Under review as a conference paper at ICLR 2025

STEPTOOL: A STEP-GRAINED REINFORCEMENT
LEARNING FRAMEWORK FOR TOOL LEARNING IN
LILMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite having powerful reasoning and inference capabilities, Large Language
Models (LLMs) still need external tools to acquire real-time information or domain-
specific expertise to solve complex tasks, which is referred to as tool learning.
Existing tool learning methods primarily rely on tuning with expert trajectories,
focusing on token-sequence learning from a linguistic perspective. However,
there are several challenges: 1) imitating static trajectories limits their ability
to generalize to new tasks. 2) even expert trajectories can be suboptimal, and
better solution paths may exist. In this work, we introduce StepTool, a novel step-
grained reinforcement learning framework to improve tool learning in LLMs. It
consists of two components: Step-grained Reward Shaping, which assigns rewards
at each tool interaction based on tool invocation success and its contribution to
the task, and Step-grained Optimization, which uses policy gradient methods to
optimize the model in a multi-step manner. Experimental results demonstrate that
StepTool significantly outperforms existing methods in multi-step, tool-based tasks,
providing a robust solution for complex task environments.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable abilities in reasoning and inference,
leading to impressive performance across a wide range of tasks (Brown et al.l 2020; [Zeng et al.| [2022;
OpenAl, 2023). However, some complex tasks that require real-time information or domain-specific
knowledge often exceed the capacities of LLMs alone. In recent years, tool learning (Qin et al.,|[2024;
Patil et al.| [2023} |Qin et al.,2023) has emerged as a promising solution by augmenting LL.Ms with
external tools (APIs). As shown in LLMs can dynamically select, invoke, and interact
with tools to receive real-time responses. After multi-step interactions with external tools, LLMs can
effectively gather the necessary information to complete complex and challenging tasks.

To enhance the tool-learning capabilities of LLMs, most approaches rely on Supervised Fine-Tuning
(SFT) (Qin et al., [2023}; |Patil et al., [2023), in which LLMs are trained to imitate expert-generated
trajectories in a text generation manner. Each trajectory is a sequence composed of a user’s query,
multiple tool-callings and responses, illustrated in Despite its straightforward implemen-
tation, SFT encounters two key limitations in training LLMs for tool learning. Firstly, imitating
static pre-defined tool sequences limits the model’s ability to adapt to new tasks or environments.
Secondly, expert trajectories can successfully complete tasks but may not be the optimal sequence of
tool invocations. Blindly imitating these trajectories can lead to suboptimal task-solving performance.

In addition to SFT, we propose using Reinforcement Learning (RL) as another strategy for tool
learning, offering a more dynamic perspective by treating tool learning as a sequential decision-
making process. Under the RL perspective, each step of tool invocation is considered as an action that
leads to a state transition, and models are trained from the action-state transitions. Previous works
have explored applying RL to optimize LLMs in aligning with human preferences (RLHF) (Christiano
et al.; |2017; |Ouyang et al., 2022) or mathematical reasoning (Lightman et al., 2023} /Wang et al.,
2023; [Shao et al.| 2024). Nevertheless, these methods are not well-suited for tool learning due to
several key challenges: 1) Tool learning involves multiple decision steps and real-time feedback from
external tools and environments. In contrast, RLHF is single-step based, and the steps in mathematical

Under review as a conference paper at ICLR 2025

. Supervised Fine-tuning Expert
Tool Learning o012 Tool o0l 3 Tool Final | Path
- Response Response Answer Q
ﬁ Query: Canyouprovide | | e mmmmmmmmmmmmmmmmmmmm——————a
me with the current weather Step-grained
User |for Miami? Also, let me . P9 . Action-State
know about the air quality, Reinforcement Learnmg Transitions
for the past 24 hours."
(5] (3]
Tool
Calling Tool 2 Response
Assistant R e > i » o0 €
I\ Response e Tool /1 Answer ‘
Tool Response P Tool 1 - K -
Tool h > Tool I,'> Tool 17 | e Response)| Final Q
@ Calling Tool 3 Tool 2 K “Response) ! Tool "7 Answer
Assistant i ¥ oo, ~.1o0 2 _ Responge Final
Final Answer: In Miami, the " 7| Response \» ﬂ Answer (]
current weather data is as 1T (R Tool 1> Tool 3 =, > Tool 3 <5 Re;bgLSe f
follows: | Tool % N P) Final €
— Temperature: 28.2°C Assistant ‘S Tool 4 Response / «y. 10 4 -<! ool L. Answer
\ Response / | 3
Over the past 24 hours, Re;rsg:\se > P > AFmaI o
the air quality in Miami has @) Task Solved [Ueeeee Tool 1 ANSWEr
an AQI around 68-69 ... ; . Response | | ;
Action State v ‘> Final | @

Answer

Figure 1: Tool learning scenario (left) and overall comparison between Supervised Fine-Tuning and
Step-grained Optimization (right). SFT imitates expert trajectories, while the step-grained method
utilizes step-level rewards to learn action-state transitions for optimization.

reasoning tasks are generated by the LLM itself, without feedback from the environment. 2) The
reward of each step in tool learning is more complex, as it should consider not only the success of the
tool invocation but also its contribution to task completion.

To harness the potential of RL in tool learning with multi-step environment interactions and address
the limitations of existing methods, we propose StepTool, a novel step-grained reinforcement learning
framework for tool learning, which models tool learning as a sequential decision-making process
and treats each tool interaction as a critical decision point that directly impacts task completion, as
shown in Specifically, StepTool consists of two core components: Step-grained Reward
Shaping and Step-grained Optimization. For Step-grained Reward Shaping, we design rewards at
each step based on both the accuracy of tool invocation and the contribution to the overall task
completion, taking into account characteristics of intermediate actions in this scenario, i.e., well-
defined formats and explicit task objectives. These step-grained rewards offer richer signals for
tool learning, effectively guiding the model in decision-making. For Step-grained Optimization,
we propose a step-grained reinforcement-based optimization method based on the theory of policy
gradient (Williams|, [{1992; Sutton et al.l [1999). This method ensures adaptability to dynamic, multi-
step interactions, addressing the limitations of single-step approaches like RLHF.

In summary, this work makes the following contributions:

* We identify the limitations of static supervised fine-tuning (SFT) and the unsuitability of classic
RLHF for tool learning, and introduce StepTool, a novel step-grained reinforcement learning
framework. StepTool considers tool learning as a multi-step decision-making process, enabling
models to learn from action-state transitions with real-time environment feedback.

* We design step-grained rewards tailored to tool learning scenarios, focusing on both the accuracy
of tool invocation and the contribution to the overall task. These richer signals guide the model’s
decision-making. Additionally, we propose a step-grained optimization method based on policy
gradients, ensuring adaptability to dynamic, multi-step interactions.

* Comprehensive experiments with three open-sourced models demonstrate the effectiveness of
StepTool, confirming its superiority in enhancing the performance of solving complex tasks.

2 RELATED WORK

Tool Learning. Recent advancements in tool-augmented LLMs have expanded their ability to
utilize external tools for complex tasks. Early research (Chen et al., 2023; Shen et al., 2024; Schick
et al.| 2024) propose to enable LLM:s to interact with diverse external tools like program executors,
search engines, and QA system. Building on these initial efforts, subsequent models have focused
on more extensive interactions with real-world APIs and tools. |Qin et al.|(2023); [Patil et al.| (2023)

Under review as a conference paper at ICLR 2025

incorporate vast APIs from platforms like RapidAPI and TorchHub, training LLaMA model (Touvron
et al., 2023) for tool-based tasks in a Supervised Fine-Tuning (SFT) manner. Additionally, some
research efforts have concentrated on constructing verifiable and diverse datasets for SFT training
Tang et al.| (2023); |Abdelaziz et al.| (2024); [Liu et al.| (2024). Concurrent research (Chen et al.|
2024) has explored the use of Direct Preference Optimization (DPO) (Rafailov et al., [2024)) for Tool
Learning. However, this approach constructs preference data pairs based on task completion, without
accounting for the quality of intermediate steps. In contrast, our work explicitly shapes step-grained
rewards and leverages them for step-grained reinforced optimization.

