
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STEPTOOL: A STEP-GRAINED REINFORCEMENT
LEARNING FRAMEWORK FOR TOOL LEARNING IN
LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite having powerful reasoning and inference capabilities, Large Language
Models (LLMs) still need external tools to acquire real-time information or domain-
specific expertise to solve complex tasks, which is referred to as tool learning.
Existing tool learning methods primarily rely on tuning with expert trajectories,
focusing on token-sequence learning from a linguistic perspective. However,
there are several challenges: 1) imitating static trajectories limits their ability
to generalize to new tasks. 2) even expert trajectories can be suboptimal, and
better solution paths may exist. In this work, we introduce StepTool, a novel step-
grained reinforcement learning framework to improve tool learning in LLMs. It
consists of two components: Step-grained Reward Shaping, which assigns rewards
at each tool interaction based on tool invocation success and its contribution to
the task, and Step-grained Optimization, which uses policy gradient methods to
optimize the model in a multi-step manner. Experimental results demonstrate that
StepTool significantly outperforms existing methods in multi-step, tool-based tasks,
providing a robust solution for complex task environments.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable abilities in reasoning and inference,
leading to impressive performance across a wide range of tasks (Brown et al., 2020; Zeng et al., 2022;
OpenAI, 2023). However, some complex tasks that require real-time information or domain-specific
knowledge often exceed the capacities of LLMs alone. In recent years, tool learning (Qin et al., 2024;
Patil et al., 2023; Qin et al., 2023) has emerged as a promising solution by augmenting LLMs with
external tools (APIs). As shown in Figure 1, LLMs can dynamically select, invoke, and interact
with tools to receive real-time responses. After multi-step interactions with external tools, LLMs can
effectively gather the necessary information to complete complex and challenging tasks.

To enhance the tool-learning capabilities of LLMs, most approaches rely on Supervised Fine-Tuning
(SFT) (Qin et al., 2023; Patil et al., 2023), in which LLMs are trained to imitate expert-generated
trajectories in a text generation manner. Each trajectory is a sequence composed of a user’s query,
multiple tool-callings and responses, illustrated in Figure 1. Despite its straightforward implemen-
tation, SFT encounters two key limitations in training LLMs for tool learning. Firstly, imitating
static pre-defined tool sequences limits the model’s ability to adapt to new tasks or environments.
Secondly, expert trajectories can successfully complete tasks but may not be the optimal sequence of
tool invocations. Blindly imitating these trajectories can lead to suboptimal task-solving performance.

In addition to SFT, we propose using Reinforcement Learning (RL) as another strategy for tool
learning, offering a more dynamic perspective by treating tool learning as a sequential decision-
making process. Under the RL perspective, each step of tool invocation is considered as an action that
leads to a state transition, and models are trained from the action-state transitions. Previous works
have explored applying RL to optimize LLMs in aligning with human preferences (RLHF) (Christiano
et al., 2017; Ouyang et al., 2022) or mathematical reasoning (Lightman et al., 2023; Wang et al.,
2023; Shao et al., 2024). Nevertheless, these methods are not well-suited for tool learning due to
several key challenges: 1) Tool learning involves multiple decision steps and real-time feedback from
external tools and environments. In contrast, RLHF is single-step based, and the steps in mathematical

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Tool Response

User

Assistant
Calling Tool 2

Tool Response

Assistant

Tool
Calling Tool 3

Tool

Assistant

Tool Learning
Supervised Fine-tuning

Step-grained
Reinforcement Learning

Query Tool 2 Tool
Response Tool 3 Tool

Response
Final

Answer

Step 1 Step 2

Task Solved

Expert
Path

Step

Query

Tool 1

Tool 2
Tool

Response
Tool 3

Final
Answer

Tool 1

Tool 2

Tool 3

Tool
Response

Action-State
Transitions

Tool
Response

Tool
Response

Tool 4Tool 4

Final
Answer

Tool
Response

Tool
Response

Tool
Response

Tool
Response

Tool
Response

Tool
Response

Final
Answer

Final
Answer

Final
Answer

Final
Answer

Query: Can you provide
me with the current weather
for Miami? Also, let me
know about the air quality
for the past 24 hours."

Final Answer: In Miami, the
current weather data is as
follows:
- Temperature: 28.2°C
...
Over the past 24 hours,
the air quality in Miami has
an AQI around 68-69 ...

Tool
Response

Action State

Figure 1: Tool learning scenario (left) and overall comparison between Supervised Fine-Tuning and
Step-grained Optimization (right). SFT imitates expert trajectories, while the step-grained method
utilizes step-level rewards to learn action-state transitions for optimization.

reasoning tasks are generated by the LLM itself, without feedback from the environment. 2) The
reward of each step in tool learning is more complex, as it should consider not only the success of the
tool invocation but also its contribution to task completion.

To harness the potential of RL in tool learning with multi-step environment interactions and address
the limitations of existing methods, we propose StepTool, a novel step-grained reinforcement learning
framework for tool learning, which models tool learning as a sequential decision-making process
and treats each tool interaction as a critical decision point that directly impacts task completion, as
shown in Figure 1. Specifically, StepTool consists of two core components: Step-grained Reward
Shaping and Step-grained Optimization. For Step-grained Reward Shaping, we design rewards at
each step based on both the accuracy of tool invocation and the contribution to the overall task
completion, taking into account characteristics of intermediate actions in this scenario, i.e., well-
defined formats and explicit task objectives. These step-grained rewards offer richer signals for
tool learning, effectively guiding the model in decision-making. For Step-grained Optimization,
we propose a step-grained reinforcement-based optimization method based on the theory of policy
gradient (Williams, 1992; Sutton et al., 1999). This method ensures adaptability to dynamic, multi-
step interactions, addressing the limitations of single-step approaches like RLHF.

In summary, this work makes the following contributions:

• We identify the limitations of static supervised fine-tuning (SFT) and the unsuitability of classic
RLHF for tool learning, and introduce StepTool, a novel step-grained reinforcement learning
framework. StepTool considers tool learning as a multi-step decision-making process, enabling
models to learn from action-state transitions with real-time environment feedback.

• We design step-grained rewards tailored to tool learning scenarios, focusing on both the accuracy
of tool invocation and the contribution to the overall task. These richer signals guide the model’s
decision-making. Additionally, we propose a step-grained optimization method based on policy
gradients, ensuring adaptability to dynamic, multi-step interactions.

• Comprehensive experiments with three open-sourced models demonstrate the effectiveness of
StepTool, confirming its superiority in enhancing the performance of solving complex tasks.

