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A Proofs

A.1 Proof for Theorem 4.1

Proof. Denote r̂N+1,t = 1 − α + δ̂N+1,t. To simplify the notation, in the following, all P means
PSN+1∼PS

. We have:

P{YN+1,t ∈ ĈaN+1,t,N+1,t} ≥ P{rankN+1,t ≤ r̂N+1,t} (11)

=

∫ 1

0

∫ q

0

frankN+1,t,r̂N+1,t
(r, q)drdq (12)

=

∫ 1

0

∫ q

0

frankN+1,t
(r)fr̂N+1,t

(q)drdq (13)

=

∫ 1

0

qfr̂N+1,t
(q)dq (14)

= E[r̂N+1,t] = 1− α+ E[δ̂N+1,t] (15)

A.2 Proof for Theorem 4.2

Proof. For any t, we know that r̂N+1,t follows a uniform distribution among { j
N }

N
j=0 by exchange-

ability. For simplicity, we drop the subscripts ·N+1,t. As a result, we have

E[r̂|r̂ ≥ 1− α] =
⌈(1− α)N⌉+N

2N
(16)

E[r̂|r̂ < 1− α] =
⌈(1− α)N⌉ − 1

2N
(17)

More over,

P{r̂ ≥ 1− α} = 1− ⌈(1− α)N⌉
N + 1

(18)

P{r̂ < 1− α} = ⌈(1− α)N⌉
N + 1

. (19)

Denoting ϵ := αN − ⌊αN⌋ = ⌈(1− α)N⌉ − (1− α)N , this means

E[gB(r̂;α)] =

(
1− ⌈(1− α)N⌉

N + 1

)(
⌈(1− α)N⌉+N

2N
− (1− α)

)
(20)

+ C
⌈(1− α)N⌉

N + 1

(
⌈(1− α)N⌉ − 1

2N
− (1− α)

)
(21)

=

(
1− (1− α)N + ϵ

N + 1

)(
(2− α)N + ϵ

2N
− (1− α)

)
(22)

+ C
(1− α)N + ϵ

N + 1

(
(1− α)N − 1 + ϵ

2N
− (1− α)

)
(23)

=

(
αN + 1− ϵ

N + 1

)(
αN + ϵ

2N

)
(24)

+ C
(1− α)N + ϵ

N + 1

(
(α− 1)N − 1 + ϵ

2N

)
(25)

=
α2N2 + αN + ϵ− ϵ2

2(N + 1)N
− C

(1− α)2N2 + (1− α)N + ϵ− ϵ2

2(N + 1)N
(26)

(27)
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As a result,

E[gB(r̂;α)] = 0⇔ C =
(αN + ϵ)(αN + 1− ϵ)

((1− α)N + ϵ)((1− α)N + 1− ϵ)
(28)

A.3 Proof for Theorem 4.3

Proof. The inequality trivially holds for α ≥ 0.5, so we only focus on the case when α < 0.5.

An upper-bound for the additional loss is simply L := −minq g
B(q;α). To find an upper bound for

L, notice that

L = −min
q

gB(q;α) = (1− α)C (29)

=
(αN + ϵ)(αN + 1− ϵ)

((1− α)N + ϵ)((1− α)N + 1− ϵ)
(1− α) (30)

=
α2N2 + αN + ϵ− ϵ2

(1− α)2N2 + (1− α)N + ϵ− ϵ2
(1− α) (31)

=
(
1− N2[(1− α)2 − α2] +N(1− 2α)

(1− α)2N2 + (1− α)N + ϵ− ϵ2

)
(1− α) (32)

If we consider the last expression as a function of ϵ, it is maximized with ϵ = 1
2 , which means

L ≤

(
α+ 1

2N

1− α+ 1
2N

)2

(1− α) (33)

Denote α+ := α+

(
α+ 1

2N

1−α+ 1
2N

)2

(1− α). We have Ĉsplit
α+,N+1,t+1 ⊆ ĈTQA−B

α,N+1,t+1. This means

PSN+1∼PS
{YN+1,t+1 ∈ ĈTQA−B

α,N+1,t+1} (34)