Process Supervision in LLMs. Process supervision has been extensively explored to enhance
long-chain reasoning in LLMs. Previous studies (Lightman et al.,[2023} [Uesato et al.,2022; Ma et al.|
2023} |Shao et al.,|2024; Wang et al.| [2023)) leverage pre-trained process reward models and optimize
reasoning using RLHF (Ouyang et al., 2022). Recent advancements, such as step-level preferences
in mathematical reasoning (Lai et al., |2024), apply DPO using step-level correctness. Unlike these
works, our approach focuses on tool learning, where steps involve real-time interactions with external
tools rather than text-based reasoning.

Reinforcement Learning for Multi-Step Textual Tasks. Recent advancements (Carta et al., 2023},
Tan et al.| 2024; |Zhou et al., [2024; |Wen et al., 2024) apply reinforcement learning (RL) to align
LLMs for multi-step textual tasks. |Carta et al.|(2023); Tan et al.| (2024) typically constrain the action
space to a restricted subset, focusing on optimizing actions as a whole. In contrast, StepTool tackles
tool learning, where the action space is expansive, involving complex and lengthy responses from
environments. Examples of scenarios, illustrating the differences between task types, are provided
in[Appendix F| Methodologically, while prior works (Zhou et al.l 2024} [Wen et al., [2024) often rely
on action-level models like Q-functions (s, a) and value functions V' (s) to estimate intra-action
influences, StepTool directly computes token-level advantages, capturing intra-action and inter-action
influences without requiring action-level estimations. This approach avoids the inaccuracies of
action-level models, offering a more efficient optimization framework for tool learning.

3 PROBLEM FORMULATION

In this work, we propose to model the tool learning process in LLMs as a multi-step decision-making
problem, which can be formulated as a Markov Decision Process (MDP). The MDP is represented by
the tuple M = (S, A, P, R,), with the following meanings:

» S: The state space, where each state s; € S represents the current context or environment responses
at time step ¢, in connection with prior tool interactions.

» A: The action space, where each action a; € A corresponds to calling an external tool (API) or
generating a final response (as a terminal action) at time .

* 'P: The state transition dynamics, P(s;11|a¢, s¢) defines the probability of transitioning to a new
state s;41 given the current state s; and the action a;, representing how the environment changes
as tools are applied.

* R: The reward function, which assigns rewards r; = R(s, a;) based on the current state s; and
action ay, representing the effectiveness of this tool-calling step.

* ~: The discount factor, which determines how the model balances immediate rewards with long-
term task-solving performance.

Here we formulate the tool selection strategy of LLM as a decision-making policy 7y, parameter-
ized by 6, which governs the selection of actions (tools) based on the current state. A trajectory
7 ={s1,a1, S2, as, ..., ST, ar } represents a sequence of states and actions over time, reflecting the
multiple interactions between LLMs and external tools or environments.

To maximize the final task-solving performance, the model seeks to optimize the expected reward
Ry, which is given by:

Ry =Y R(r)mo(r) = Brromy(r) [R(7)],)

Under review as a conference paper at ICLR 2025

where R(7) represents the reward for a given trajectory 7, and 7 (7) defines the probability of
generating that trajectory under the policy my. The gradient of the expected reward can be computed
to update the model’s parameters (Williams, |1992), thereby enhancing the task-solving capabilities of
the LLM:

VRg =Y R(r)Vmg(r) =Y R(r)m(7)V log ()

= Er o (r) [R(T)V log mp(7)])
T
= ETNTF{-}(T),(St,at)NT R(T) Z V log 779(0/75|5t)

t=1

To enhance learning efficiency and stabilize training, we replace R(7) with the advantage function

A(st, at) as most policy-gradient-based RL algorithms (Williams| [1992; |Schulman et al., 2017) did,
which measures the relative benefit of a given action compared to the expected return of the state:

A(st, ar) =Gy =V (st) =re +yrep1 + 'yer_Q +...+ fyT*tTT —V(sy), 3)

where G} represents the estimated future reward, and V' (s;) is the value function, estimating the
expected return when starting from state s; and following the current policy thereafter.

4 METHOD

Aimed at enhancing LLMs’ ability to use multiple tools for complex task solving, we propose a
novel step-grained reinforcement learning framework, StepTool, which is designed around the core

principles of the advantage function (Equation 3)) and the policy gradient formulation (Equation 2)).

As illustrated in StepTool consists of two primary components: Step-grained Reward
Shaping and Step-grained Optimization. Step-grained Reward Shaping assigns rewards at each tool
interaction step, evaluating both the accuracy of tool invocation and the contribution to the overall
task completion. Step-grained Optimization applies policy gradient methods to optimize the model
in a multi-step manner. Together, these components provide step-grained feedback and optimize
multi-step decisions, enhancing task-solving performance in complex environments.

4.1 STEP-GRAINED REWARD SHAPING

Step-grained Reward Shaping provides step-level reward signals for intermediate steps, effectively
guiding the model in decision-making. In tool learning scenarios, the steps of tool invocation are
characterized by well-defined formats and explicit task-oriented goals, naturally lending themselves
to easier step-grained reward shaping. These step-grained rewards offer explicit feedback for each
action, addressing the limitations of delayed rewards.

4.1.1 STEP-GRAINED REWARD DESIGN

Considering well-defined formats and explicit task objectives of intermediate tool-calling actions,
we have designed two key factors: the success of the tool call action (abbreviated as SuccCalling),
and the contribution to the overall task completion (abbreviated as Contribution). For the final step,
we directly link the reward to the completion of the task (abbreviated as IsSolved), representing to
whether the user’s query is solved.

SuccCalling. The SuccCalling metric evaluates whether the model successfully executes a tool call
with the correct format and content (i.e. tool name and arguments). SuccCalling can be formally
represented as 7°C = SuccCalling(ay, s;1 1), where the reward at time ¢ is determined by the action
a; and the subsequent state sy 1.

However, simply making a correct tool call does not guarantee progress toward solving the task. To
further guide the model, we introduce the Contribution metric, which evaluates how much the tool’s
action aids the overall task solution.

Under review as a conference paper at ICLR 2025

/ Step-grained Reward Shaping \/ Step-grained Optimization \
o J'* o folaiPloy] fro(ab ls) o fro(ab o)
, > - § »

V . - »
m” ool 2 s - 51 ay 52 az sy ar
Tool 9) Final
N Response\» P Tool f AT token| -+ |token token| | token token| *+ token

Response A(s1,#1,01) (7 A(sz, 2, 00)[F A(sr,#r,ar)
ir

- Policy Gradient
SuccCalling %
r L
@% [sSolved Lo(m) = Ervry(o) (sv)r [Z A(se, e, ar) Z log mg(at|st, ‘111"71)]
—————————————————————————— t=1 i=1

Annotators Contribution,

?.f?‘_”ffi_@__@%_?%_ A)

*» | SuccCalling

oy

Contribution,

Figure 2: The architecture of StepTool, a step-grained reinforcement learning framework, featuring
Step-grained Reward Shaping for assigning rewards at each tool interaction and Step-grained Opti-
mization for refining decision-making based on policy gradient.