2 RELATED WORK

Tool Learning. Recent advancements in tool-augmented LLMs have expanded their ability to
utilize external tools for complex tasks. Early research (Chen et al., 2023; Shen et al., 2024; Schick
et al., 2024) propose to enable LLMs to interact with diverse external tools like program executors,
search engines, and QA system. Building on these initial efforts, subsequent models have focused
on more extensive interactions with real-world APIs and tools. Qin et al. (2023); Patil et al. (2023)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

incorporate vast APIs from platforms like RapidAPI and TorchHub, training LLaMA model (Touvron
et al., 2023) for tool-based tasks in a Supervised Fine-Tuning (SFT) manner. Additionally, some
research efforts have concentrated on constructing verifiable and diverse datasets for SFT training
Tang et al. (2023); Abdelaziz et al. (2024); Liu et al. (2024). Concurrent research (Chen et al.,
2024) has explored the use of Direct Preference Optimization (DPO) (Rafailov et al., 2024) for Tool
Learning. However, this approach constructs preference data pairs based on task completion, without
accounting for the quality of intermediate steps. In contrast, our work explicitly shapes step-grained
rewards and leverages them for step-grained reinforced optimization.

Process Supervision in LLMs. Process supervision has been extensively explored to enhance
long-chain reasoning in LLMs. Previous studies (Lightman et al., 2023; Uesato et al., 2022; Ma et al.,
2023; Shao et al., 2024; Wang et al., 2023) leverage pre-trained process reward models and optimize
reasoning using RLHF (Ouyang et al., 2022). Recent advancements, such as step-level preferences
in mathematical reasoning (Lai et al., 2024), apply DPO using step-level correctness. Unlike these
works, our approach focuses on tool learning, where steps involve real-time interactions with external
tools rather than text-based reasoning.

Reinforcement Learning for Multi-Step Textual Tasks. Recent advancements (Carta et al., 2023;
Tan et al., 2024; Zhou et al., 2024; Wen et al., 2024) apply reinforcement learning (RL) to align
LLMs for multi-step textual tasks. Carta et al. (2023); Tan et al. (2024) typically constrain the action
space to a restricted subset, focusing on optimizing actions as a whole. In contrast, StepTool tackles
tool learning, where the action space is expansive, involving complex and lengthy responses from
environments. Examples of scenarios, illustrating the differences between task types, are provided
in Appendix F. Methodologically, while prior works (Zhou et al., 2024; Wen et al., 2024) often rely
on action-level models like Q-functions Q(s, a) and value functions V (s) to estimate intra-action
influences, StepTool directly computes token-level advantages, capturing intra-action and inter-action
influences without requiring action-level estimations. This approach avoids the inaccuracies of
action-level models, offering a more efficient optimization framework for tool learning.

3 PROBLEM FORMULATION

In this work, we propose to model the tool learning process in LLMs as a multi-step decision-making
problem, which can be formulated as a Markov Decision Process (MDP). The MDP is represented by
the tuple M = (S,A,P, R, γ), with the following meanings:

• S: The state space, where each state st ∈ S represents the current context or environment responses
at time step t, in connection with prior tool interactions.

• A: The action space, where each action at ∈ A corresponds to calling an external tool (API) or
generating a final response (as a terminal action) at time t.

• P: The state transition dynamics, P (st+1|at, st) defines the probability of transitioning to a new
state st+1 given the current state st and the action at, representing how the environment changes
as tools are applied.

• R: The reward function, which assigns rewards rt = R(st, at) based on the current state st and
action at, representing the effectiveness of this tool-calling step.

• γ: The discount factor, which determines how the model balances immediate rewards with long-
term task-solving performance.

Here we formulate the tool selection strategy of LLM as a decision-making policy πθ, parameter-
ized by θ, which governs the selection of actions (tools) based on the current state. A trajectory
τ = {s1, a1, s2, a2, ..., sT , aT } represents a sequence of states and actions over time, reflecting the
multiple interactions between LLMs and external tools or environments.

To maximize the final task-solving performance, the model seeks to optimize the expected reward
Rθ, which is given by:

Rθ =
∑
τ

R(τ)πθ(τ) = Eτ∼πθ(τ) [R(τ)] , (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where R(τ) represents the reward for a given trajectory τ , and πθ(τ) defines the probability of
generating that trajectory under the policy πθ. The gradient of the expected reward can be computed
to update the model’s parameters (Williams, 1992), thereby enhancing the task-solving capabilities of
the LLM:

∇Rθ =
∑
τ

R(τ)∇πθ(τ) =
∑
τ

R(τ)πθ(τ)∇ log πθ(τ)

= Eτ∼πθ(τ) [R(τ)∇ log πθ(τ)]

= Eτ∼πθ(τ),(st,at)∼τ

[
R(τ)

T∑
t=1

∇ log πθ(at|st)

]
.

(2)

To enhance learning efficiency and stabilize training, we replace R(τ) with the advantage function
Â(st, at) as most policy-gradient-based RL algorithms (Williams, 1992; Schulman et al., 2017) did,
which measures the relative benefit of a given action compared to the expected return of the state:

Â(st, at) = Gn
t − V (st) = rt + γrt+1 + γ2rt+2 + . . .+ γT−trT − V (st), (3)

where Gn
t represents the estimated future reward, and V (st) is the value function, estimating the

expected return when starting from state st and following the current policy thereafter.

4 METHOD

Aimed at enhancing LLMs’ ability to use multiple tools for complex task solving, we propose a
novel step-grained reinforcement learning framework, StepTool, which is designed around the core
principles of the advantage function (Equation 3) and the policy gradient formulation (Equation 2).

As illustrated in Figure 2, StepTool consists of two primary components: Step-grained Reward
Shaping and Step-grained Optimization. Step-grained Reward Shaping assigns rewards at each tool
interaction step, evaluating both the accuracy of tool invocation and the contribution to the overall
task completion. Step-grained Optimization applies policy gradient methods to optimize the model
in a multi-step manner. Together, these components provide step-grained feedback and optimize
multi-step decisions, enhancing task-solving performance in complex environments.

4.1 STEP-GRAINED REWARD SHAPING

Step-grained Reward Shaping provides step-level reward signals for intermediate steps, effectively
guiding the model in decision-making. In tool learning scenarios, the steps of tool invocation are
characterized by well-defined formats and explicit task-oriented goals, naturally lending themselves
to easier step-grained reward shaping. These step-grained rewards offer explicit feedback for each
action, addressing the limitations of delayed rewards.

4.1.1 STEP-GRAINED REWARD DESIGN

Considering well-defined formats and explicit task objectives of intermediate tool-calling actions,
we have designed two key factors: the success of the tool call action (abbreviated as SuccCalling),
and the contribution to the overall task completion (abbreviated as Contribution). For the final step,
we directly link the reward to the completion of the task (abbreviated as IsSolved), representing to
whether the user’s query is solved.

SuccCalling. The SuccCalling metric evaluates whether the model successfully executes a tool call
with the correct format and content (i.e. tool name and arguments). SuccCalling can be formally
represented as r̂SCt = SuccCalling(at, st+1), where the reward at time t is determined by the action
at and the subsequent state st+1.