≥ PSN+1∼PS
{YN+1,t+1 ∈ Ĉsplit

α+,N+1,t+1} (35)

≥ 1− α−

(
α+ 1

2N

1− α+ 1
2N

)2

(1− α) (36)

A.4 Proof for Theorem 4.4

Proof. First, let us consider the alternative quantile adjustment bTQA−E
N+1,t with update rule:

bt+1 ←
{
bt + γ(α− errt) (bt ∈ [0, 1])

bt + γ(α− bt) (otherwise)
. (37)

We will first show ∀t,E[bt] = α by induction, as we hinted in the main paper. (For simplicity in
notation, we drop the subscript ·N+1.) To begin with, we have

ES[b
TQA−E
0 ] = ES[α] = α (38)

Now,

ES[bt+1|bt] =
{
bt + γ(α− ES[errt]) (bt ∈ [0, 1])

bt + γ(α− bt) (otherwise)
(39)

If the nonconformity score’s rank has no temporal dependence, we have errt ∼ Bernoulli(at) (here
again we assume we use random coin-flips to ensure an exact coverage probability of 1− α), which
means E[errt] = bt. This leads to

ES[bt+1|bt] = bt + γ(α− bt) (40)
=⇒ ES[bt+1] = ES[ES[bt+1|bt]] = (1− γ)ES[bt] + γα = α (41)
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By induction, we have

∀t,ES[bt] = α (42)

Next, we should compare E[at] and E[bt]. It should be clear that

∀c,ES[at+1|at = c] ≤ ES[bt+1|bt = c]. (43)

To begin with, we have E[a0] ≤ α. Following a similar logic, we have

ES[at+1] = ES[ES[at+1|at]] ≤ (1− γ)ES[at] + γα ≤ α (44)

By induction, we get

∀t,ESN+1∼PS
[aTQA−E

N+1,t ] ≤ α. (45)

Remarks The alternative update rule in Eq. 37 is not just used to prove Theorem 4.4. In fact, one
might want to use this rule in practice if the TS is not very long and the asymptotic guarantee
(Theorem 4.5) is not relevant. This is because Eq. 37 does not become more conservative on average
as t increases.

A.5 Proof for Theorem 4.5

Proof. We will use an similar argument similar to one in [17]. First, we have at ∈ [−γ, 1 + γ]
if a0 = α. To see this, note that at+1 > at =⇒ at ≤ 1 =⇒ at+1 ≤ 1 + γ, which means
∀t, at ≤ 1 + γ. Similarly, at+1 < at =⇒ at ≥ 0 =⇒ at+1 ≥ −γ, which means ∀t, at ≥ −γ.

Note that with Eq. 9, we have at+1 ≤ at + γ(α− at). Now, if we expand aT , we get

− γ ≤ aT ≤ α+

T−1∑
t=0

γ(α− errt) (46)

=⇒
∑T−1

t=0 errt
T

≤ α+
α+ γ

γT
(47)

By taking the limit of both sides, we are done.
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B Additional Experiment Details

B.1 Datasets

MIMIC [23, 18, 22]: MIMIC-III is a large public (but requires application of access) database consist-
ing of records for patients admitted to critical care units. The task is to predict white blood cell counts
(WBCC) levels, using 25 features (following [1]) including measurements like systolic/diastolic
blood pressure or the dosage of antibiotics. To prepare the data, we follow [48] and restrict our study
to patients on antibiotics (Levofloxacin). We drop sequences with less than 30 visits, ending up
with 392 sequences in total. The exact SQL queries and data processing scripts are provided in the
supplemental material and will be published. Note that the EHR has been de-identified - in particular,
all visits for a patient are shifted in dates, so we only know the relative dates of visits belonging to
the same patient, but do not know the actual dates, making it impossible to perform any temporal
splitting.

CLAIM: CLAIM is a proprietary dataset from a large healthcare data provider in North America. It
contains longitudinal view of information like inpatient and outpatient services, prescription, costs or
enrollment. The task is to predict the (allowed) claim amount for the next visit. The features include
diagnoses codes (ICD-10) and procedure codes (CPT/HCPCS), the gender and age of patient, and the
previous claim amount.

