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ABSTRACT

Reinforcement learning from human feedback (RLHF) is an effective method for
aligning large language models (LLMs) with human values. However, reward
over-optimization remains an open challenge leading to discrepancies between
the performance of LLMs under the reward model and the true human objec-
tives. A primary contributor to reward over-optimization is the extrapolation error
that arises when the reward model evaluates out-of-distribution (OOD) responses.
However, current methods still fail to prevent the increasing frequency of OOD
response generation during the reinforcement learning (RL) process and are not
effective at handling extrapolation errors from OOD responses. In this work, we
propose the Behavior-Supported Policy Optimization (BSPO) method to mitigate
the reward over-optimization issue. Specifically, we define behavior policy as the
next token distribution of the reward training dataset to model the in-distribution
(ID) region of the reward model. Building on this, we introduce the behavior-
supported Bellman operator to regularize the value function, penalizing all OOD
values without impacting the ID ones. Consequently, BSPO reduces the gener-
ation of OOD responses during the RL process, thereby avoiding overestimation
caused by the reward model’s extrapolation errors. Theoretically, we prove that
BSPO guarantees a monotonic improvement of the supported policy until conver-
gence to the optimal behavior-supported policy. Empirical results from extensive
experiments show that BSPO outperforms baselines in preventing reward over-
optimization due to OOD evaluation and finding the optimal ID policy.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has been demonstrated as an effective
method for aligning large language models (LLMs) with human values (Ouyang et al., 2022b; Bai
et al., 2022; Achiam et al., 2023; Yang et al., 2023; Ji et al., 2023b). A key phase of RLHF is
reward modeling, where the reward model is trained on preference datasets to approximate human
preferences (Stiennon et al., 2020; Ganguli et al., 2022). The reward model is subsequently used to
evaluate the responses of LLMs during the reinforcement learning (RL) phase. Despite its empirical
success, RLHF is criticized for its vulnerability and instability (Casper et al., 2023). One of the open
challenges in RLHF is the reward over-optimization issue (Gao et al., 2023; Coste et al., 2023). As
shown in Figure 1(a), although the performance of LLMs may seem to improve under the reward
model (proxy reward), it can deviate from the actual human objectives (gold reward).

One of the primary causes of reward over-optimization is the extrapolation error that arises when the
reward model evaluates out-of-distribution (OOD) responses (Eisenstein et al., 2023; Laidlaw et al.,
2024; Yang et al., 2024b). Due to the exploratory nature of RL, LLMs may generate responses
that fall outside the training data distribution of the reward model. Lacking the ability to accurately
assess these unseen responses, the reward model may overestimate the reward signal, leading to
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Figure 1: (a) Reward over-optimization. Although the performance of LLMs may seem to improve
under the reward model (proxy reward), it deviates from the actual human objectives (gold reward).
(b) Search in ID region. Our algorithm guides policy iteration within the ID region of the reward
model, whereas others may enter the OOD region, suffering from extrapolation errors. (c) Hard to
evaluate unsupported responses. Responses are categorized as supported or unsupported, depend-
ing on whether they include actions unsupported by the behavior policy (β(a|s) = 0). As policy
iterates, the occurrence of unsupported responses increases. “Correct/Incorrect” indicates whether
the proxy model’s evaluation of a generated response aligns with the gold model. The proxy model
predicts preference pairs well for supported responses but struggles with unsupported ones.

severe overestimation in the value function as an incorrect policy evaluation. As the policy iteration,
the frequency of OOD responses tends to increase, further amplifying the over-optimization issue.

Previous work (Gao et al., 2023) finds that enlarging the reward model and dataset may mitigate
over-optimization, but it is often impractical in real-world scenarios. Thus, many others focuses on
enhancing the RL process using reward regularization. A common approach is to use the Kullback-
Leibler (KL) divergence as a penalty(Ouyang et al., 2022b; Touvron et al., 2023). This method limits
the policy updates to remain close to the initial policy (Gao et al., 2023), such as in the dotted inner
circle in Figure 1(b). However, due to the insensitivity to the in-distribution (ID) region of the reward
model, it is difficult to determine an appropriate penalty strength, and it prevents full exploration of
the ID region to identify the optimal solution. Similar limitations exist in methods that introduce
a maximum reward constraint (Moskovitz et al., 2023) Other approaches include using uncertainty
quantifiers (Zhang et al., 2024b) or ensembles (Coste et al., 2023). Yet, uncertainty quantifiers may
hard to generalize to OOD regions (Nalisnick et al., 2018) while ensemble method may suffer from
consistent overestimation across ensembles and higher computational costs (Eisenstein et al., 2023).
Furthermore, a problem across above methods is that while they handle OOD responses pessimisti-
cally, they also impact the evaluation of ID ones, potentially leading to suboptimal solutions.