Contribution. The Contribution metric evaluates the extent to which the tool’s action facilitates
the overall task solution. Actions that contribute minimally, such as redundant steps or irrelevant
outputs, receive lower rewards. The Contribution score is based on the relationship between the
current action and the final task-solving action, formally defined as #°°" = Contribution(a¢, ar).

IsSolved. For the final step, the reward is directly associated with whether the task has been
successfully completed. The IsSolved metric evaluates the final answer based on the initial user query,
represented as 71> = IsSolved(q, ar). This reward only depends on the final step and the correctness
of the response in addressing the user’s query.

Formally, the reward for each action at step ¢ is defined as:

o F5C 47 ACOH = « - SuccCalling(a¢, s¢41) + Contribution(a;, ar),t =1,2,...,T — 1
S = IsSolved(q, ar),t =T,
)

where « is a scaling factor to balance the weight of each component. To ensure consistency, rewards
for both the intermediate steps and the final step are normalized to a uniform scale.

4.1.2 STEP-GRAINED REWARD ACQUISITION

To generate training data with step-grained rewards, we first collect multiple trajectories from
the model’s own inferences across tasks in the training set, each comprising multiple interactions
between the model and external tools or environments. Step-grained rewards, derived from our
reward components, can be assigned through various methods, such as automated rule-based models,
human annotations, or advanced models like GPT-4 (OpenAll 2023) (with the annotation prompts
detailed in[Appendix C). Considering the significant time and financial costs associated with human
annotation, we primarily rely on a combination of rule-based systems and GPT-4 to handle the
annotation process. These step-grained annotated data can be used for offline reinforcement learning
optimization or to train a reward model for online training.

4.2 STEP-GRAINED OPTIMIZATION

Addressing the limitations of single-step approaches like RLHF (Ouyang et al., 2022)), we propose a
step-grained reinforced optimization strategy based on policy gradient that optimizes all prior steps,
ensuring adaptability to dynamic, multi-step interactions.

Under review as a conference paper at ICLR 2025

4.2.1 STEP-GRAINED OPTIMIZATION OBJECTIVE

Building on the problem formulation (section 3)), we now extend the gradient of the expected reward
to a token-level consideration. Assumed each action a; consists of a sequence of L, tokens, the
gradient of the expected return Ry at the step level is expressed as:

T Ly
VR*Q = ETN‘ITG(T),(St,at)NT Z A(Stv at) Z \Y 1Og o (aﬂsh a%:z—l) y)
t=1 =1

where A(st, a;) represents the advantage function for the action sequence a; at step ¢, which is
composed of L; tokens. Through our step-grained reward shaping mechanism, we are able to
calculate rewards at each time step ¢ in the trajectory. To better reflect the advantage of each action

sequence, we implement the advantage function A(st, a) with our step-grained rewards 74 as:
A(St, T, at) = G? — V(St) =T+ ’}/’Igt_i_l + ’727%_1,_2 —+ -+ 7T7tTAT - V(St). (6)

The term G}’ reflects the cumulative future rewards based on these step-grained rewards 7, discounted
by factor ~, extending from step ¢ onward, while V (s;) is the value function for the current state.

Our optimization objective is thus formalized as:

T Ly
L@(ﬂ-) = E7~ﬂg(7),(st,at)~‘r Z A(Sta 'f‘tv a’t) Z log 7T9(a“8ta a%:z—l) . (7)
t=1 =1

This objective reflects the optimization of the policy 7y by taking into account the step-level advantage
with our step-grained rewards, encouraging the model to select actions that yield higher reward gains.

Additionally, it should be noted that classic RLHF (Ouyang et al.| 2022) typically optimizes “prompt-
response” data with final rewards based on human preferences, which is equivalent to treating the task
as a single step (1" = 1). However, in the scenario of tool learning involving multi-step interactions
with external environments, each trajectory consists of multiple intermediate steps. Our method
addresses the more complex case of T > 1 by applying step-grained rewards and optimizing actions
at each step, ensuring both immediate and future outcomes are taken into account.

4.2.2 A PRACTICAL INSTANTIATION WITH PPO

Our framework is compatible with any policy gradient-based reinforcement learning algorithm. As a
practical example, we implement the Proximal Policy Optimization (PPO) (Schulman et al.,2017)
algorithm to demonstrate its application. Here, we estimate the advantage function using Generalized
Advantage Estimation (GAE) to improve stability:

A(sy, Py az) = 6+ (YN)0ea1 + -+ (AN T 71604,

8
5t = ’I'At + ’YV(S,H_l) — V(St). ()

To achieve stable training, we employ the PPO-clip version, which introduces a clipping mechanism
to prevent large updates during optimization. The loss function based on the clipped PPO objective is
given by:

Ly

T
,CZPO(W) B]ETNTFQ(T),(St,at)NT lmin (Z A(St, f‘t, at) Z
t=1

i=1

E ~ Le log mg(al|ss, a;™™t)
ZA(StaThat) ZC]IP 1:i—1)71) 1+e

i
t=1 i—1 log 7y (at|st, a;

log m(ajlse, a; " ")

log 7y (aj]se, ay" ")’

©))

)

where 7, represents the represents the old policy used to generate the previous trajectories, and € is a
hyperparameter that controls the allowable deviation between the current and old policies.

To further stabilize training, we also introduce a per-token KL divergence penalty from the old policy
at each token, as proposed in RLHF (Ouyang et al.| 2022)). This helps to prevent large policy shifts
during optimization. For our experiments, we apply the PPO version of our framework, which ensures
robust performance in multi-step tool-based tasks.

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Benchmark & Evaluation Metrics. We use StableToolBench (Guo et al., [2024)), an improved
version of ToolBench (Qin et al., [2023)), consisting of 765 tasks across six subsets with varying tool
categories and complexities. We applied two key metrics provided by this benchmark for evaluation:
pass rate, measuring the proportion of tasks the model solves, and win rate, indicating how often our
method outperforms baselines.

Table 1: Statistics of test tasks in StableToolBench. Ins., Cat. and Tool stand for the Instruction,
Category, and Tool subgroup in the test set, respectively.

I1Ins. I1Cat. I1Tool 1I2Cat. I2Ins. I3Ins.

Tasks 163 153 158 106 124 61
Candidate API 862 644 794 728 690 352
Relevant API 371 328 358 301 261 180

Baselines. Tool learning is an emerging area where most existing work relies on supervised fine-
tuning (SFT) to enhance the tool-using capabilities of LLMs (Qin et al., 2023} |Patil et al., 2023}
Abdelaziz et al.,[2024). While these works vary in dataset construction, we adopt SFT as a baseline
using the same training data. As one of the first works introducing RL-based optimization for tool
learning, relevant baselines are limited. We implemented a classic RLHF-PPO baseline, adapting
RLHF (Ouyang et al., [2022)) to tool learning tasks, designed to handle single-step data. We evaluated
our framework on three open-source models: ToolLLaMA-2-7b-v2(ToolLlama) (Qin et al., [2023)),
Llama3.1-8B-Instruct (Llama3.1) (Touvron et al.,|2023), and Qwen2-7B-Instruct (Qwen2) (Yang
et al., [2024)), using two strategies: Chain of Thought (CoT) (Wei et al, [2022)) and Depth-First
Search Decision Tree (DFSDT) (Qin et al.,[2023)). To ensure fairness in data origins, we excluded
Direct Preference Optimization (DPO) Rafailov et al. (2024) due to the requirement for constructing
comparative data.