COVID [10]: COVID is available at https://coronavirus.data.gov.uk/. We follow the setup
of [48] and treat different regions within UK as the cross-section, and we used the most recent
full-month data available at the time of this work (March 2022). The feature only consists of previous
day’s case number. We include COVID for completeness as it was used in [48], and as an idealized
experiment, despite its unrealistic settings.

EEG [51]: EEG is available at https://archive.ics.uci.edu/ml/datasets/EEG+Database.
The “Large” version of the dataset contains the electroencephalography (EEG) signals sampled at
256 Hz for 1 second for 10 alcoholic and 10 control subjects. Like [48], we used only the control
group, and downsampled the signals to facilitate training, but to length 64 instead of 50 to avoid
unnecessary interpolation. We do not mix data from different EEG channels, and use only channel 0
data because different EEG channels should follow different developments. The feature only consists
of the EEG signal at the previous step.

GEFCom [20]: GEFCom (2014) is the Probabilistic Electric Load Forecasting task in Global Energy
Forecasting Competition 2014. It has hourly temperature and electricity load data for one utility. The
load data covers 9 years. For this task, we split the data into 24-hour-sequences, and consider these
sequences as forming a cross-section. The features consist of temperature data from 25 stations, and
the previous load.

Data Licenses and Consent:

• MIMIC: The PhysioNet Credentialed Health Data License. The data is public, but requires access
application.

• COVID: Open Government Licence v3.0. Publicly available on https://coronavirus.data.
gov.uk/.

• CLAIM: This is proprietary data.
• EEG: There are no usage restrictions on this data per https://archive.ics.uci.edu/ml/
datasets/eeg+database.

• GEFCom: We could not find the license, but it is publicly available (provided by the author) on
http://blog.drhongtao.com/2017/03/gefcom2014-load-forecasting-data.html.

B.2 Implementation and Experiment Details

We use mostly the same architecture and training protocols as [48]. The RNN (mean estimator) is a
one-layer LSTM [19], with an embedding size of 32. The optimizer is ADAM [24], and the learning
rate is 1e-3. The training epochs for MIMIC/CLAIM/COVID/EEG/GEFCom are 200/500/1000/100/1000.
We use the same settings for the residual predictor (for LASplit) and QRNN, except that

• The target for the residual predictor is replaced by |y − ŷ|.
• The loss for QRNN is replaced with the quantile loss, and the output is two scalars instead of one.
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We normalize each feature and Y by the mean and standard deviation in order for the underlying
LSTM to train. In each repetition of a experiments, we pool all data together and re-split them into
training/calibration/test set using a new seed, and the LSTMs are also trained using different seeds
each time. The only exception is GEFCom (the non-R version), which has only one data splitting due
to the temporal order. The LSTMs for GEFCom are still trained using different seeds. All code is
provided in the supplemental material and will be published after the review period.Experiments in
this paper are fast to run on a personal laptop - the largest single experiment is for CLAIM (without
repetition), which takes about half an hour, and all experiments finish within 2 hours (for one seed).

C Variants of TQA-B

C.1 Rank-based Quantile Prediction

Instead of the quantile prediction we used in the paper, we also tried the following prediction.

r̂ewa
i,t+1 = Q−1(ri,t; {rj,t}N+1

j=1 ) where ri,t :=
∑t

t′=1
βt+1−t′ri,t′∑t

t′=1
βt+1−t′ . This is an exponentially weighted

(decaying) average of the past ranks. We use β = 0.8, and refer to such quantile prediction as
Rank-based (as opposed to Scaled-based in Section 4.2).

