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A Proof of Results

A.1 Proof of Theorem 1

Proof. To start, we note that the convergence of p̂tj follows from the standard law of large numbers,

as the covariates Xit are iid. To be precise, we have that p̂tj − P[Xit ∈ Sj ] = Op(1/
√
Nt).

Next, we show that moments of the potential outcomes are consistently estimated. For example,

consider ∑t
s=1

∑ns
i=1 1(Xis∈Sj)DisYis∑t

s=1

∑ns
i=1 1(Xis∈Sj)Dis

=

∑t
s=1

∑ns
i=1 1(Xis∈Sj)Dis(Yis(1)− µj(1))∑t

s=1

∑ns
i=1 1(Xis∈Sj)Dis

+ µj(1),

where µj(1) = E[Yis(1)|Xis ∈ Sj ]. We further notice that by the law of iterated expectation,

E
[
1(Xis∈Sj)Dis(Yis(1)− µj(1))

∣∣∣Fs−1

]
= E

[
1(Xis∈Sj)ê

∗
sj

(
µ(Xis, 1)− µj(1)

)∣∣∣Fs−1

]
= ê∗sjE

[
1(Xis∈Sj)

(
µ(Xis, 1)− µj(1)

)∣∣∣Fs−1

]
= 0,

where we use µ(x, 1) = E[Yis(1)|Xis = x]. Here and throughout this Supplementary Materials, we

use Fs−1 to denote the sigma-algebra formed by all information up to time s − 1. As a result,

straightforward variance computation suggests that

t∑
s=1

ns∑
i=1

1(Xis∈Sj)Dis(Yis(1)− µj(1)) = Op(
√
Nt).

Finally, we notice that the denominator satisfies

t∑
s=1

ns∑
i=1

1(Xis∈Sj)Dis =

t∑
s=1

ns∑
i=1

pj ê
∗
sj︸ ︷︷ ︸

≿ Nt

+

t∑
s=1

ns∑
i=1

(
1(Xis∈Sj)Dis − pj ê

∗
sj

)
︸ ︷︷ ︸

= Op(
√
Nt)

.

The first term on the rhs is bounded below by the order of Nt due to our assumption on pj and the

feasibility constraint, while the second term on the rhs is a sum of martingale difference sequence,

and its probability order follows from standard variance calculations. As a result, we have that

t∑
s=1

ns∑
i=1

1(Xis∈Sj)Dis ≿p Nt.

The same strategy can be used to prove the consistency of other estimated moments of the potential

outcomes.
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A.2 Proof of Theorem 2

Proof. The proof has two parts. Part I: consistency of ê∗tj. From Theorem 1, we have shown

that moments of the potential outcomes are consistently estimated, which implies that the objective

function in Problem B is uniformly consistent:

sup
c2≤ej≤1−c2:j=1,2,...,m

∣∣∣∣∣∣
m∑
j=1

p̂t−1,j

( σ̂2
t−1,j(1)

ej
+

σ̂2
t−1,j(0)

1− ej

)
−

m∑
j=1

pj

(σ2
j (1)

ej
+

σ2
j (0)

1− ej

)∣∣∣∣∣∣
≤ max

j=1,2,...,m
|p̂t−1,j − pj |Op(1) +

1

c2
max

j=1,2,...,m
|σ̂2

t−1,j(1)− σ2
j (1)|+

1

c2
max

j=1,2,...,m
|σ̂2

t−1,j(0)− σ2
j (0)|

= Op(1/
√

Nt−1).

In addition, it is routine to check that the solution to Problem A is unique.

We now discuss the welfare constraint, since it involves the estimated subgroup treatment effect.

First assume τj > 0, then the welfare constraint in Problem A for subgroup j reduces to ej ≥ 0.5.

In this case, P[τ̂t−1,j > 0] → 1, which means with probability approaching 1, the welfare constraint

in Problem B corresponds to

log
( ej
1− ej

)
≥ −

√
Nt−1δ(Nt−1)√

Nt−1τj +Op(1)
→p 0,

where→p denotes convergence in probability. Similarly, if τj < 0, then with probability approaching

1, the welfare constraint takes the form

log
( ej
1− ej

)
≤

√
Nt−1δ(Nt−1)√

Nt−1(−τj) +Op(1)
→p 0.

When τj = 0, the constraint becomes

τ̂t−1,j > 0 : log
( ej
1− ej

)
≥ −

√
Nt−1δ(Nt−1)√
Nt−1τ̂t−1,j

τ̂t−1,j < 0 : log
( ej
1− ej

)
≤

√
Nt−1δ(Nt−1)√
Nt−1(−τ̂t−1,j)

.