Training Setting. For SFT, Llama3.1 and Qwen?2 are trained with static expert paths from GPT-
4 (OpenAll [2023)), with training tasks sampled from ToolBench (Qin et al.,[2023)). ToolLlama is di-
rectly applied as it had already been pre-trained through similar manner. For RLHF-PPO and our Step-
Tool, we obtain responses and interaction paths generated by each model towards user query samples
of 5, 000 training tasks. We use both rule-based models and GPT-4 (gpt-4-turbo-2024-04-09)
to annotate step-grained. More details of experiment settings can be found at[Appendix B] For a fair
comparison, we optimize all models with the default learning rate of 1e~°, batch size 8, and an initial
KL coefficient 0.3 in the same experimental environment with four NVIDIA A100 GPUs.

5.2 MAIN RESULTS

[Table 2] presents the performance comparison of StepTool with SFT and RLHF-PPO across three
base models and two strategies, including the closed-source model gpt-3.5-turbo-0125 as a
reference benchmark. Below are some key observations:

* StepTool consistently outperforms SFT and RLHF-PPO across most subsets for the same base
model and strategy, demonstrating the effectiveness of StepTool. Notably, under the DFSDT
strategy on Qwen2, StepTool achieves a pass rate of over 60% on all subsets except for ‘12 Ins.’.

* The improvement varies across subsets. For simpler subsets like I1 Tool,” StepTool shows moderate
gains of 1%-4%, whereas for more complex subsets like ‘I3 Ins.,” improvements range from
5%-13%. It indicates StepTool’s strength in handling tasks involving multiple tools and categories.

» StepTool generates better solution paths, as indicated by the win rate metric. [Figure 3| shows
StepTool’s win rates against baselines across three subsets, consistently outperforming SFT and
RLHF-PPO on ToolLLaMA with win rates from 50% to 65.8%, further demonstrating its advantage
in tool-based task solving.

To further understand the model’s behavior, we also conducted experiments on step length to evaluate
its impact on planning and task decomposition. More detailed analysis can be found in

Under review as a conference paper at ICLR 2025

Table 2: Performance comparison between StepTool and other baselines on Pass Rate. We run all
models once and take the average results from three times evaluations. StepTool performs best most
of the time.

Pass Rate (%)
11 Ins. I1 Cat. I1Tool 12Cat. 12 Ins. I3Ins. Average

BaseModel Strategy Method

GPT3.5 CoT / 53.8+1.2 48.0+0.7 51.4+12 555+12 43.4+1.3 53.8+04 51.0+1.0
’ DFSDT / 60.0+0.5 53.5+1.3 65.7+0.5 61.6+1.2 50.5+0.7 65.6+2.7 59.5+1.2
/ 542405 503+0.8 56.5+1.5 52.0+0.6 45.4+06 37.2+1.0 49.3+0.8
CoT RLHF-PPO 55.0+1.9 50.5+09 423+07 46.4+07 42.1+16 352412 453+1.2
StepTool 58.7+1.8 57.8+1.7 572407 52.7+08 527+10 42.1+15 53.5+1.3
ToolLlama
/ 57.0410 523415 575412 524+07 49.7+1.7 53.8+419 53.8+1.3
DFSDT RLHF-PPO 57.5+15 54.2+05 53.5420 50.8+1.2 48.1+0.8 43.2+04 51.2+1.1
StepTool 59.7+0.5 55.9+0.0 584+12 52.8+12 51.3+t02 66.7+04 57.5+0.6
SFT 53.9+1.2 52.6+1.4 51.9+09 52.2+1.7 44.7+04 36.3+0.8 48.6+1.1
CoT RLHF-PPO 50.2+0.9 57.8+0.8 53.0+0.6 52.3+1.6 49.2+15 38.0+1.5 50.1+1.2
StepTool 543+1.0 56.4+03 532409 53.9+1.7 49.7+08 42.6+24 51.7+1.2
Llama3.1
SFT 58.8+1.2 58.0+1.6 59.8409 53.9+1.9 53.5+09 459413 55.0+1.3
DFSDT RLHF-PPO 58.9+0.7 61.4+0.7 599+10 559+10 49.5+00 44.8+04 55.1+09
StepTool 59.3+08 60.9+1.3 60.2+13 56.2+1.6 59.3+1.4 50.5+10 57.7+1.2
SFT 53.0+0.6 54.5+0.7 599412 54.0+0.3 45.6+14 40.7+08 51.3+08
CoT RLHF-PPO 58.8+0.9 54.9+07 57.0+05 543+1.0 45.1+1.0 484431 53.1+1.2
Qwen? StepTool 59.6+1.1 56.1+t0.8 61.8+08 54.8+06 44.5+2.6 48.6+1.9 54.2+1.3
SFT 63.7+1.3 59.3+1.3 64.8+1.0 56.7+1.1 49.1+2.1 57.7+1.0 58.6+1.3
DFSDT RLHF-PPO 64.1+0.3 58.9+24 669422 59.8408 49.8+1.2 544+17 59.0+1.4
StepTool 65.6+18 60.8+0.3 68.4+1.6 60.9+09 S51.1+1.8 65.3+1.7 62.0+1.4
I Win Tie Lose
50% 50% 50%
StepTool v.s.
SFT (COT)
StepTool v.s.
PPO (COT)
StepTool v.s.
SFT (DFSDT)
StepTool v.s.
PPO (DFSDT)
0% 20% 40% 60% 80% 100%0% 20% 40% 60% 80% 100%0% 20% 40% 60% 80% 100%
Win Rate in I1 tool Win Rate in 12 Cat. Win Rate in I3 Ins.

Figure 3: Win rates of StepTool against other methods based on ToolLlama across three randomly
selected subsets. StepTool has a win rate over 50% against all baselines.

5.3 PASS@K: ASSESSING KNOWLEDGE DISCOVERY VS. PRIOR RE-WEIGHTING

We computed Pass @k metrics, widely used in domains like mathematical reasoning 2022;
[Havrilla et all, 2024), to assess whether StepTool enables models to discover new knowledge or
merely re-weight prior knowledge. Experiments were conducted on ToolLLlama before and after
StepTool optimization under CoT strategy, sampling 8 trajectories per task under a temperature setting
of 0.7. Due to the time cost of real-world API interactions, 20 tasks from each StableToolBench
subsets were randomly selected, with results averaged over three independent
evaluations.

As shown in[Table 3] ToolLlama optimized with StepTool outperforms ToolLlama across Pass @2,
Pass @4, and Pass @8 metrics in most experimental settings. The improved Pass @k scores (across
all values of k) suggest that the model is not merely re-weighting its prior knowledge but is also
benefiting from the discovery of new knowledge during RL optimization.

Under review as a conference paper at ICLR 2025

Table 3: Pass @k performance comparison between ToolLlama with and without StepTool. Experi-
ments were conducted under CoT strategy, sampling 8 trajectories per task.