C.2 The Aggressive Quantile Budgeting
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Figure 5: Here we present visualizations of different quantile budgeting methods. “Budgeting” refers
to the fact that all red lines are on average 1− α. The first picture (No Adjustment) is the same as the
basic split conformal method. The second picture refers to the quantile budgeting method presented
in Section 4.2. It is conservative because even for a very small r̂t like 0, the adjusted at is still close
to α. The third picture is the more aggressive budgeting method, and it could set at to as big as 2α.
In a sense, it trusts the prediction r̂t and adapts to it more. As a result, if r̂t predicts the actual rank of
nonconformity scores well, it can achieve a much higher coverage. The extreme case is if r̂t perfectly
predicts the realized ranks: “No Adjustment” will still have 1− α coverage whereas the other two
will achieve perfect coverage.

In this section, we present an alternative quantile budgeting function to gB . The specific adjustment
is given by

gBC(q;α) :=
q − 0.5

2α
. (48)

Like in Section 4.2, one could use a λ to ensure the final at is not too close to zero (to avoid infinitely-
wide PIs). We refer to this “aggressive” version as TQA-BC. Figure 5 visualizes the difference
between “conservative” (TQA-B) and “aggressive” budgeting. It should be clear that TQA-BC also
satisfies Theorem 4.2, Theorem 4.3, however, becomes looser:

Theorem C.1.

PSN+1∼PS
{YN+1,t+1 ∈ ĈTQA−BC

α,N+1,t+1} ≥ 1− 2α. (49)

The proof is essentially the same as that for Theorem 4.3.
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C.3 Comparison

The full results of different variants of TQA-B are in Table 5. All variants are generally valid (except
for a tiny drop in coverage for Rank+Conservative on GEFCom-R). In general, among the two quantile
prediction methods, Scale tends to produce better tail coverage rate, at the cost of worse efficiency.
Among the quantile budgeting methods, the Aggressive version also tends to increase tail coverage
rate and decrease efficiency. In practice, one might design the two components depending on the
whether efficiency or tail coverage rate is more important.

Table 5: Mean coverage, tail coverage, and inverse efficiency for different variants of TQA-B. Valid
mean coverage and the best of tail coverage and inverse efficiency are in bold. Note that we re-scaled
all methods’ mean PI width to the same as CFRNN for the TCR here, for a fair comparison. (We
couldn’t do this in a meaningful way for TQA-E in the main text.)

TQA-B CFRNN (Split)

Quantile Prediction Method Scale Rank

Budgeting Method Conservative Aggressive Conservative Aggressive

Coverage

MIMIC 91.31±1.32 93.62±1.04 89.79±1.68 91.79±1.41 90.06±1.73
CLAIM 91.19±0.48 92.87±0.37 89.88±0.55 91.54±0.46 90.21±0.56
COVID 90.79±1.45 92.46±1.15 89.94±1.71 91.16±1.44 90.25±1.69
EEG 90.73±1.21 92.53±1.00 89.57±1.46 90.95±1.28 89.92±1.44
GEFCom 89.58±0.25 91.19±0.39 87.96±0.20 89.62±0.22 88.61±0.16
GEFCom-R 90.56±0.64 91.52±0.57 89.55±0.80 90.57±0.67 89.92±0.78

Tail Coverage Rate (rescaled) ↑

MIMIC 70.18±4.17 76.84±4.20 63.06±6.46 70.98±4.69 62.22±7.09
CLAIM 73.36±1.27 78.15±1.20 66.73±1.76 73.08±1.29 65.95±1.88
COVID 69.48±4.48 75.49±4.89 64.85±5.80 69.44±5.51 64.41±6.11
EEG 70.29±2.15 75.81±2.69 64.50±3.32 69.51±3.01 64.14±3.42
GEFCom 67.71±1.68 74.19±2.55 58.51±1.27 67.52±1.42 58.49±1.38
GEFCom-R 74.48±1.36 77.47±1.36 69.18±2.14 73.59±1.58 68.76±2.18

Inverse Efficiency ↓

MIMIC 1.990±0.165 2.128±0.182 1.936±0.166 1.979±0.166 1.964±0.170
CLAIM 3.020±0.045 3.224±0.072 2.956±0.051 3.025±0.046 3.003±0.052
COVID 0.831±0.032 0.858±0.036 0.819±0.033 0.828±0.033 0.826±0.034
EEG 1.449±0.025 1.498±0.023 1.429±0.029 1.444±0.025 1.445±0.031
GEFCom 0.238±0.005 0.247±0.007 0.233±0.005 0.236±0.005 0.235±0.005
GEFCom-R 0.200±0.004 0.210±0.006 0.196±0.004 0.199±0.004 0.198±0.004

D Additional Results

Full Time Series: We repeat the experiments in Section 5 but measure the evaluation metrics on the
entire time series as opposed to the last 20 steps. The results are in Table 6 and the conclusion stays
the same.