In either case, the constraint is nonbinding, and hence reduces to the welfare constraint in Problem

A. To summarize, we showed that both the objective function and the feasible set of treatment

allocation rules converge to their oracle counterparts. The consistency of ê∗tj then follows from

standard M-estimation arguments (such as Theorem 2.1 in Newey and McFadden 1994).

Part II: convergence of the actual treatment allocation. Now consider the actual
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treatment allocation after stage T :∑T
s=1

∑ns
i=1 1(Xis∈Sj)Dis∑T

s=1

∑ns
i=1 1(Xis∈Sj)

=

∑T
s=1

∑ns
i=1 1(Xis∈Sj)(Dis − ê∗sj)∑T
s=1

∑ns
i=1 1(Xis∈Sj)︸ ︷︷ ︸

= Op(1/
√
N)

+

∑T
s=1

∑ns
i=1 1(Xis∈Sj)ê

∗
sj∑T

s=1

∑ns
i=1 1(Xis∈Sj)

,

where the probabilistic order of the first term on the rhs follows from mean and variance calculations.

To analyze the second term, we notice that it can be further written as∑T
s=1

∑ns
i=1(1(Xis∈Sj) − pj)ê

∗
sj∑T

s=1

∑ns
i=1 1(Xis∈Sj)︸ ︷︷ ︸

= Op(1/
√
N)

+

∑T
s=1 nsê

∗
sj

N

pj
1
N

∑T
s=1

∑ns
i=1 1(Xis∈Sj)︸ ︷︷ ︸

→p 1

.

Again the probabilistic order of the first term follows from mean and variance calculations.

Finally, given the consistency of ê∗sj as we discussed in Part I and our Assumption 3 on nt,∑T
s=1 nsê

∗
sj

N
− e∗j = op(1),

which closes the proof.

A.3 Proof of Theorem 3

Proof. Part I: asymptotic normality of τ̂j . We write

√
N(τ̂j − τj) =

√
N

∑T
t=1

∑ns
i=1 1(Xit∈Sj)Dit(Yit − µj(1))∑T

t=1

∑ns
i=1 1(Xit∈Sj)Dit

−
√
N

∑T
t=1

∑ns
i=1 1(Xit∈Sj)(1−Dit)(Yit − µj(0))∑T

t=1

∑ns
i=1 1(Xit∈Sj)(1−Dit)

.

By Theorem 2,

1

N

T∑
t=1

ns∑
i=1

1(Xis∈Sj)Dis − pje
∗
j = op(1),

1

N

T∑
t=1

ns∑
i=1

(1−Dis)1(Xis∈Sj) − pj(1− e∗j ) = op(1).

Therefore, to prove the asymptotic normality of τ̂j , we can study

1√
N

∑T
t=1

∑ns
i=1 1(Xit∈Sj)Dit(Yit − µj(1))

pje∗j
− 1√

N

∑T
t=1

∑ns
i=1 1(Xit∈Sj)(1−Dit)(Yit − µj(0))

pj(1− e∗j )
,

which is a martingale difference sequence with respect to the natural filtration.

We can derive the conditional variance as

1

N

T∑
t=1

nt∑
i=1

V
[1(Xit∈Sj)Dit(Yit − µj(1))

pje∗j
−
1(Xit∈Sj)(1−Dit)(Yit − µj(0))

pj(1− e∗j )

∣∣∣Ft−1

]
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=
1

N

T∑
t=1

nt∑
i=1

{ ê∗tjσ
2
j (1)

pje∗j
2 +

(1− ê∗tj)σ
2
j (0)

pj(1− e∗j )
2

}
.

By Theorem 2, the above converges to v2j (e
∗
j ). Given our assumptions on the moments of the

potential outcomes, it is straightforward to verify Lindeberg’s condition. The asymptotic normality

then follows from the martingale central limit theorem (see, for example, Hall and Heyde 2014).

Part II: asymptotic normality of τ̂ . We write

√
N(τ̂ − τ) =

√
N
( m∑

j=1

p̂j(τ̂j − τj)
)
+
√
N
( m∑

j=1

p̂jτj − τ
)
.

From the discussion in Part I, we have that

√
N
( m∑

j=1

p̂j(τ̂j − τj)
)
=

1√
N

T∑
t=1

nt∑
i=1

m∑
j=1

1(Xit∈Sj)

(Dit(Yit − µj(1))

e∗j
− (1−Dit)(Yit − µj(0))

1− e∗j

)
+ op(1).