BaseModel Method 11 Ins. I1 Cat. 11 Tool I2Cat. 12 Ins. I3Ins. Average

Pass@2
ToolLlama / 58.343.1 54.2454 51.7+24 50.0+0.0 50.845.1 55.041.0 53.3+238
+ StepTool 58.3+1.2 53.3+24 70.8+4.2 53.3+24 68.3+2.4 60.0+41 60.7+2.8

Pass@4
ToolLlama / 65.8+4.2 60.045.4 56.7+2.4 66.7+6.2 61.7+24 62.5+20 62.24338
+ StepTool 65.0+2.0 61.7+3.1 80.8+4.2 67.5+2.0 74.2+1.2 70.0+41 69.9+2.8

Pass@8
ToolLlama / 70.8+4.2 65.045.4 61.7+2.4 683+47 T1.7+24 68.3+24 67.6+3.6

+ StepTool 66.7+1.2 70.0+2.0 80.8+42 67.5£3.1 79.2+42 76.7+5.1 73.5+3.3

5.4 ABLATION STUDY: IMPACT OF STEP-GRAINED COMPONENTS

To evaluate the contributions of each step-grained component in StepTool, we tested two variants:
- w/o Step-grained Reward, where intermediate rewards are set to 0, and - w/o Step-grained Opt,
where sub-trajectories ending with intermediate actions are optimized with PPO. As shown in[Table 4]
removing either step-grained rewards or step-grained optimization results in significant performance
degradation. These results highlight the importance of intermediate rewards for providing informative
signals and the limitations of traditional RLHF-PPO in capturing step dependencies. Both components
are critical for the effectiveness of our framework in solving multi-step tasks.

Table 4: Ablation study on two components of StepTool. Eliminating each component leads to
reduced performance.

Method Pass Rate (%)

11 Ins. I1 Cat. 1I1Tool I2Cat. 12 Ins. I3Ins. Average
ToolLlama + StepTool 58.7+18 57.8+1.7 57.2+07 527408 52.7+10 42.1+15 53.5+1.3
- w/o Step-grained Reward 57.2+26 50.5t0.4 45.1t0s 449+15 S51.1+15 399+t0s 48.1+1.3
- w/o Step-grained Opt 57.7+15 522413 43.0+14 453+08 41.8+1.1 415415 46.9+1.3
ToolLlama 54205 50.3+08 56.5+15 52.0+06 454+06 37.2+10 49.3+0s

5.5 ANALYSIS OF TOOL INVOCATION SUCCESS RATES 86
e Base Model (DFSDT) 85.31
% 85 + StepTool (DFSDT)
To verify the effectiveness of our method in improving £ | B tenTaol (ot 242
tool invocation during intermediate steps, we calculate the ‘; 82.9583.01 52,03
average success rates of tool invocations across all interme- g % 82.37 L
diate steps in the test sets for both ToolLLaMA and Qwen2 f 82
models. As illustrated in[Figure 4] StepTool consistently £ 81
improves the success rates of intermediate tool invocations g so| **®
in both CoT and DFSDT settings, demonstrating enhanced =/
tool accuracy and effectiveness in multi-step tasks. g s
ToolLLaMA Qwen2
5.6 QUALITATIVE ANALYSIS Figure 4: Tool invocation success rates

for different methods using ToolLlama
We conducted a qualitative analysis to understand how and Qwen2 base models.

StepTool improves intermediate actions. illus-
trates a case where StepTool corrects a wrong tool selection by ToolLlama. More examples are

available in In this example, the user requests channel information, video comments,
and streaming sources for movies. ToolLlama initially retrieves the correct channel info and video
comments but mistakenly calls the fgetvideoseéomment” tool again instead of switching to the fAGWIS

tool. After applying StepTool, the model correctly uses the fdoWnIGadEsteam’ tool,
providing the streaming link and fulfilling the request. This demonstrates StepTool’s effectiveness in
optimizing intermediate decisions for complex tasks.

Under review as a conference paper at ICLR 2025

6 CONCLUSION

In this work, we proposed StepTool, a novel step-grained reinforcement learning framework that
enhances LLMs’ ability to solve complex, multi-step tasks using multiple tools. StepTool features
two core components: Step-grained Reward Shaping, which evaluates tool invocation success
and task contributions, and Step-grained Optimization, which uses policy gradient methods to
optimize decision-making at each step. Experiments with three open-source models demonstrate
its effectiveness in improving task-solving performance. StepTool offers a fresh perspective on
optimizing tool-use tasks, complementing SFT-based approaches and paving the way for future RL
innovations tailored to tool learning.

LIMITATIONS

Despite the superior performance of this work, several limitations must be acknowledged. First,
consistent with prior studies (Shen et al.l 2023} [Rafailov et all,[2024), the PPO training process
can be unstable. We have included all experimental setups and parameter settings in our code
repository to ensure reproducibility. Second, despite achieving notable results, there is room for
further improvement. Our method supports online multi-round data collection and optimization, but
due to time and cost constraints, we conducted only a single round of offline training. This likely
limited the model’s full potential for performance gains.

A Case of Correcting Wrong Tool Selection

u

ToolLlama
User Query: I’'m planning a movie night
with my friends and I need some recom-
mendations. Get me the channel info for
’Paramount Pictures’, and the comments for
the video with ID *123456°. Also, find a
website where I can stream or download the
movie with the ID "UxxajLWwzqY’. Begin!

Tool: getchannelinfo
Args: {"channel_id": "Paramount Pictures"}
Tool Response: Paramount Pictures is a ma-
jor American film studio, offering ...

Tool: getvideoscomment
Args: {"video_id": "123456"}
Tool Response: {"user": "alicewonderland",
"comment": "Insightful video, learned a lot!",

"timestamp": "2023-10-05T08:21:45Z" ...

Tool: getvideoscomment
Args: {"video_id": "UxxajLWwzqY"}
Tool Response: {"user": "video_fanatic",
"comment": "This video blew my mind! The
quality is top-notch.", "timestamp": "2023 ...
Wrong Tool Selection

Finish
...The channel info for ‘Paramount Pictures’...
The comments for the video with ID ‘123456’
are as follows: ‘Insightful video, learned a
lot!” - alicewonderland, ... The comments
for the video with ID *UxxajLWwzqY’ are as
follows: ‘This video blew my mind!...

Task Not Solved.

ToolLlama with StepTool

User Query: I'm planning a movie night
with my friends and I need some recom-
mendations. Get me the channel info for
’Paramount Pictures’, and the comments for
the video with ID *123456°. Also, find a
website where I can stream or download the
movie with the ID *UxxajLWwzqY’. Begin!

Tool: getchannelinfo
Args: {"channel_id": "Paramount Pictures"}
Tool Response: Paramount Pictures is a ma-
jor American film studio, offering ...

Tool: getvideoscomment
Args: {"video_id": "123456"}
Tool Response: {"user": "alicewonderland",
"comment": "Insightful video, learned a lot!",
"timestamp": "2023-10-05T08:21:45Z" ...

Tool: download_stream
Args: {"is_id": "UxxajLWwzqY"}
Tool Response: {‘id’: ‘UxxajLWwzqY’,
‘title’: ‘Icona Pop - I Love It (feat. Charli
XCX) [OFFICIAL VIDEO]’, DOWNLOAD
... https://smarturl.it/UxxajLWwzqY ...}

Finish

...The channel info for ‘Paramount Pic-
tures’...The comments for the vide with ID
‘123456’ are as follows: ‘Insightful video,
learned a lot!’...Regarding the movie with
ID ‘UxxajLWwzqY’, you can download it
from https://smarturl.it/UxxajLWwzqY. En-
joy your movie night!

Task Solved.

J

Figure 5: A case study on the I3 Ins. subset comparing ToolLlama and ToolLLlama with StepTool:

StepTool successfully corrects the wrong tool selection.

10

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide an anonymous GitHub repository containing all neces-
sary implementation code for our method, as well as the experimental setups, model config-
urations, and scripts needed to reproduce our results. This repository can be accessed here:
https://anonymous.4open.science/r/StepTool.