However, simply making a correct tool call does not guarantee progress toward solving the task. To
further guide the model, we introduce the Contribution metric, which evaluates how much the tool’s
action aids the overall task solution.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Step-grained Reward Shaping Step-grained Optimization

Step 1 Step 2

token token token token

Step

Query

Tool 1

Tool 2
Tool

Response
Final

Answer

Tool 1

Tool 2

Tool 3

Tool
Response

Tool
Response

Tool
Response

Tool
Response Tool

Response

Tool
Response

Tool
Response

Final
Answer

SuccCalling

Contribution

SuccCalling

ContributionAnnotators
Choices

Step 1 Step 2 Step

Policy Gradient

token token

IsSolved

Figure 2: The architecture of StepTool, a step-grained reinforcement learning framework, featuring
Step-grained Reward Shaping for assigning rewards at each tool interaction and Step-grained Opti-
mization for refining decision-making based on policy gradient.

Contribution. The Contribution metric evaluates the extent to which the tool’s action facilitates
the overall task solution. Actions that contribute minimally, such as redundant steps or irrelevant
outputs, receive lower rewards. The Contribution score is based on the relationship between the
current action and the final task-solving action, formally defined as r̂Con

t = Contribution(at, aT).

IsSolved. For the final step, the reward is directly associated with whether the task has been
successfully completed. The IsSolved metric evaluates the final answer based on the initial user query,
represented as r̂ISt = IsSolved(q, aT). This reward only depends on the final step and the correctness
of the response in addressing the user’s query.

Formally, the reward for each action at step t is defined as:

r̂t =

{
α · r̂SCt + r̂Con

t = α · SuccCalling(at, st+1) + Contribution(at, aT), t = 1, 2, ..., T − 1

r̂ISt = IsSolved(q, aT), t = T,
(4)

where α is a scaling factor to balance the weight of each component. To ensure consistency, rewards
for both the intermediate steps and the final step are normalized to a uniform scale.

4.1.2 STEP-GRAINED REWARD ACQUISITION

To generate training data with step-grained rewards, we first collect multiple trajectories from
the model’s own inferences across tasks in the training set, each comprising multiple interactions
between the model and external tools or environments. Step-grained rewards, derived from our
reward components, can be assigned through various methods, such as automated rule-based models,
human annotations, or advanced models like GPT-4 (OpenAI, 2023) (with the annotation prompts
detailed in Appendix C). Considering the significant time and financial costs associated with human
annotation, we primarily rely on a combination of rule-based systems and GPT-4 to handle the
annotation process. These step-grained annotated data can be used for offline reinforcement learning
optimization or to train a reward model for online training.

4.2 STEP-GRAINED OPTIMIZATION

Addressing the limitations of single-step approaches like RLHF (Ouyang et al., 2022), we propose a
step-grained reinforced optimization strategy based on policy gradient that optimizes all prior steps,
ensuring adaptability to dynamic, multi-step interactions.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2.1 STEP-GRAINED OPTIMIZATION OBJECTIVE

Building on the problem formulation (section 3), we now extend the gradient of the expected reward
to a token-level consideration. Assumed each action at consists of a sequence of Lt tokens, the
gradient of the expected return Rθ at the step level is expressed as:

∇Rθ = Eτ∼πθ(τ),(st,at)∼τ

[
T∑

t=1

Â(st, at)

Lt∑
i=1

∇ log πθ(a
i
t|st, a1:i−1

t)

]
, (5)

where Â(st, at) represents the advantage function for the action sequence at at step t, which is
composed of Lt tokens. Through our step-grained reward shaping mechanism, we are able to
calculate rewards at each time step t in the trajectory. To better reflect the advantage of each action
sequence, we implement the advantage function Â(st, at) with our step-grained rewards r̂t as:

Â(st, r̂t, at) = Gn
t − V (st) = r̂t + γr̂t+1 + γ2r̂t+2 + · · ·+ γT−tr̂T − V (st). (6)

The term Gn
t reflects the cumulative future rewards based on these step-grained rewards r̂t, discounted

by factor γ, extending from step t onward, while V (st) is the value function for the current state.

Our optimization objective is thus formalized as:

Lθ(π) = Eτ∼πθ(τ),(st,at)∼τ

[
T∑

t=1

Â(st, r̂t, at)

Lt∑
i=1

log πθ(a
i
t|st, a1:i−1

t)

]
. (7)

This objective reflects the optimization of the policy πθ by taking into account the step-level advantage
with our step-grained rewards, encouraging the model to select actions that yield higher reward gains.

Additionally, it should be noted that classic RLHF (Ouyang et al., 2022) typically optimizes “prompt-
response” data with final rewards based on human preferences, which is equivalent to treating the task
as a single step (T = 1). However, in the scenario of tool learning involving multi-step interactions
with external environments, each trajectory consists of multiple intermediate steps. Our method
addresses the more complex case of T > 1 by applying step-grained rewards and optimizing actions
at each step, ensuring both immediate and future outcomes are taken into account.

4.2.2 A PRACTICAL INSTANTIATION WITH PPO

Our framework is compatible with any policy gradient-based reinforcement learning algorithm. As a
practical example, we implement the Proximal Policy Optimization (PPO) (Schulman et al., 2017)
algorithm to demonstrate its application. Here, we estimate the advantage function using Generalized
Advantage Estimation (GAE) to improve stability:

Â(st, r̂t, at) = δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1δT−1,

δt = r̂t + γV (st+1)− V (st).
(8)

To achieve stable training, we employ the PPO-clip version, which introduces a clipping mechanism
to prevent large updates during optimization. The loss function based on the clipped PPO objective is
given by:

Lppo
θ (π) = Êτ∼πθ(τ),(st,at)∼τ

[
min

(
T∑

t=1

Â(st, r̂t, at)

Lt∑
i=1

log πθ(a
i
t|st, a1:i−1

t)

log πθ′ (ait|st, a1:i−1
t)

,

T∑
t=1

Â(st, r̂t, at)

Lt∑
i=1

clip
(

log πθ(a
i
t|st, a1:i−1

t)

log πθ′ (ait|st, a1:i−1
t)

, 1− ϵ, 1 + ϵ

))]
,

(9)

where πθ′ represents the represents the old policy used to generate the previous trajectories, and ϵ is a
hyperparameter that controls the allowable deviation between the current and old policies.

To further stabilize training, we also introduce a per-token KL divergence penalty from the old policy
at each token, as proposed in RLHF (Ouyang et al., 2022). This helps to prevent large policy shifts
during optimization. For our experiments, we apply the PPO version of our framework, which ensures
robust performance in multi-step tool-based tasks.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Benchmark & Evaluation Metrics. We use StableToolBench (Guo et al., 2024), an improved
version of ToolBench (Qin et al., 2023), consisting of 765 tasks across six subsets with varying tool
categories and complexities. We applied two key metrics provided by this benchmark for evaluation:
pass rate, measuring the proportion of tasks the model solves, and win rate, indicating how often our
method outperforms baselines.

Table 1: Statistics of test tasks in StableToolBench. Ins., Cat. and Tool stand for the Instruction,
Category, and Tool subgroup in the test set, respectively.