Percentage of Infinitely-wide PIs: Since TQA-E could generate infinitely-wide PIs, we check how
many such intervals are actually created. The results are in Table 7, and it shows that most ĈTQA−E

are finite.

Median and Mean Width of the PIs: We examine the raw width of the PIs. Note that because
TQA-B tends to improve the coverage slightly, the width is slightly higher. In addition, the mean
width should be even higher due to the attempt to cover extreme residuals (as discussed/showed in
Figure 4). However, from Table 8, we note that the difference in the raw PI widths are also small.

CFRNN with Bonferroni Correction (CFRNN-Bon): As explained in Section 3.2, to perform the
correct split conformal prediction, we need to use∞ in place of vN+1 (in order to avoid plugging
in different y values, usually defined on a fine-granular grid, which is very expensive). This means
that, if we perform Bonferroni Correction as proposed in [48] by querying the 1 − α

T instead of
1− α, the PI will always by infinitely wide if α

T <= 1
N+1 . In our experiments, this is the case for

MIMIC, COVID, EEG and GEFCom/GEFCom-R. The original paper [48] implemented the split-conformal
incorrectly by ignoring vN+1, which is why this issue did not appear. In addition, even if we ignore
the issue of (constant) infinitely-wide PIs, in our settings the length of the time-series (e.g. number of
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Table 6: Mean coverage, tail coverage, and inverse efficiency using the entire time series (as opposed
to the last 20 steps). Valid mean coverage and the best of tail coverage and inverse efficiency are
in bold. The conclusion is the same as in the main text - TQA greatly improves the longitudinal
coverage for the least-covered TSs, and in particular TQA-B maintains very competitive efficiency.

Coverage TQA-B TQA-E CFRNN (Split) CQRNN LASplit QRNN DPRNN

MIMIC 91.16±1.15 91.76±0.63 90.03±1.49 90.06±1.17 90.19±1.32 84.81±1.13 44.78±3.61
CLAIM 91.00±0.37 91.38±0.23 90.13±0.48 90.07±0.54 90.11±0.44 86.38±0.62 25.31±0.72
COVID 90.70±1.39 91.73±0.74 90.18±1.61 90.08±1.44 90.15±1.39 89.11±1.45 65.40±2.74
EEG 90.56±0.85 91.04±0.30 89.82±1.07 89.99±1.14 89.82±0.96 86.82±0.62 35.35±1.18
GEFCom 89.34±0.23 90.62±0.12 88.50±0.15 89.05±0.16 88.83±0.16 80.58±1.29 90.46±0.73
GEFCom-R 90.56±0.60 90.69±0.39 89.95±0.75 90.13±0.61 89.97±0.66 85.86±1.08 91.97±0.71

Tail Coverage Rate ↑

MIMIC 75.22±3.08 84.64±0.95 67.54±4.99 71.42±3.58 69.76±4.47 62.53±3.73 21.16±4.37
CLAIM 76.26±0.91 84.60±0.39 68.76±1.71 69.75±2.50 71.21±1.87 59.78±2.85 4.55±0.56
COVID 70.47±4.65 84.21±0.89 65.22±5.83 68.70±5.71 69.07±4.59 67.19±5.72 40.74±4.24
EEG 75.80±1.25 87.22±0.13 70.43±2.17 69.94±2.80 71.62±1.77 65.22±1.93 18.86±0.94
GEFCom 67.84±1.66 82.71±0.15 58.26±1.20 61.72±1.48 60.36±1.63 48.51±2.06 71.45±1.54
GEFCom-R 75.41±1.26 83.00±0.31 69.14±2.10 72.96±1.57 71.51±1.88 66.64±1.98 75.65±1.71