In addition,

√
N
( m∑

j=1

p̂jτj − τ
)
=

1√
N

T∑
t=1

nt∑
i=1

m∑
j=1

1(Xit∈Sj)(τj − τ).

The final asymptotic normality result then follows from the martingale central limit theorem and

(conditional) variance calculation.

B Additional Details on Implementation

B.1 Stage 1

In this section, we first provide implementation details of the Stage 1 experiment as mentioned in

Algorithm 1 (lines 1-2) in the main manuscript. In Stage 1, we assign treatment with probability

e1j = 1/2, for j = 1, . . . ,m. After collecting the outcome information, we update the subgroup

treatment effect estimates and the associated variances as

p̂1j =

∑n1
i=1 1(Xi1∈Sj)

n1
,

Ȳ1j(1) =

∑n1
i=1 1(Xi1∈Sj)Di1Yi1∑n1
i=1 1(Xi1∈Sj)Di1

, Ȳ1j(0) =

∑n1
i=1 1(Xi1∈Sj)(1−Di1)Yi1∑n1
i=1 1(Xi1∈Sj)(1−Di1)

,

τ̂1j = Ȳ1j(1)− Ȳ1j(0),

σ̂2
1j(1) =

∑n1
i=1 1(Xi1∈Sj)Di1

(
Yi1 − Ȳ1j(1)

)2∑n1
i=1 1(Xi1∈Sj)Di1

,
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σ̂2
1j(0) =

∑n1
i=1 1(Xi1∈Sj)(1−Di1)

(
Yi1 − Ȳ1j(0)

)2∑n1
i=1 1(Xi1∈Sj)(1−Di1)

.

B.2 The Welfare Constraint and δ(·)

We first discuss why the naive approach (i.e., setting δ(·) = 0 in the welfare constraint of Problem

B) may lead to inconsistent treatment allocation. Consider the scenario where τj = 0. The welfare

constraint in Problem A becomes non-binding (i.e., it does not restricts ej). However, with δ(·) = 0,

the welfare constraint in Problem B becomes

log
( ej
1− ej

)
τ̂t−1,j ≥ 0 ⇔ log

( ej
1− ej

)√
Nt−1τ̂t−1,j ≥ 0.

As we showed in Theorem 3,
√
Nt−1τ̂t−1,j is asymptotically N (0, v2j (e

∗
j )) if τj = 0. This implies

that the above constraint becomes

log
( ej
1− ej

)
≥ 0 ⇔ ej ≥ 0.5 with probability approximately

1

2

log
( ej
1− ej

)
≤ 0 ⇔ ej ≤ 0.5 with probability approximately

1

2
.

In other words, the naive approach leads to a feasible set that alternates between [0.5, 1] and

[0, 0.5] (subject to the additional envy-free and feasibility constraints). In this case, the solution to

Problem B will not converge to the oracle solution (from Problem A) even asymptotically.

The relaxation we introduced can be intuitively understood as a t-test of the hypothesis that τj =

0 with a diverging threshold/critical value. The particular choice of δ(Nt−1) =
√

logNt−1/Nt−1 is

related to Schwarz’s minimum BIC rule. As we discussed in the main manuscript, it is possible to

further scale the welfare constraint by a measure of the randomness in τ̂t−1,j , which takes the form

v̂2t−1,j =
1

p̂t−1,j

( σ̂2
t−1,j(1)

êt−1,j
+

σ̂2
t−1,j(0)

1− êt−1,j

)
, where êt−1,j =

∑t−1
s=1

∑ns
i=1 1(Xis∈Sj)Dis∑t−1

s=1

∑ns
i=1 1(Xis∈Sj)

.

As a final remark, the welfare constraint in Problem B is not uniformly consistent for that

in Problem A. In particular, if the true treatment effect is small in magnitude (say, if we model

τj = aj/
√
Nt−1 for some aj > 0), then the welfare constraint in Problem A and B may not coincide

even asymptotically. Loosely speaking, the relaxation we introduced leads to a down weight of

the welfare constraint when the treatment effect is small in magnitude or when it is imprecisely

estimated.