I1 Ins. I1 Cat. I1 Tool I2 Cat. I2 Ins. I3 Ins.

Tasks 163 153 158 106 124 61
Candidate API 862 644 794 728 690 352
Relevant API 371 328 358 301 261 180

Baselines. Tool learning is an emerging area where most existing work relies on supervised fine-
tuning (SFT) to enhance the tool-using capabilities of LLMs (Qin et al., 2023; Patil et al., 2023;
Abdelaziz et al., 2024). While these works vary in dataset construction, we adopt SFT as a baseline
using the same training data. As one of the first works introducing RL-based optimization for tool
learning, relevant baselines are limited. We implemented a classic RLHF-PPO baseline, adapting
RLHF (Ouyang et al., 2022) to tool learning tasks, designed to handle single-step data. We evaluated
our framework on three open-source models: ToolLLaMA-2-7b-v2(ToolLlama) (Qin et al., 2023),
Llama3.1-8B-Instruct (Llama3.1) (Touvron et al., 2023), and Qwen2-7B-Instruct (Qwen2) (Yang
et al., 2024), using two strategies: Chain of Thought (CoT) (Wei et al., 2022) and Depth-First
Search Decision Tree (DFSDT) (Qin et al., 2023). To ensure fairness in data origins, we excluded
Direct Preference Optimization (DPO) Rafailov et al. (2024) due to the requirement for constructing
comparative data.

Training Setting. For SFT, Llama3.1 and Qwen2 are trained with static expert paths from GPT-
4 (OpenAI, 2023), with training tasks sampled from ToolBench (Qin et al., 2023). ToolLlama is di-
rectly applied as it had already been pre-trained through similar manner. For RLHF-PPO and our Step-
Tool, we obtain responses and interaction paths generated by each model towards user query samples
of 5, 000 training tasks. We use both rule-based models and GPT-4 (gpt-4-turbo-2024-04-09)
to annotate step-grained. More details of experiment settings can be found at Appendix B. For a fair
comparison, we optimize all models with the default learning rate of 1e−5, batch size 8, and an initial
KL coefficient 0.3 in the same experimental environment with four NVIDIA A100 GPUs.

5.2 MAIN RESULTS

Table 2 presents the performance comparison of StepTool with SFT and RLHF-PPO across three
base models and two strategies, including the closed-source model gpt-3.5-turbo-0125 as a
reference benchmark. Below are some key observations:

• StepTool consistently outperforms SFT and RLHF-PPO across most subsets for the same base
model and strategy, demonstrating the effectiveness of StepTool. Notably, under the DFSDT
strategy on Qwen2, StepTool achieves a pass rate of over 60% on all subsets except for ‘I2 Ins.’.

• The improvement varies across subsets. For simpler subsets like I1 Tool,’ StepTool shows moderate
gains of 1%-4%, whereas for more complex subsets like ‘I3 Ins.,’ improvements range from
5%-13%. It indicates StepTool’s strength in handling tasks involving multiple tools and categories.

• StepTool generates better solution paths, as indicated by the win rate metric. Figure 3 shows
StepTool’s win rates against baselines across three subsets, consistently outperforming SFT and
RLHF-PPO on ToolLLaMA with win rates from 50% to 65.8%, further demonstrating its advantage
in tool-based task solving.

To further understand the model’s behavior, we also conducted experiments on step length to evaluate
its impact on planning and task decomposition. More detailed analysis can be found in Appendix A.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Performance comparison between StepTool and other baselines on Pass Rate. We run all
models once and take the average results from three times evaluations. StepTool performs best most
of the time.

BaseModel Strategy Method Pass Rate (%)

I1 Ins. I1 Cat. I1 Tool I2 Cat. I2 Ins. I3 Ins. Average

GPT-3.5 CoT / 53.8±1.2 48.0±0.7 51.4±1.2 55.5±1.2 43.4±1.3 53.8±0.4 51.0±1.0

DFSDT / 60.0±0.5 53.5±1.3 65.7±0.5 61.6±1.2 50.5±0.7 65.6±2.7 59.5±1.2

ToolLlama

CoT
/ 54.2±0.5 50.3±0.8 56.5±1.5 52.0±0.6 45.4±0.6 37.2±1.0 49.3±0.8

RLHF-PPO 55.0±1.9 50.5±0.9 42.3±0.7 46.4±0.7 42.1±1.6 35.2±1.2 45.3±1.2

StepTool 58.7±1.8 57.8±1.7 57.2±0.7 52.7±0.8 52.7±1.0 42.1±1.5 53.5±1.3

DFSDT
/ 57.0±1.0 52.3±1.5 57.5±1.2 52.4±0.7 49.7±1.7 53.8±1.9 53.8±1.3

RLHF-PPO 57.5±1.5 54.2±0.5 53.5±2.0 50.8±1.2 48.1±0.8 43.2±0.4 51.2±1.1

StepTool 59.7±0.5 55.9±0.0 58.4±1.2 52.8±1.2 51.3±0.2 66.7±0.4 57.5±0.6

Llama3.1

CoT
SFT 53.9±1.2 52.6±1.4 51.9±0.9 52.2±1.7 44.7±0.4 36.3±0.8 48.6±1.1

RLHF-PPO 50.2±0.9 57.8±0.8 53.0±0.6 52.3±1.6 49.2±1.5 38.0±1.5 50.1±1.2

StepTool 54.3±1.0 56.4±0.3 53.2±0.9 53.9±1.7 49.7±0.8 42.6±2.4 51.7±1.2

DFSDT
SFT 58.8±1.2 58.0±1.6 59.8±0.9 53.9±1.9 53.5±0.9 45.9±1.3 55.0±1.3

RLHF-PPO 58.9±0.7 61.4±0.7 59.9±1.0 55.9±1.0 49.5±0.0 44.8±0.4 55.1±0.9

StepTool 59.3±0.8 60.9±1.3 60.2±1.3 56.2±1.6 59.3±1.4 50.5±1.0 57.7±1.2

Qwen2

CoT
SFT 53.0±0.6 54.5±0.7 59.9±1.2 54.0±0.3 45.6±1.4 40.7±0.8 51.3±0.8

RLHF-PPO 58.8±0.9 54.9±0.7 57.0±0.5 54.3±1.0 45.1±1.0 48.4±3.1 53.1±1.2

StepTool 59.6±1.1 56.1±0.8 61.8±0.8 54.8±0.6 44.5±2.6 48.6±1.9 54.2±1.3

DFSDT
SFT 63.7±1.3 59.3±1.3 64.8±1.0 56.7±1.1 49.1±2.1 57.7±1.0 58.6±1.3

RLHF-PPO 64.1±0.3 58.9±2.4 66.9±2.2 59.8±0.8 49.8±1.2 54.4±1.7 59.0±1.4

StepTool 65.6±1.8 60.8±0.3 68.4±1.6 60.9±0.9 51.1±1.8 65.3±1.7 62.0±1.4

0% 20% 40% 60% 80% 100%
Win Rate in I1 tool

StepTool v.s.
PPO (DFSDT)

StepTool v.s.
SFT (DFSDT)

StepTool v.s.
PPO (COT)

StepTool v.s.
SFT (COT)

50%

0% 20% 40% 60% 80% 100%
Win Rate in I2 Cat.