REFERENCES

Ibrahim Abdelaziz, Kinjal Basu, Mayank Agarwal, Sadhana Kumaravel, Matthew Stallone, Rameswar
Panda, Yara Rizk, GP Bhargav, Maxwell Crouse, Chulaka Gunasekara, et al. Granite-function
calling model: Introducing function calling abilities via multi-task learning of granular tasks. arXiv
preprint arXiv:2407.00121, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning. In International Conference on Machine Learning, pp. 3676-3713. PMLR, 2023.

Sijia Chen, Yibo Wang, Yi-Feng Wu, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang, and
Lijun Zhang. Advancing tool-augmented large language models: Integrating insights from errors
in inference trees. arXiv preprint arXiv:2406.07115, 2024.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. Transactions on Machine
Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?
1d=YfZ47Pt8zd.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong
Sun, and Yang Liu. Stabletoolbench: Towards stable large-scale benchmarking on tool learning of
large language models. arXiv preprint arXiv:2403.07714, 2024.

Alex Havrilla, Yuging Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu,
Maksym Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching large
language models to reason with reinforcement learning. arXiv preprint arXiv:2403.04642, 2024.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqgiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-
wise preference optimization for long-chain reasoning of llms. arXiv preprint arXiv:2406.18629,
2024.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
Yao, Zhiwei Liu, Yihao Feng, et al. Apigen: Automated pipeline for generating verifiable and
diverse function-calling datasets. arXiv preprint arXiv:2406.18518, 2024.

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan, Pengfei Liu, Yang You, and Hongxia Yang.
Let’s reward step by step: Step-level reward model as the navigators for reasoning. arXiv preprint
arXiv:2310.10080, 2023.

Ansong Ni, Jeevana Priya Inala, Chenglong Wang, Oleksandr Polozov, Christopher Meek, Dragomir
Radev, and Jianfeng Gao. Learning math reasoning from self-sampled correct and partially-correct
solutions. arXiv preprint arXiv:2205.14318, 2022.

11

https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd

Under review as a conference paper at ICLR 2025

OpenAl. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730-
27744, 2022.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, Huadong Wang, Cheng Qian, Runchu Tian,
Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li, Ziwei
Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao, Yuxiang
Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng Yang, Tongshuang Wu,
Heng Ji, Zhiyuan Liu, and Maosong Sun. Tool learning with foundation models, 2024. URL
https://arxiv.org/abs/2304.08354.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Y Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv:2402.03300, 2024.

Tianhao Shen, Renren Jin, Yufei Huang, Chuang Liu, Weilong Dong, Zishan Guo, Xinwei Wu, Yan
Liu, and Deyi Xiong. Large language model alignment: A survey. arXiv preprint arXiv:2309.15025,
2023.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt:
Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36, 2024.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

Weihao Tan, Wentao Zhang, Shanqi Liu, Longtao Zheng, Xinrun Wang, and Bo An. True knowledge
comes from practice: Aligning llms with embodied environments via reinforcement learning. arXiv
preprint arXiv:2401.14151, 2024.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun. Toolal-
paca: Generalized tool learning for language models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

12

https://arxiv.org/abs/2304.08354

Under review as a conference paper at ICLR 2025

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. CoRR,
abs/2312.08935, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Muning Wen, Ziyu Wan, Weinan Zhang, Jun Wang, and Ying Wen. Reinforcing language agents via
policy optimization with action decomposition. arXiv preprint arXiv:2405.15821, 2024.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229-256, 1992.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414, 2022.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training language
model agents via hierarchical multi-turn rl. arXiv preprint arXiv:2402.19446, 2024.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

13

Under review as a conference paper at ICLR 2025

A ANALYSIS ON AVERAGE STEP LENGTH

Step length, or the number of tools utilized per task, can serve as a potential metric to evaluate both
task difficulty and a model’s planning capabilities. However, in the StableToolBench benchmark (Guo
et al.,|2024), most tasks are designed to require 2-3 API calls for successful completion, with 68.6%
of tasks requiring 2 APIs and 19.9% requiring 3 APIs, accounting for 88.5% of all tasks. Task
difficulty in this benchmark is primarily influenced by factors such as tool diversity (e.g., intra-tool,
intra-category, or intra-collection variations) and whether the required tools are included in the
training data (Qin et al., [2023). These design constraints ensure consistency in task complexity but
may limit the ability of step length to fully capture a model’s planning abilities.

Despite this, we measured the models’ performance on the average number of tool utilized per task
across different subsets. The results are summarized in Table

Table 5: Comparison of average step length (number of tools utilized per task) across different subsets
and methods.

BaseModel Strategy Method Step Length
I1Ins. I1Cat. I1Tool I2Cat. I2Ins. I3Ins. Average
SFT 22025 21634 23608 24623 2.5565 2.5738 2.3866
CoT RLHF-PPO 2.2025 2.0980 2.2911 24057 24919 25410 2.3384
StepTool 22515 2.1438 2.3228 24906 2.5081 2.4918 2.3681
ToolLlama
SFT 2.1595 2.0980 2.2025 23868 2.5161 2.5410 2.3173
DFSDT RLHF-PPO 2.1779 2.0719 2.2342 2.3208 24516 24918 22914
StepTool 22025 21046 2.2595 24528 2.5081 2.3934 2.3202
SFT 2.1779 21438 2.1709 23962 2.4194 24918 2.3000
CoT RLHF-PPO 2.1534 2.1176 2.2152 24151 23952 25574 2.3090
StepTool 2.1656 2.0458 2.1962 24245 23226 23770 2.2553
Llama3.1
SFT 2.1718 2.1438 2.1519 24151 23871 24262 2.2826
DFSDT RLHF-PPO 2.1656 2.1176 2.2152 24245 23790 24754 22962
StepTool 2.1902 2.0131 2.1203 24245 2.2984 23934 2.2400
SFT 22209 2.0850 2.2152 24340 24274 25738 2.3260
CoT RLHF-PPO 22147 2.1699 2.2519 24434 24274 25574 2.3441
Qwen2 StepTool 2.1902 2.1634 22215 24717 24194 25902 2.3427
SFT 2.1963 2.1242 2.2405 24057 2.4355 25082 2.3184

DFSDT RLHF-PPO 22025 2.1503 2.2532 2.4245 24355 24754 23236
StepTool 2.1840 2.0980 2.1899 24057 24113 25902 23132

From the results, we observe the following key points:

* Minimal Variation: The average number of tool invocations per task shows minimal variation (<0.1
tool calls per task) across models under the same experimental settings. This observation is highly
related to the task design in the benchmark, as mentioned above.

* Lack of Correlation with Performance: The number of tool invocations does not directly correlate
with model performance. Fewer invocations may indicate missed critical API calls, while more
invocations could reflect redundant or inefficient steps.

While step length offers insights into a model’s planning and task decomposition capabilities, its
utility is constrained by the current benchmark design, which emphasizes tool invocation accuracy
over broader planning strategies. Future work could explore benchmarks with more diverse and
open-ended task designs to better evaluate these aspects.

B IMPLEMENTATION DETAILS OF BASELINES

For fair comparison, we implemented RLHF-PPO as a baseline following the traditional RLHF
framework (Ouyang et al.,[2022). The PPO baseline is designed for single-step reward optimization,
applying rewards only to the final step of a trajectory. In contrast, StepTool introduces step-grained
reward integration to capture dependencies across the entire trajectory.

14

Under review as a conference paper at ICLR 2025

Both approaches were trained using the same dataset, reward annotations, and adaptive KL penalty
settings (Ziegler et al., 2019). The initial KL coefficient was set to 0.3, with adjustments based on
the adaptive KL controller. Additional hyperparameters, such as learning rate, batch size, and policy
update frequency, were kept consistent across all methods to ensure a fair comparison.

