexus141

literature. In the past, it has been used extensively in pediatric medicine (offering an optimistic142

perspective for precision medicine), survival and duration time studies [3], the determination of143

wages, discrimination effects, and income inequality. Also, it has been used in the finance literature144

in studies that dealt with bank failure and the time occurrence of this failure [5]. Regarding the more145

recent application in the energy-growth nexus field, it is not well documented in the relevant studies146

why asymmetries would be present in the way income and wealth is generated in different countries147

given the consumption of energy in those countries and other stylized parameters. One reason, quite148

understandable, why to use this method, is for testing whether poorer countries will be affected the149

same way by energy conservation measures as the rich ones. Another reason as stated by [8] in their150

study on renewable energy, oil prices, and economic growth for the United States is that their study151

would allow them to determine whether extremely low or high changes in energy consumption prices152

would lead economic growth. Therefore we can have very specific and accurate answers to what153
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will happen if there is 1% energy reduction in poor countries. This information would otherwise154

have to be included in dummy variables and other forms of robust estimation that assign less weight155

to observations that are characterized as outliers. Among the various other statistical twists offered156

by the method, the quantile regression may be favored because it does not assume a parametric157

distribution and it estimates the entire conditional distribution of the independent variable. Generally,158

this method is regarded as more versatile and informative [4].159

A switch from the squared error to the tilted absolute value loss function allows gradient descent-based160

learning algorithms to learn a specified quantile instead of the mean. It means that we can apply161

all neural network and deep learning algorithms to quantile regression [3, 5]. The application of162

quantiles in deep learning, although relatively recent, are critical for model interpretability. In the163

past, [7] extended the notion of conditional quantiles to the binary classification setting—allowing164

uncertainty quantification in the predictions, increased resilience to label noise thus furnishing new165

insights into the functions learnt by the models. This was accomplished by defining a new loss166

called binary quantile regression loss, in the classification setting. The estimated quantiles to obtain167

individualized confidence scores provide an accurate measure of a prediction being misclassified.168

These scores were then aggregated to compute two additional metrics, namely, confidence score and169

retention rate, which can be used to withhold decisions and increase model accuracy. Thus, in a170

non-parametric binary quantile classification framework, authors could demonstrate that quantiles171

aid in explainability as they can be used to obtain several uni-variate summary statistics that can be172

directly applied to existing explanation tools.173

Therefore, it is not unconvincing to realize the relevance and precedence of quantiles in classification,174

in particular, to obtain the conditional quantiles of the underlying latent function learnt by a binary175

classifier using customized loss inspired by quantiles [8].176
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