50%
Win Tie Lose

0% 20% 40% 60% 80% 100%
Win Rate in I3 Ins.

50%

Figure 3: Win rates of StepTool against other methods based on ToolLlama across three randomly
selected subsets. StepTool has a win rate over 50% against all baselines.

5.3 PASS@K: ASSESSING KNOWLEDGE DISCOVERY VS. PRIOR RE-WEIGHTING

We computed Pass@k metrics, widely used in domains like mathematical reasoning (Ni et al., 2022;
Havrilla et al., 2024), to assess whether StepTool enables models to discover new knowledge or
merely re-weight prior knowledge. Experiments were conducted on ToolLlama before and after
StepTool optimization under CoT strategy, sampling 8 trajectories per task under a temperature setting
of 0.7. Due to the time cost of real-world API interactions, 20 tasks from each StableToolBench
subsets (Guo et al., 2024) were randomly selected, with results averaged over three independent
evaluations.

As shown in Table 3, ToolLlama optimized with StepTool outperforms ToolLlama across Pass@2,
Pass@4, and Pass@8 metrics in most experimental settings. The improved Pass@k scores (across
all values of k) suggest that the model is not merely re-weighting its prior knowledge but is also
benefiting from the discovery of new knowledge during RL optimization.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Pass@k performance comparison between ToolLlama with and without StepTool. Experi-
ments were conducted under CoT strategy, sampling 8 trajectories per task.

BaseModel Method I1 Ins. I1 Cat. I1 Tool I2 Cat. I2 Ins. I3 Ins. Average

Pass@2

ToolLlama / 58.3±3.1 54.2±5.4 51.7±2.4 50.0±0.0 50.8±5.1 55.0±1.0 53.3±2.8

+ StepTool 58.3±1.2 53.3±2.4 70.8±4.2 53.3±2.4 68.3±2.4 60.0±4.1 60.7±2.8

Pass@4

ToolLlama / 65.8±4.2 60.0±5.4 56.7±2.4 66.7±6.2 61.7±2.4 62.5±2.0 62.2±3.8

+ StepTool 65.0±2.0 61.7±3.1 80.8±4.2 67.5±2.0 74.2±1.2 70.0±4.1 69.9±2.8

Pass@8

ToolLlama / 70.8±4.2 65.0±5.4 61.7±2.4 68.3±4.7 71.7±2.4 68.3±2.4 67.6±3.6

+ StepTool 66.7±1.2 70.0±2.0 80.8±4.2 67.5±3.1 79.2±4.2 76.7±5.1 73.5±3.3

5.4 ABLATION STUDY: IMPACT OF STEP-GRAINED COMPONENTS

To evaluate the contributions of each step-grained component in StepTool, we tested two variants:
- w/o Step-grained Reward, where intermediate rewards are set to 0, and - w/o Step-grained Opt,
where sub-trajectories ending with intermediate actions are optimized with PPO. As shown in Table 4,
removing either step-grained rewards or step-grained optimization results in significant performance
degradation. These results highlight the importance of intermediate rewards for providing informative
signals and the limitations of traditional RLHF-PPO in capturing step dependencies. Both components
are critical for the effectiveness of our framework in solving multi-step tasks.

Table 4: Ablation study on two components of StepTool. Eliminating each component leads to
reduced performance.

Method Pass Rate (%)
I1 Ins. I1 Cat. I1 Tool I2 Cat. I2 Ins. I3 Ins. Average

ToolLlama + StepTool 58.7±1.8 57.8±1.7 57.2±0.7 52.7±0.8 52.7±1.0 42.1±1.5 53.5±1.3

- w/o Step-grained Reward 57.2±2.6 50.5±0.4 45.1±0.8 44.9±1.5 51.1±1.5 39.9±0.8 48.1±1.3

- w/o Step-grained Opt 57.7±1.5 52.2±1.3 43.0±1.4 45.3±0.8 41.8±1.1 41.5±1.5 46.9±1.3

ToolLlama 54.2±0.5 50.3±0.8 56.5±1.5 52.0±0.6 45.4±0.6 37.2±1.0 49.3±0.8

5.5 ANALYSIS OF TOOL INVOCATION SUCCESS RATES

ToolLLaMA Qwen278

79

80

81

82

83

84

85

86

To
ol

 In
vo

ca
tio

n
Su

cc
es

s R
at

es
 (%

)

80.18

82.73
82.37

82.9382.95

84.42

83.01

85.31Base Model (DFSDT)
 + StepTool (DFSDT)
Base Model (CoT)
 + StepTool (CoT)

Figure 4: Tool invocation success rates
for different methods using ToolLlama
and Qwen2 base models.

To verify the effectiveness of our method in improving
tool invocation during intermediate steps, we calculate the
average success rates of tool invocations across all interme-
diate steps in the test sets for both ToolLLaMA and Qwen2
models. As illustrated in Figure 4, StepTool consistently
improves the success rates of intermediate tool invocations
in both CoT and DFSDT settings, demonstrating enhanced
tool accuracy and effectiveness in multi-step tasks.

5.6 QUALITATIVE ANALYSIS

We conducted a qualitative analysis to understand how
StepTool improves intermediate actions. Figure 5 illus-
trates a case where StepTool corrects a wrong tool selection by ToolLlama. More examples are
available in Appendix E. In this example, the user requests channel information, video comments,
and streaming sources for movies. ToolLlama initially retrieves the correct channel info and video
comments but mistakenly calls the ‘getvideoscomment’ tool again instead of switching to the ‘down-
load_stream’ tool. After applying StepTool, the model correctly uses the ‘download_stream’ tool,
providing the streaming link and fulfilling the request. This demonstrates StepTool’s effectiveness in
optimizing intermediate decisions for complex tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 CONCLUSION

In this work, we proposed StepTool, a novel step-grained reinforcement learning framework that
enhances LLMs’ ability to solve complex, multi-step tasks using multiple tools. StepTool features
two core components: Step-grained Reward Shaping, which evaluates tool invocation success
and task contributions, and Step-grained Optimization, which uses policy gradient methods to
optimize decision-making at each step. Experiments with three open-source models demonstrate
its effectiveness in improving task-solving performance. StepTool offers a fresh perspective on
optimizing tool-use tasks, complementing SFT-based approaches and paving the way for future RL
innovations tailored to tool learning.

LIMITATIONS

Despite the superior performance of this work, several limitations must be acknowledged. First,
consistent with prior studies (Shen et al., 2023; Rafailov et al., 2024), the PPO training process
can be unstable. We have included all experimental setups and parameter settings in our code
repository to ensure reproducibility. Second, despite achieving notable results, there is room for
further improvement. Our method supports online multi-round data collection and optimization, but
due to time and cost constraints, we conducted only a single round of offline training. This likely
limited the model’s full potential for performance gains.