B.3 The Envy-freeness Constraint

Lastly, we provide some guidance on selecting the fairness constraints. Figure 1 below compares

estimation efficiency under different values of c1, demonstrating that the lowest estimation efficiency

corresponds to the smallest c1, suggesting that the fairest treatment allocation might lead to a
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compromise in estimation efficiency. We recognize that the ”optimal” balance between estimation

efficiency and fairness can vary based on the specific context of application. For general guidance,

we recommend setting 0.1 ≤ c1 ≤ 0.3 when fairness concern is slightly prioritized over estimation

efficiency. Conversely, when estimation efficiency is slightly prioritized over fairness, we recommend

setting 0.3 ≤ c1 ≤ 0.5 to achieve a more balanced trade-off between estimation efficiency and

fairness.

Figure 1: Standard deviation comparison with respect to various sample sizes under different values
of c1, where c1 is the user-specified value in the envy-freeness constraint.

C Additional Simulation Results

We provide additional simulation results in this section to further illustrate our proposed design.

Figure 2 shows the empirical treatment allocation for Group 1 following DGP-1 in our manuscript.

The empirical treatment allocation refers to the treatment assignment probability derived from

the optimization Problem B. The dashed line indicates the oracle treatment allocation solved from

Problem A. Figure 2 shows that the empirical subgroup treatment allocation converges to the oracle

treatment allocation fairly quickly.

In Figure 3, we provide a comparison with the rerandomization design. The simulation setup

follows DGP-1 in the main manuscript, and we further generate an additional covariate Wit ∼
Bernoulli(0.4). Given that rerandomization requires a pre-specified treatment assignment prob-

ability, we use the oracle subgroup treatment assignment probabilities from Problem A. Then,

within each subgroup, we perform rerandomization to balance the covariate W . Figure 3 shows

that given known oracle treatment assignment probabilities, the empirical treatment allocation us-

ing rerandomization can approximate the oracle allocation quite closely. However, when the oracle

treatment assignment probabilities are unknown, our design can sequentially approach the oracle

treatment allocation by learning from the collected data.
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In Table 1, we provide the coverage probabilities of our proposed design, complete randomiza-

tion (CR), and the doubly adaptive debiased coin design (DBCD) under the two data-generating

processes (DGPs) as described in the main manuscript in the simulation studies. We observe that

our proposed design reaches the nominal level coverage, which verifies the validity of our constructed

confidence interval in Section 2 of the main manuscript.

Figure 2: Empirical subgroup treatment allocation with respect to various sample sizes. The blue
dashed line indicates the oracle treatment allocation.

Figure 3: Comparison of our proposed design with the rerandomization design. The dashed lines
indicate oracle treatment allocations derived from solving Problem A in our manuscript.

D Synthetic Data Analyses

D.1 Effect of Bundling Health Insurance with Microfinancing on Loan Renewal

In a field experiment, Banerjee et al. Banerjee et al. (2014) studied the effect of bundling health

insurance with microfinancing on loan renewal. Their original data consists of household clients

of SKS Microfinance, the largest microfinance institution in India in 2006. The study randomly
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Table 1: Coverage probabilities and the associated standard errors of three designs under two
data-generating processes (DGPs) described in the main manuscript. “CR” refers to complete
randomization. “DBCD” refers to doubly adaptive biased coin design.

Proposed design CR DBCD

DGP 1
n = 100 0.93 (0.02) 0.97 (0.02) 0.92 (0.03)
n = 400 0.95 (0.01) 0.96 (0.01) 0.93 (0.02)

DGP 2
n = 100 0.96 (0.02) 0.97 (0.02) 0.94 (0.03)
n = 400 0.94 (0.01) 0.95 (0.01) 0.92 (0.03)

assigned clients to either the treatment arm, where loan renewal was bundled with health insurance,

or the control arm, where clients could renew their loans without purchasing health insurance. The

binary outcome variable represents the client’s decision to renew the loan. We refer interested

readers to the original paper for additional details on the institutional background and the study.

Figure 4: Comparison of the proposed adaptive experiment, the complete randomization design,
and the doubly adaptive biased coin design using synthetic data. (A) shows the standard deviations.
(B) shows the percentage of participants allocated to the treatment arm in each group. (C) shows
the treatment allocation under our proposed experiment strategy without the welfare constraint.

In this section, we conduct a synthetic data analysis to illustrate the effectiveness of our proposed

design. To be specific, we first employ the dataset in Banerjee et al. (2014) to estimate group-level

mean potential outcomes and their variances, and then use these estimates to generate synthetic

data. In our synthetic data analysis, we focus on estimating the log relative risk parameter and

examining the estimation efficiency and fairness of treatment allocations across different assignment

regimes. Fairness is crucial in this context, as lower-income households were more likely to forgo

the loan due to the additional financial burden of purchasing health insurance, potentially leading

to disproportionate effects. The results show that our approach significantly improves upon com-

plete randomization regarding statistical estimation efficiency. Compared with the doubly adaptive

biased coin design, treatment assignment probabilities produced by our procedure are less extreme,

and they also exhibit much less between-group variation.