Inverse Efficiency ↓

MIMIC 2.053±0.157 2.478±0.333 2.018±0.152 1.831±0.153 2.115±0.185 1.676±0.148 1.277±0.120
CLAIM 3.039±0.038 3.245±0.061 3.019±0.043 2.934±0.039 3.023±0.051 2.740±0.031 2.242±0.146
COVID 0.823±0.031 1.112±0.246 0.819±0.033 0.876±0.073 0.817±0.038 0.857±0.077 0.728±0.047
EEG 1.374±0.016 1.662±0.093 1.368±0.022 1.494±0.039 1.368±0.018 1.414±0.033 0.985±0.017
GEFCom 0.222±0.005 0.257±0.011 0.219±0.004 0.225±0.004 0.221±0.004 0.195±0.004 0.618±0.009
GEFCom-R 0.185±0.003 0.203±0.009 0.183±0.003 0.191±0.004 0.186±0.004 0.178±0.004 0.589±0.009

Table 7: The percentage of infinitely-wide PIs created by TQA-E for different datasets. Only a very
small percentage of the PIs are infinitely-wide.

% Infinitely-wide PI MIMIC CLAIM COVID EEG GEFCom GEFCom-R

Last 20 steps 3.10±1.23 2.18±0.36 3.40±1.47 3.78±0.97 3.84±0.17 2.31±0.52

Full TS 2.51±0.99 1.72±0.28 2.74±1.24 3.46±0.78 3.22±0.15 1.94±0.44

visits by a patient) might not be known in advance. As a result, it is not clear how to perform the
Bonferroni Correction.

Tail coverage rate over time Figure 6 shows the tail coverage rate at different values of t. Ideal
means the coverage is independent for different t within each time series. In general TQA improves
the tail coverage noticeably, but there is still gap between Ideal and TQA. TQA-E sometimes
approaches this optimal case (at the expense of creating infinitely-wide PIs).

Mean (cross-sectional) coverage over time Figure 7 shows the mean coverage rate for different
t. As expected, conformal methods show cross-sectional validity, whereas the coverage rate for
non-conformal methods vary.

Linear Regression: We repeat the experiments in Section 5 but replace the underlying LSTM with
Linear Regression (by training one model for each t, taking input from up to t− 1). The CLAIM data
is skipped in this case due to difficulty in training. The results are in Table 9 and the conclusion stays
the same.

Examples of Actual PIs Figure 8 how TQA-B and TQA-E improve the coverage for the least-covered
TSs over CFRNN (Split) (as they use the same nonconformity score). The rest of the baselines are in
Figure 9. We use random seed 1 and pick the 1-th-least-covered TS (according to the mean coverage
across all baselines) from each dataset. In general, TQA would increase the width (by lowering at) if
the first few observations of a TS shows some extremity, which is probably most noticeable in CLAIM.
CQRNN and LASplit also adapt to the widths by using different nonconformity scores. Again, we
note that the quality of TQA-B might be further improved with better prediction r̂.
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Table 8: Median and mean width of the PIs. The widths of infinitely-wide ĈTQA−E are replaced
with 2x the width of the widest finite PI.

Median Width ↓ TQA-B TQA-E CFRNN (Split) CQRNN LASplit QRNN DPRNN

MIMIC 1.741±0.165 1.639±0.146 1.753±0.169 1.443±0.120 1.640±0.172 1.279±0.116 0.493±0.023
CLAIM 2.667±0.053 2.561±0.051 2.710±0.060 2.628±0.048 2.456±0.057 2.325±0.032 0.434±0.023
COVID 0.735±0.036 0.705±0.035 0.739±0.038 0.776±0.072 0.706±0.034 0.757±0.084 0.390±0.052
EEG 1.285±0.044 1.207±0.035 1.291±0.052 1.343±0.069 1.228±0.039 1.218±0.040 0.312±0.013
GEFCom 0.201±0.004 0.196±0.004 0.198±0.004 0.204±0.004 0.191±0.004 0.155±0.005 0.428±0.006
GEFCom-R 0.171±0.008 0.174±0.005 0.170±0.008 0.171±0.004 0.164±0.005 0.149±0.005 0.458±0.009