A Case of Correcting Wrong Tool Selection

ToolLlama
User Query: I’m planning a movie night
with my friends and I need some recom-
mendations. Get me the channel info for
’Paramount Pictures’, and the comments for
the video with ID ’123456’. Also, find a
website where I can stream or download the
movie with the ID ’UxxajLWwzqY’. Begin!

Step 1: Tool: getchannelinfo
Args: {"channel_id": "Paramount Pictures"}
Tool Response: Paramount Pictures is a ma-
jor American film studio, offering ...

Step 2: Tool: getvideoscomment
Args: {"video_id": "123456"}
Tool Response: {"user": "alicewonderland",
"comment": "Insightful video, learned a lot!",
"timestamp": "2023-10-05T08:21:45Z" ...

Step 3: Tool: getvideoscomment
Args: {"video_id": "UxxajLWwzqY"}
Tool Response: {"user": "video_fanatic",
"comment": "This video blew my mind! The
quality is top-notch.", "timestamp": "2023 ...
Wrong Tool Selection

Step 4: Finish
...The channel info for ‘Paramount Pictures’...
The comments for the video with ID ‘123456’
are as follows: ‘Insightful video, learned a
lot!’ - alicewonderland, ... The comments
for the video with ID ’UxxajLWwzqY’ are as
follows: ‘This video blew my mind!...

Task Not Solved.

ToolLlama with StepTool
User Query: I’m planning a movie night
with my friends and I need some recom-
mendations. Get me the channel info for
’Paramount Pictures’, and the comments for
the video with ID ’123456’. Also, find a
website where I can stream or download the
movie with the ID ’UxxajLWwzqY’. Begin!

Step 1: Tool: getchannelinfo
Args: {"channel_id": "Paramount Pictures"}
Tool Response: Paramount Pictures is a ma-
jor American film studio, offering ...

Step 2: Tool: getvideoscomment
Args: {"video_id": "123456"}
Tool Response: {"user": "alicewonderland",
"comment": "Insightful video, learned a lot!",
"timestamp": "2023-10-05T08:21:45Z" ...

Step 3: Tool: download_stream
Args: {"is_id": "UxxajLWwzqY"}
Tool Response: {‘id’: ‘UxxajLWwzqY’,
‘title’: ‘Icona Pop - I Love It (feat. Charli
XCX) [OFFICIAL VIDEO]’, DOWNLOAD
... https://smarturl.it/UxxajLWwzqY ...}

Step 4: Finish
...The channel info for ‘Paramount Pic-
tures’...The comments for the vide with ID
‘123456’ are as follows: ‘Insightful video,
learned a lot!’...Regarding the movie with
ID ‘UxxajLWwzqY’, you can download it
from https://smarturl.it/UxxajLWwzqY. En-
joy your movie night!

Task Solved.

Figure 5: A case study on the I3 Ins. subset comparing ToolLlama and ToolLlama with StepTool:
StepTool successfully corrects the wrong tool selection.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide an anonymous GitHub repository containing all neces-
sary implementation code for our method, as well as the experimental setups, model config-
urations, and scripts needed to reproduce our results. This repository can be accessed here:
https://anonymous.4open.science/r/StepTool.

REFERENCES

Ibrahim Abdelaziz, Kinjal Basu, Mayank Agarwal, Sadhana Kumaravel, Matthew Stallone, Rameswar
Panda, Yara Rizk, GP Bhargav, Maxwell Crouse, Chulaka Gunasekara, et al. Granite-function
calling model: Introducing function calling abilities via multi-task learning of granular tasks. arXiv
preprint arXiv:2407.00121, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning. In International Conference on Machine Learning, pp. 3676–3713. PMLR, 2023.

Sijia Chen, Yibo Wang, Yi-Feng Wu, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang, and
Lijun Zhang. Advancing tool-augmented large language models: Integrating insights from errors
in inference trees. arXiv preprint arXiv:2406.07115, 2024.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. Transactions on Machine
Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?
id=YfZ4ZPt8zd.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong
Sun, and Yang Liu. Stabletoolbench: Towards stable large-scale benchmarking on tool learning of
large language models. arXiv preprint arXiv:2403.07714, 2024.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu,
Maksym Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching large
language models to reason with reinforcement learning. arXiv preprint arXiv:2403.04642, 2024.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-
wise preference optimization for long-chain reasoning of llms. arXiv preprint arXiv:2406.18629,
2024.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
Yao, Zhiwei Liu, Yihao Feng, et al. Apigen: Automated pipeline for generating verifiable and
diverse function-calling datasets. arXiv preprint arXiv:2406.18518, 2024.

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan, Pengfei Liu, Yang You, and Hongxia Yang.
Let’s reward step by step: Step-level reward model as the navigators for reasoning. arXiv preprint
arXiv:2310.10080, 2023.

Ansong Ni, Jeevana Priya Inala, Chenglong Wang, Oleksandr Polozov, Christopher Meek, Dragomir
Radev, and Jianfeng Gao. Learning math reasoning from self-sampled correct and partially-correct
solutions. arXiv preprint arXiv:2205.14318, 2022.

11

https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, Huadong Wang, Cheng Qian, Runchu Tian,
Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li, Ziwei
Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao, Yuxiang
Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng Yang, Tongshuang Wu,
Heng Ji, Zhiyuan Liu, and Maosong Sun. Tool learning with foundation models, 2024. URL
https://arxiv.org/abs/2304.08354.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Y Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv:2402.03300, 2024.

Tianhao Shen, Renren Jin, Yufei Huang, Chuang Liu, Weilong Dong, Zishan Guo, Xinwei Wu, Yan
Liu, and Deyi Xiong. Large language model alignment: A survey. arXiv preprint arXiv:2309.15025,
2023.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt:
Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36, 2024.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

Weihao Tan, Wentao Zhang, Shanqi Liu, Longtao Zheng, Xinrun Wang, and Bo An. True knowledge
comes from practice: Aligning llms with embodied environments via reinforcement learning. arXiv
preprint arXiv:2401.14151, 2024.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun. Toolal-
paca: Generalized tool learning for language models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

12

https://arxiv.org/abs/2304.08354

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. CoRR,
abs/2312.08935, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Muning Wen, Ziyu Wan, Weinan Zhang, Jun Wang, and Ying Wen. Reinforcing language agents via
policy optimization with action decomposition. arXiv preprint arXiv:2405.15821, 2024.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414, 2022.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training language
model agents via hierarchical multi-turn rl. arXiv preprint arXiv:2402.19446, 2024.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ANALYSIS ON AVERAGE STEP LENGTH

Step length, or the number of tools utilized per task, can serve as a potential metric to evaluate both
task difficulty and a model’s planning capabilities. However, in the StableToolBench benchmark (Guo
et al., 2024), most tasks are designed to require 2-3 API calls for successful completion, with 68.6%
of tasks requiring 2 APIs and 19.9% requiring 3 APIs, accounting for 88.5% of all tasks. Task
difficulty in this benchmark is primarily influenced by factors such as tool diversity (e.g., intra-tool,
intra-category, or intra-collection variations) and whether the required tools are included in the
training data (Qin et al., 2023). These design constraints ensure consistency in task complexity but
may limit the ability of step length to fully capture a model’s planning abilities.