The configuration file in our code repository provides further details on the experimental settings,
including hyperparameter values, model initialization, and training schedules. These details are
shared to enhance transparency and reproducibility.

C REFERENCE PROMPT FOR STEP-GRAINED REWARD ANNOTATION

Here we provide a reference prompt for GPT-4 to perform step-grained reward annotation:

Instruction Prompt for Step-wise Reward

Query:
{query}

Intermediate Steps:
{mid_steps}

Final Answer:
{final_answer}

Given the above query, all intermediate steps and the final answer, you need to evaluate the
entire task-solving process by following rules:

(1) **Successful Tool Calling:** For each intermediate step, determine if a tool was called
successfully and give a score of 0 (no) or 1 (yes).

(2) **Contribution to Final Answer:** For each intermediate step, rate its contribution to the
final answer on a scale from O to 5.

(3) **Final Answer Status:** Determine if the final answer is “Solved”, “Unsure”, or
“Unsolved”.

Now provide your evaluation in JSON format with the parameters of “succeed_tool_calling”,
“contribution_to_final_answer” and “final_answer_status” to the function ‘evalu-
ate_process_reward”.

Figure 6: A Reference Prompt for Step-grained Reward Annotation.

D DISCUSSION ON THE RISK OF REWARD HACKING

Reward hacking, which refers to potential annotation errors in this work, may arise during automated
or manual labeling of auxiliary rewards or through unintended exploitation of reward structures by
models. To enhance the robustness of reward annotations and mitigate these risks, several strategies
can be considered:

* Reward Model Ensembles: Using multiple reward models and averaging their outputs can reduce
the impact of individual model biases.

» Multiple Annotations: Aggregating annotations from diverse sources can provide a more balanced
reward signal.

* Iterative Refinement: Refining reward annotations iteratively based on experimental results can
improve alignment with the task’s ultimate objectives.

These strategies, when implemented, can help create more robust reward systems, improving the
reliability and robustness of reinforcement learning frameworks in complex tasks.

15

Under review as a conference paper at ICLR 2025

E MORE CASES

E.1 A CASE OF CORRECTING MISSING RELEVANT TOOL INVOCATION

This case from 12 Ins. illustrates that StepTool improves tool invocation by correcting missing relevant
tool invocation.

The user requests cocktail recipes with vodka and a cake recipe from the Birthday Cake DB. While
both systems successfully retrieve the cocktail recipe, ToolLLaMA fails to invoke the tool for the
detailed cake recipe, prematurely finishing the task. In contrast, ToolLLaMA with StepTool correctly
calls the tool, retrieving the complete cake recipe and solving the task. This demonstrates StepTool’s
effectiveness in enhancing tool invocation accuracy for multi-step tasks.

A Case of Correcting Missing Relevant Tool Invocation

ToolLlama ToolLlama with StepTool

User Query: I'm hosting a cocktail party and User Query: I'm hosting a cocktail party and

I need some cocktail recipes. Can you sug-
gest some cocktail recipes that contain vodka
as one of the ingredients? Also, provide me
with a cake recipe from The Birthday Cake
DB.Begin!

Tool: search_by_ingredient_for_
cocktails Args: {"ingredient": "vodka"}
Tool Response: ...

Tool: list_of_cakes_for_the_birthday
_cake_db Args: {}
Tool Response: {"id": "1", "title": "Rasp-
berry and custard muffins", "difficulty":
"Easy"”, "image": "https://apipics.s3..."},
{"id": "2","title":"Lemon and blackberry...} ...

Finish
Sure! Here are some cocktail recipes that
contain vodka as one of the ingredients: 1.
Vodka Martini... lot!’...
DB.

Task Not Solved.

I need some cocktail recipes. Can you sug-
gest some cocktail recipes that contain vodka
as one of the ingredients? Also, provide me
with a cake recipe from The Birthday Cake
DB.Begin!

Tool: search_by_ingredient_for_
cocktails Args: {"ingredient": "vodka"}
Tool Response: ...

Tool: list_of_cakes_for_the_birthday
_cake_db Args: {}
Tool Response: {"id": "1", "title": "Rasp-
berry and custard muffins", "difficulty":
"Easy", "image": "https://apipics.s3..."},
{"id":"2","title":"Lemon and blackberry...}

Args: {"is_id": "1"}

Tool Response: {‘ingredients’: ["140g un-
salted butter, melted", "3 medium free-range
eggs", "125¢g custard”, ...], ‘method’: [{"Step
1": "Heat the oven to 170...}...]

Finish
Sure! Here are some cocktail recipes that
contain vodka as one of the ingredients: 1.
Vodka Martini... lot!’... And here is a cake
recipe from The Birthday Cake DB: Rasp-
berry and custard muffins ... Ingredients: -
140g unsalted butter ...

Task Solved.

Figure 7: A case study on the 12 Ins. subset comparing ToolLlama and ToolLlama with StepTool:
ToolLlama missed a relevant tool invocation while StepTool successfully called the relevant tool and
completed the task.

E.2 A CASE OF CORRECTING INCORRECT ARGUMENTS

This case from 12 Ins. illustrates that StepTool improves tool invocation by correcting incorrect
Arguments.

In this case, the user requests books by a specific author (J.K. Rowling) and interesting space news.
ToolLLaMA fails to retrieve the correct book information due to incorrectly formatted arguments
passed to the tool, resulting in incomplete search results. However, ToolLLaMA with StepTool

16

Under review as a conference paper at ICLR 2025

successfully corrects the tool arguments, retrieving the correct list of books along with the requested
space news, demonstrating StepTool’s ability to effectively handle incorrect arguments and complete
the task.

A Case of Correcting Incorrect Arguments

Figure 8: A case study on the 12 Ins. subset comparing ToolLlama and ToolLlama with StepTool:

ToolLLlama

User Query: I’'m a book blogger and I want
to write a post about books by a specific
author("J.K. Rowling"). Can you help me
search for books by the author’s name and
also provide me with interesting space news
to engage my readers? Begin!

Step 1: Tool: get _books_by_author_search
Args: {"authorization": "JK. Rowling".
npageu: "1", _}

Tool Response: Since the search input is
empty, please provide the name of an author
you are interested in ...

Step 2: Tool: get_space_news

Args: {}

Tool Response: {"title": "Launch Roundup:
SpaceX to launch Euclid; Virgin Galactic...",
"url": "https://www.nasaspace ...}

Step 3: Finish

. However, I found some interesting
space news articles for you to engage your
readers: 1. *Launch Roundup: SpaceX ...

Task Not Solved.

ToolLlama with StepTool

User Query: I’'m a book blogger and I want
to write a post about books by a specific
author("J.K. Rowling"). Can you help me
search for books by the author’s name and
also provide me with interesting space news
to engage my readers? Begin!

Step 1: Tool: get _books_by_author_search
Args: | , "page": "1",

"search”: "J.K. Rowling" |

Tool Response: {{"title": "Harry Potter and
the Sorcerer’s Stone", "publication_year":
1997, "genre": "Fantasy"}, {"title": "Harry
Potter and ...} ... }

Step 2: Tool: get_space_news

Args: {}

Tool Response: {"title": "Launch Roundup:
SpaceX to launch Euclid; Virgin Galactic...",
"url": "https://www.nasaspace ...}

Step 3: Finish

Potterand ™ And here are some interesting

space news articles: 1. Launch Roundup:
SpaceX to launch Euclid ...

Task Solved.

StepTool successfully corrects incorrect arguments during tool invocation.

F EXAMPLES OF TWENTY QUESTIONS AND TOOLBENCH

In

1gure 9|and|Figure 10} we compare two different task scenarios: Twenty Questions and ToolBench.