To generate the synthetic data, we first subset the original data in Banerjee et al. (2014) and

select participants with a chronic disease. Then, we partition the data into five groups based on

9



annual expenditures. We then estimate the mean potential outcomes and variances thereof at the

group level, which are used to generate synthetic potential outcome variables.

After generating the synthetic data, we consider a fully adaptive experiment setting where the

treatment is assigned sequentially. We first sample n1 = 40 participants from the synthetic data

to be included in the first stage. In each subsequent stage, t = 2, . . . ,m, we randomly sample

nt = 1 participants from the synthetic data. The time horizon ranges from m ∈ {40, 80, . . . , 480}
and compare three adaptive experiment design strategies in terms of their estimation efficiency and

allocation fairness: (1) the complete randomization (CR) design, (2) the doubly adaptive biased

coin design (DBCD), and (3) our proposed adaptive experiment strategy.

We summarize the synthetic data analysis results in Figure 4. Panel (A) demonstrates that the

two adaptive design methods (our proposal and the DBCD) achieve higher estimation efficiency

than the non-adaptive procedure (complete randomization). Compared with the DBCD design, our

strategy has slightly lower efficiency. We conjecture that the slightly compromised efficiency is due

to our additional fairness constraints. Figure 4 (B) shows the fractions of participants allocated to

the treatment arm in the five groups. As expected, the actual treatment assignment probability

is very close to 0.5 with complete randomization. Under the DBCD design, the largest treatment

assignment probability is about 70% (i.e., around 70% of participants in the first group are expected

to be assigned to receive treatment). In addition, there is also a large discrepancy in treatment

assignment probabilities across groups: the difference can be as large as 20%, which clearly raises

fairness concerns. To compare, treatment probabilities constructed by our fair adaptive design

strategy are less extreme (i.e., they are closer to 50%), and they exhibit much fewer variations across

the groups. Figure 4 also suggests a natural tension between fairness and welfare constraints. Panel

(C) shows the assignment probabilities using our proposed method without the welfare constraint.

In this case, all groups receive higher treatment assignment probabilities (relative to panel B).

In sum, our proposed adaptive experimental design strategy achieves fair treatment allocation

and accounts for participants’ welfare, with limited sacrifice in estimation efficiency.

D.2 Effect of Genetically-guided Therapy on Treating Major Depressive Disor-

der Patients

In this section, we provide an additional synthetic case study to showcase the performance of

our proposed design. Here, we consider a clinical dataset investigating the treatment effect of

genetically-guided therapy on treating major depressive disorder patients (Ruaño et al., 2021). As

genetically-guided therapy potentially benefits patients, we hope to have fair treatment allocations

in different subgroups. In addition, as patient subgroups may respond differently to the therapy,

it is natural to incorporate the welfare constraint to maximize patients’ welfare. We aim to design

adaptive experiments to efficiently estimate the treatment effect of genetically guided therapy on

major depressive disorder (MDD) patients under fairness constraints. The original trial was con-

ducted at the Institute of Living at Hartford Hospital, consisting of 1459 patients (Tortora et al.,

2020). There are two considered therapies: (1) the standard therapy (control arm), and (2) the
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genetically-guided therapy (treatment arm). The outcome is the length of stay in the hospital,

measured by hours. The shorter the length of stay, the more beneficial the therapy is. The pa-

tient subgroups are defined by age: (1) 18-20; (2) 21-30; (3) 31-40; (4) 41-50; (5) 51-60; (6) > 60.

We summarize the results under our proposed design, the doubly adaptive debiased coin (DBCD)

design, and the complete randomization (CR) design in Figure 5.

Figure 5: Comparison of the proposed adaptive experiment, the complete randomization design,
and the doubly adaptive biased coin design in our case study. (A) shows the standard deviation
comparison. (B) shows the percentage of participants allocated to the treatment arm in each group

Figure 5 (A) shows that compared with the DBCD design, our strategy is slightly comprised in

estimation efficiency. Figure 5 (B) shows that the treatment assignment probabilities are roughly

equal under the CR design. Under the DBCD design, there is a rather large discrepancy in treatment

assignment probabilities across the six groups, while the treatment probabilities under our fair

adaptive design strategy are less extreme.
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