Despite this, we measured the models’ performance on the average number of tool utilized per task
across different subsets. The results are summarized in Table 5.

Table 5: Comparison of average step length (number of tools utilized per task) across different subsets
and methods.

BaseModel Strategy Method Step Length

I1 Ins. I1 Cat. I1 Tool I2 Cat. I2 Ins. I3 Ins. Average

ToolLlama

CoT
SFT 2.2025 2.1634 2.3608 2.4623 2.5565 2.5738 2.3866
RLHF-PPO 2.2025 2.0980 2.2911 2.4057 2.4919 2.5410 2.3384
StepTool 2.2515 2.1438 2.3228 2.4906 2.5081 2.4918 2.3681

DFSDT
SFT 2.1595 2.0980 2.2025 2.3868 2.5161 2.5410 2.3173
RLHF-PPO 2.1779 2.0719 2.2342 2.3208 2.4516 2.4918 2.2914
StepTool 2.2025 2.1046 2.2595 2.4528 2.5081 2.3934 2.3202

Llama3.1

CoT
SFT 2.1779 2.1438 2.1709 2.3962 2.4194 2.4918 2.3000
RLHF-PPO 2.1534 2.1176 2.2152 2.4151 2.3952 2.5574 2.3090
StepTool 2.1656 2.0458 2.1962 2.4245 2.3226 2.3770 2.2553

DFSDT
SFT 2.1718 2.1438 2.1519 2.4151 2.3871 2.4262 2.2826
RLHF-PPO 2.1656 2.1176 2.2152 2.4245 2.3790 2.4754 2.2962
StepTool 2.1902 2.0131 2.1203 2.4245 2.2984 2.3934 2.2400

Qwen2

CoT
SFT 2.2209 2.0850 2.2152 2.4340 2.4274 2.5738 2.3260
RLHF-PPO 2.2147 2.1699 2.2519 2.4434 2.4274 2.5574 2.3441
StepTool 2.1902 2.1634 2.2215 2.4717 2.4194 2.5902 2.3427

DFSDT
SFT 2.1963 2.1242 2.2405 2.4057 2.4355 2.5082 2.3184
RLHF-PPO 2.2025 2.1503 2.2532 2.4245 2.4355 2.4754 2.3236
StepTool 2.1840 2.0980 2.1899 2.4057 2.4113 2.5902 2.3132

From the results, we observe the following key points:

• Minimal Variation: The average number of tool invocations per task shows minimal variation (<0.1
tool calls per task) across models under the same experimental settings. This observation is highly
related to the task design in the benchmark, as mentioned above.

• Lack of Correlation with Performance: The number of tool invocations does not directly correlate
with model performance. Fewer invocations may indicate missed critical API calls, while more
invocations could reflect redundant or inefficient steps.

While step length offers insights into a model’s planning and task decomposition capabilities, its
utility is constrained by the current benchmark design, which emphasizes tool invocation accuracy
over broader planning strategies. Future work could explore benchmarks with more diverse and
open-ended task designs to better evaluate these aspects.

B IMPLEMENTATION DETAILS OF BASELINES

For fair comparison, we implemented RLHF-PPO as a baseline following the traditional RLHF
framework (Ouyang et al., 2022). The PPO baseline is designed for single-step reward optimization,
applying rewards only to the final step of a trajectory. In contrast, StepTool introduces step-grained
reward integration to capture dependencies across the entire trajectory.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Both approaches were trained using the same dataset, reward annotations, and adaptive KL penalty
settings (Ziegler et al., 2019). The initial KL coefficient was set to 0.3, with adjustments based on
the adaptive KL controller. Additional hyperparameters, such as learning rate, batch size, and policy
update frequency, were kept consistent across all methods to ensure a fair comparison.

The configuration file in our code repository provides further details on the experimental settings,
including hyperparameter values, model initialization, and training schedules. These details are
shared to enhance transparency and reproducibility.

C REFERENCE PROMPT FOR STEP-GRAINED REWARD ANNOTATION

Here we provide a reference prompt for GPT-4 to perform step-grained reward annotation:

Instruction Prompt for Step-wise Reward

Query:
{query}

Intermediate Steps:
{mid_steps}
Final Answer:
{final_answer}

Given the above query, all intermediate steps and the final answer, you need to evaluate the
entire task-solving process by following rules:
(1) **Successful Tool Calling:** For each intermediate step, determine if a tool was called
successfully and give a score of 0 (no) or 1 (yes).
(2) **Contribution to Final Answer:** For each intermediate step, rate its contribution to the
final answer on a scale from 0 to 5.
(3) **Final Answer Status:** Determine if the final answer is “Solved”, “Unsure”, or
“Unsolved”.

Now provide your evaluation in JSON format with the parameters of “succeed_tool_calling”,
“contribution_to_final_answer” and “final_answer_status” to the function ‘evalu-
ate_process_reward”.

Figure 6: A Reference Prompt for Step-grained Reward Annotation.

D DISCUSSION ON THE RISK OF REWARD HACKING

Reward hacking, which refers to potential annotation errors in this work, may arise during automated
or manual labeling of auxiliary rewards or through unintended exploitation of reward structures by
models. To enhance the robustness of reward annotations and mitigate these risks, several strategies
can be considered:

• Reward Model Ensembles: Using multiple reward models and averaging their outputs can reduce
the impact of individual model biases.

• Multiple Annotations: Aggregating annotations from diverse sources can provide a more balanced
reward signal.

• Iterative Refinement: Refining reward annotations iteratively based on experimental results can
improve alignment with the task’s ultimate objectives.

These strategies, when implemented, can help create more robust reward systems, improving the
reliability and robustness of reinforcement learning frameworks in complex tasks.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

E MORE CASES

E.1 A CASE OF CORRECTING MISSING RELEVANT TOOL INVOCATION

This case from I2 Ins. illustrates that StepTool improves tool invocation by correcting missing relevant
tool invocation.

The user requests cocktail recipes with vodka and a cake recipe from the Birthday Cake DB. While
both systems successfully retrieve the cocktail recipe, ToolLLaMA fails to invoke the tool for the
detailed cake recipe, prematurely finishing the task. In contrast, ToolLLaMA with StepTool correctly
calls the tool, retrieving the complete cake recipe and solving the task. This demonstrates StepTool’s
effectiveness in enhancing tool invocation accuracy for multi-step tasks.