Wi

hile Twenty Questions involves a structured, short-action environment with clear, immediate

rewards based on each question’s effectiveness, ToolBench tasks, such as querying for cocktail
recipes, require tool interactions with complex, lengthy outputs. In ToolBench, rewards are not
immediate and must be carefully designed to reflect both intermediate tool usage and the final
output’s correctness, highlighting the added complexity of tool-based tasks.

17

Under review as a conference paper at ICLR 2025

Assistant: Is it an animal?
Environment: No.

Assistant: Is it an inanimate object?
Environment: Yes.

Assistant: Is it man-made?
Environment: No.

Assistant: Is it naturally occurring?
Environment: Yes.

Assistant: s it a mineral?
Environment: No.

Assistant: Is it a plant?
Environment: No.

Assistant: Is it a body of water?
Environment: Yes.

Assistant: Is it a sea?
Environment: No.

Assistant: s it a lake?
Environment: No.

Assistant: Is it a river?
Environment: Yes.

Figure 9: Example of a multi-step interaction in the Twenty Questions task, where the agent narrows
down possibilities through a sequence of yes/no questions.

User: I'm hosting a cocktail party and I need some cocktail recipes. Can you suggest some cocktail recipes that contain vodka as one of the ingredients? Also, provide me
with a cake recipe from The Birthday Cake DB. Begin!

Assistant: "function”: { "name": "search_by_ingredient_for_cocktails",

"arguments": "{\n \"ingredient\": \"vodka\"\n}" }
Tool: {\"error\": \"\", \"'response\": \"Vodka is a versatile and popular ingredient in cocktails, known for its neutral flavor that allows it to blend seamlessly with a variety of
mixers. Some classic vodka cocktails include the Vodka Martini, typically made with vodka and dry vermouth; the Bloody Mary, a savory blend of vodka with tomato juice
and various spices, often garnished with celery; and the Moscow Mule, which combines vodka with ginger beer and lime juice, traditionally served in a copper mug. Other
popular options include the Cosmopolitan, which mixes vodka with triple sec, cranberry juice, and lime, and the Screwdriver, a simple yet refreshing combination of vodka
and orange juice.\"}

Assistant: "function”: { "name": "list_of_cakes_for_the_birthday_cake_db",
"argument:
Tool: {\“error\: \“\", \"response\”: \“[{"id“:"1"'title“:"Raspberry and custard muffins“difficulty“:"Easy*,"image":"https://apipics.s3.amazonaws.com/cakes_api/1.jpg"}.{"id"“:"2
title“:"Lemon and blackberry stripe cake”,difficulty“:"A challenge"image“:"https://apipics.s3.amazonaws.com/cakes_api/2.jpg },{"id“:"3“ title":"Paul Hollywood\\u2019s
chocolate fudge cake*,difficulty“:"Easy*,"image":"https://apipics.s3.amazonaws.com/cakes_api/3.jpg"}.{"id"“:"4" "title“:"Lemon and strawberry meringue cake",difficulty“:”
Easy*image":"https://apipics.s3.amazonaws.com/cakes_api/4.jpg }.{"id":"5" "title":”Vegan chocolate cake",difficulty“:"Easy*,image":”
https://apipics.s3. X kes_api/5.jpg }.{"id“:"6" title":"Spiced plum cake with swiss meringue frosting",difficulty®:’Easy",image":”
https://apipics.s3.amazonaws.com/cakes_api/6.jpg‘},{"id"“:"7 title“:"Lemon and courgette cake with white chocolate cream cheese ..}

Assistant: "function” : { "name": "detailed_cake_recipe_by_id_for_the_birthday_cake_db",

"arguments": "{(\n \"is_id\": \"1\"\n}"}
Tool: "{\"error\": \"\", \"response\": {\"id\": \"1\", \"title\": \"'Raspberry and custard muffins\", \"difficulty\": \"Easy\", \"portion\": \"'Makes 12\", \"time\": \"Hands-on time 25 min.
Oven time 18 min\", \"description\": \"Reminiscent of school traybakes with pink icing, these raspberry and custard muffins are given a suitably chic update \\u2013 simply by
turning cupcakes upside down. Adding custard to the cake batter creates a moist crumb and another layer of nostalgia, that pairs brilliantly with the raspberry in the jam
icing.\", \"ingredients\": [\"140g unsalted butter, melted\", \"3 medium free-range eggs\", \"125g custard\", \"1 tsp vanilla bean paste\", \"180g golden caster sugar\", \"180g self-
raising flour\", \"4 tbsp seedless raspberry jam\", \"100g icing sugar\", \"Sprinkles to decorate\", \"12-hole muffin tin\"], \"method\": [{\"Step 1\": \"Heat the oven to 170\\u00b0C
fan/gas 5. Brush around 20g of the melted butter into each hole of the muffin tin, ensuring some gets into every corner. Pop it in the fridge while you make the cake batter.\"},
{\"Step 2\": \"In...", }"}

Assistant: “function”: { "name": "Finish", “arguments”™ “(\n \"return_type\“: \"give_answer\“\n \"final_answer\“: \"Sure! Here are some cocktail recipes that contain vodka as
one of the ingredients:\\n1. Vodka Martini\\n2. Bloody Mary\\n3. Moscow Mule\\n4. Cosmopolitan\\n5. Screwdriver\\n\\nAnd here is a cake recipe from The Birthday Cake
DB:\\n\\nRaspberry and custard muffins\\nDifficulty: Easy\\nPortion: Makes 12\\nTime: Hands-on time 25 min. Oven time 18 min\\nDescription: Reminiscent of school
traybakes with pink icing, these raspberry and custard muffins are given a suitably chic update \u2013 simply by turning cupcakes upside down. Adding custard to the cake
batter creates a moist crumb and another layer of nostalgia, that pairs brilliantly with the raspberry in the jam icing.\\n\\nIngredients:\\n- 140g Ited butter, melted\\n- 3
medium free-range eggs\\n- 125g custard\\n- 1 tsp vanilla bean paste\\n- 180g golden caster sugar\\n- 180g self-raising flour\\n- 4 tbsp seedless raspberry jam\\n- 100g icing
sugar\\n- Sprinkles to decorate\\n- 12-hole muffin tin\\n\\nMethod:\\n1. Heat the oven to 170\u00b0C fan/gas 5. Brush around 20g of the melted butter into each hole of the
muffin tin, ensuring some gets into every corner. Pop it in the fridge while you make the cake batter.\\n2. In...\\n\\nEnjoy your cocktail party and the delicious cake!\"\n}"}

Figure 10: Example of a multi-step tool-based interaction in ToolBench, where the agent processes
complex and lengthy tool responses across multiple steps to generate a final answer.

18

	Introduction
	Related Work
	Problem Formulation
	Method
	Step-grained Reward Shaping
	Step-grained Reward Design
	Step-grained Reward Acquisition

	Step-grained Optimization
	Step-grained Optimization Objective
	A Practical Instantiation with PPO

	Experiments
	Experimental Settings
	Main Results
	Pass@k: Assessing Knowledge Discovery vs. Prior Re-weighting
	Ablation Study: Impact of Step-grained Components
	Analysis of Tool Invocation Success Rates
	Qualitative Analysis

	Conclusion
	Analysis on Average Step Length
	Implementation details of Baselines
	Reference Prompt for Step-grained Reward Annotation
	Discussion on the Risk of Reward Hacking
	More Cases
	A Case of Correcting Missing Relevant Tool Invocation
	A Case of Correcting Incorrect Arguments

	Examples of Twenty Questions and ToolBench