Mean Width ↓

MIMIC 1.818±0.157 2.189±0.245 1.769±0.164 1.566±0.132 1.872±0.212 1.411±0.130 0.578±0.031
CLAIM 2.754±0.048 3.002±0.070 2.709±0.056 2.616±0.049 2.714±0.067 2.312±0.033 0.594±0.042
COVID 0.755±0.033 1.070±0.308 0.746±0.038 0.818±0.084 0.745±0.037 0.792±0.088 0.503±0.050
EEG 1.315±0.039 1.585±0.111 1.299±0.048 1.428±0.069 1.300±0.037 1.317±0.043 0.416±0.017
GEFCom 0.213±0.005 0.255±0.012 0.208±0.004 0.216±0.004 0.212±0.005 0.170±0.005 0.569±0.007
GEFCom-R 0.181±0.004 0.201±0.010 0.178±0.005 0.187±0.004 0.181±0.005 0.165±0.005 0.537±0.011
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Figure 6: Tail Coverage Rate as a function of time. We plot the mean of 50 experiments. There is,
however, still gap between TQA and Ideal.
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Figure 7: Mean coverage rate at different t. Conformal methods are valid at all t. Coverage rate for
non-conformal methods vary greatly through time.

Table 9: Mean coverage, tail coverage, and inverse efficiency with linear regression being the base
point estimator. Valid mean coverage and the best of tail coverage and inverse efficiency are in bold.
The conclusion is the same as the case of LSTM.

Coverage TQA-B TQA-E CFRNN (Split) CQR LASplit

MIMIC 90.65±1.36 91.63±0.79 89.75±1.61 89.96±1.62 89.81±1.48
COVID 90.93±1.45 91.95±0.86 90.28±1.71 90.17±1.57 90.25±1.55
EEG 90.76±1.34 90.78±0.84 89.92±1.56 90.26±1.93 90.14±1.32
GEFCom 89.66±0.17 90.46±0.12 89.32±0.14 88.98±0.28 89.21±0.16
GEFCom-R 90.57±0.63 90.78±0.42 90.08±0.72 90.13±0.66 90.12±0.59

Tail Coverage Rate ↑

MIMIC 68.80±3.88 80.73±1.52 60.59±5.64 59.40±5.23 64.36±4.88
COVID 70.38±4.04 82.20±1.51 64.35±6.00 68.30±4.75 69.41±4.94
EEG 68.11±2.73 77.66±1.27 61.09±3.96 54.45±6.58 66.81±2.70
GEFCom 73.72±0.92 81.58±0.33 69.31±0.95 70.01±1.12 71.40±0.92
GEFCom-R 75.34±0.88 81.61±0.81 70.69±1.42 72.69±1.39 73.01±1.48

Inverse Efficiency ↓

MIMIC 3.235±0.263 4.092±0.768 3.205±0.266 2.899±0.252 3.326±0.286
COVID 0.898±0.028 1.129±0.171 0.893±0.030 0.921±0.042 0.894±0.028
EEG 1.840±0.048 2.232±0.152 1.832±0.057 1.976±0.080 1.995±0.059
GEFCom 0.309±0.005 0.350±0.007 0.307±0.005 0.373±0.011 0.334±0.006
GEFCom-R 0.297±0.006 0.318±0.009 0.296±0.007 0.355±0.008 0.315±0.006
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Figure 8: Dark lines are ŷ, blue bands are the PIs, and × denotes y outside the PI. red bands
means infinitely-wide PIs for TQA-E. The adaptive-ness of TQA-B and TQA-E may be most obvious
in CLAIM and GEFCom-R. We also note that TQA-E seems to produce quite a few infinitely-wide PIs
on these least-covered TSs (somewhat as expected).
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Figure 9: Like Figure 8, but for different baselines.
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