A Case of Correcting Missing Relevant Tool Invocation

ToolLlama
User Query: I’m hosting a cocktail party and
I need some cocktail recipes. Can you sug-
gest some cocktail recipes that contain vodka
as one of the ingredients? Also, provide me
with a cake recipe from The Birthday Cake
DB.Begin!

Step 1: Tool: search_by_ingredient_for_
cocktails Args: {"ingredient": "vodka"}
Tool Response: ...

Step 2: Tool: list_of_cakes_for_the_birthday
_cake_db Args: {}
Tool Response: {"id": "1", "title": "Rasp-
berry and custard muffins", "difficulty":
"Easy", "image": "https://apipics.s3..."},
{"id": "2","title":"Lemon and blackberry...} ...

Miss A Relevant Tool Calling

Step 4: Finish
Sure! Here are some cocktail recipes that
contain vodka as one of the ingredients: 1.
Vodka Martini... lot!’...I can provide you with
a cake recipe from The Birthday Cake DB.
How about trying the Raspberry and custard
muffins? It’s an easy recipe and you can find
the image here: https://apipics.s3...

Task Not Solved.

ToolLlama with StepTool
User Query: I’m hosting a cocktail party and
I need some cocktail recipes. Can you sug-
gest some cocktail recipes that contain vodka
as one of the ingredients? Also, provide me
with a cake recipe from The Birthday Cake
DB.Begin!

Step 1: Tool: search_by_ingredient_for_
cocktails Args: {"ingredient": "vodka"}
Tool Response: ...

Step 2: Tool: list_of_cakes_for_the_birthday
_cake_db Args: {}
Tool Response: {"id": "1", "title": "Rasp-
berry and custard muffins", "difficulty":
"Easy", "image": "https://apipics.s3..."},
{"id":"2","title":"Lemon and blackberry...}
...

Step 3: Tool: detailed_cake_recipe_by_id
Args: {"is_id": "1"}
Tool Response: {‘ingredients’: ["140g un-
salted butter, melted", "3 medium free-range
eggs", "125g custard", ...], ‘method’: [{"Step
1": "Heat the oven to 170...}...]

Step 4: Finish
Sure! Here are some cocktail recipes that
contain vodka as one of the ingredients: 1.
Vodka Martini... lot!’... And here is a cake
recipe from The Birthday Cake DB: Rasp-
berry and custard muffins ... Ingredients: -
140g unsalted butter ...

Task Solved.

Figure 7: A case study on the I2 Ins. subset comparing ToolLlama and ToolLlama with StepTool:
ToolLlama missed a relevant tool invocation while StepTool successfully called the relevant tool and
completed the task.

E.2 A CASE OF CORRECTING INCORRECT ARGUMENTS

This case from I2 Ins. illustrates that StepTool improves tool invocation by correcting incorrect
Arguments.

In this case, the user requests books by a specific author (J.K. Rowling) and interesting space news.
ToolLLaMA fails to retrieve the correct book information due to incorrectly formatted arguments
passed to the tool, resulting in incomplete search results. However, ToolLLaMA with StepTool

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

successfully corrects the tool arguments, retrieving the correct list of books along with the requested
space news, demonstrating StepTool’s ability to effectively handle incorrect arguments and complete
the task.

A Case of Correcting Incorrect Arguments

ToolLlama
User Query: I’m a book blogger and I want
to write a post about books by a specific
author("J.K. Rowling"). Can you help me
search for books by the author’s name and
also provide me with interesting space news
to engage my readers? Begin!

Step 1: Tool: get _books_by_author_search
Args: {"authorization": "J.K. Rowling",
"page": "1", "search": ""}
Tool Response: Since the search input is
empty, please provide the name of an author
you are interested in ...
Wrong Arguments for Tools

Step 2: Tool: get_space_news
Args: {}
Tool Response: {"title": "Launch Roundup:
SpaceX to launch Euclid; Virgin Galactic...",
"url": "https://www.nasaspace ...}

Step 3: Finish
I found some books by J.K. Rowling, but
the search results are incomplete. It seems
that the search function did not return any
books. However, I found some interesting
space news articles for you to engage your
readers: 1. ’Launch Roundup: SpaceX ...

Task Not Solved.

ToolLlama with StepTool
User Query: I’m a book blogger and I want
to write a post about books by a specific
author("J.K. Rowling"). Can you help me
search for books by the author’s name and
also provide me with interesting space news
to engage my readers? Begin!

Step 1: Tool: get _books_by_author_search
Args: {"authorization": "", "page": "1",
"search": "J.K. Rowling"}
Tool Response: {{"title": "Harry Potter and
the Sorcerer’s Stone", "publication_year":
1997, "genre": "Fantasy"}, {"title": "Harry
Potter and ...} ... }

Step 2: Tool: get_space_news
Args: {}
Tool Response: {"title": "Launch Roundup:
SpaceX to launch Euclid; Virgin Galactic...",
"url": "https://www.nasaspace ...}

Step 3: Finish
Here are some books by J.K. Rowling: 1.
Harry Potter and the Sorcerer’s Stone 2. Harry
Potter and ... And here are some interesting
space news articles: 1. Launch Roundup:
SpaceX to launch Euclid ...

Task Solved.

Figure 8: A case study on the I2 Ins. subset comparing ToolLlama and ToolLlama with StepTool:
StepTool successfully corrects incorrect arguments during tool invocation.

F EXAMPLES OF TWENTY QUESTIONS AND TOOLBENCH

In Figure 9 and Figure 10, we compare two different task scenarios: Twenty Questions and ToolBench.
While Twenty Questions involves a structured, short-action environment with clear, immediate
rewards based on each question’s effectiveness, ToolBench tasks, such as querying for cocktail
recipes, require tool interactions with complex, lengthy outputs. In ToolBench, rewards are not
immediate and must be carefully designed to reflect both intermediate tool usage and the final
output’s correctness, highlighting the added complexity of tool-based tasks.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 9: Example of a multi-step interaction in the Twenty Questions task, where the agent narrows
down possibilities through a sequence of yes/no questions.

Figure 10: Example of a multi-step tool-based interaction in ToolBench, where the agent processes
complex and lengthy tool responses across multiple steps to generate a final answer.

18

	Introduction
	Related Work
	Problem Formulation
	Method
	Step-grained Reward Shaping
	Step-grained Reward Design
	Step-grained Reward Acquisition

	Step-grained Optimization
	Step-grained Optimization Objective
	A Practical Instantiation with PPO

	Experiments
	Experimental Settings
	Main Results
	Pass@k: Assessing Knowledge Discovery vs. Prior Re-weighting
	Ablation Study: Impact of Step-grained Components
	Analysis of Tool Invocation Success Rates
	Qualitative Analysis

	Conclusion
	Analysis on Average Step Length
	Implementation details of Baselines
	Reference Prompt for Step-grained Reward Annotation
	Discussion on the Risk of Reward Hacking
	More Cases
	A Case of Correcting Missing Relevant Tool Invocation
	A Case of Correcting Incorrect Arguments

	Examples of Twenty Questions and ToolBench