In this work, we propose the Behavior-Supported Policy Optimization (BSPO), a novel approach
to address reward over-optimization. The core idea is to use a value regularization to guide policy
iteration only within the in-distribution (ID) region, as shown in Figure 1(b). Specifically, we use
the distribution of the next token to characterize the action distribution in the reward training dataset.
Inspired by offline RL (Levine et al., 2020), we refer to this distribution as the behavior policy. Due
to the auto-regressive nature of LLMs, any OOD action results in the accumulation of extrapolation
errors within unsupported responses, which invalidate the reward model, as shown in Figure 1(c).
Then, we introduce a behavior-supported Bellman operator to regularize the value function. The
regularized value function derived from this operator penalizes all OOD values without affecting
the ID ones. Our method leverages this value regularization to reduce OOD generation during RL,
thereby preventing overestimation caused by the extrapolation errors of reward prediction. Theoret-
ically, BSPO guarantees monotonic improvement of the supported policy until convergence to the
optimal behavior-supported policy, while other methods lack this convergence guarantee.

We summarize our primary contributions as three folds:

• We propose a novel method that leverages the next-token distribution to characterize the reward
training dataset, enabling the detection of whether a response is OOD for the reward model.
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• We introduce the BSPO algorithm, the first method that uses value regularization to address re-
ward over-optimization. It penalizes OOD values without affecting ID ones, thereby theoretically
achieving the same solution as standard policy evaluation.

• We provide a lightweight implementation of BSPO using the ScoreLM model to predict rewards
and behavior distributions. Through extensive experiments, we empirically show that BSPO out-
performs baselines in avoiding reward over-optimization and finding the optimal ID policy.

2 BACKGROUND

Token-level MDP When an LLM is modeled as an RL agent, its actions and states can be repre-
sented by tokens or token sequences. Thus, we formalize language generation tasks as a token-level
MDP M .

= (S,A, T,X , µ, r, γ). Given the vocabulary A of an LLM, it also represents the action
set in the MDP, where an action a corresponds to generating a token of the vocabulary. X is the set
of prompts, µ is the distribution of the prompt x given to the LLM, and S is the set of states, where
each state s is composed of a prompt x ∈ X and a sequence of generated tokens a0:t−1 =

⋃t−1
i=0 ai.

Specifically, s .
= x ∪ a0:t−1. Thus, the state transition is defined as T (x ∪ a0:t−1, at) = x ∪ a0:t.

The r denotes the reward function and the γ is the discount factor. In this framework, a station-
ary policy, π, is a probability distribution indicating the likelihood of the next token at given state
st

.
= x ∪ a0:t−1 at step t. Then, Π denotes the set of all stationary policies.

The goal of reinforcement learning is to maximize a performance measure, J (π), which is typ-
ically defined as an infinite horizon discounted total return, J (π)

.
= Eτ∼π [

∑∞
t=0 γ

trt]. Here,
τ

.
= {st, at, rt}∞t=0 ∼ π denotes the distribution over trajectories generated by π, where s0 = x ∼ µ,

at ∼ π(· | st), st+1 = T (st, at), and rt = r(st, at). We express the state value function
of π as V π(s)

.
= Eτ∼π [

∑∞
t=0 γ

trt | s0 = s] and the state-action value function as Qπ(s, a)
.
=

Eτ∼π [
∑∞

t=0 γ
trt | s0 = s, a0 = a]. The advantage function is Aπ(s, a) = Qπ(s, a)− V π(s).

Preference Modelling The RLHF method improves the quality of LLM responses by leveraging
human preference data through a reward model (Ouyang et al., 2022a; Bai et al., 2022). The re-
ward model denoted as R(x, y) is designed to align with human preferences, where x represents
the input prompt and y is the corresponding response generated by the LLM. Human preferences
are captured as pairs of responses, symbolized as yw ≻ yl|x, where yw (win) denotes a response
more preferred by humans than yl (lose). Using the Bradley-Terry model (Bradley & Terry, 1952),
the likelihood of a preference pair can be estimated as p(yw ≻ yl|x) = σ(R(x, yw) − R(x, yl))
where σ(x) = 1

1+e−x is the logistic sigmoid function. Consequently, given the preference dataset
D = {xi, yiw, y

i
l}Ni=1, the reward model is trained by minimizing the negative log-likelihood loss,

L(ϕ,D) = −E(x,yw,yl)∼D[log σ(Rϕ(x, yw) − Rϕ(x, yl))]. In the context of LLMs, the reward
model typically includes a linear layer after the final transformer layer. During the RL stage, the
reward model assigns a reward to the final token of the sequence, which is typically the EOS token.

Related Work of Reward Over-Optimization This phenomenon, where the policy language
model exploits imperfects in the reward model, is commonly known as reward over-optimization
(Gao et al., 2023), and is also called reward hacking (Amodei et al., 2016; Skalse et al., 2022)
or reward gaming (Pang et al., 2023). Given the high cost of evaluations for studying reward over-
optimization, most studies adopt the synthetic setup that employs a powerful gold model to substitute
for human labeling and evaluation (Gao et al., 2023; Moskovitz et al., 2023; Coste et al., 2023).

The work most closely related to ours includes a series of reward regularization methods, such as
adding a KL penalty to the reward (Kullback & Leibler, 1951) or utilizing a reward ensemble (Coste
et al., 2023). KL penalty method uses a per-token KL penalty from the SFT model to mitigate
over-optimization of the reward model, which is first proposed by Stiennon et al. (2022) and widely
employed in the context of RLHF (Ouyang et al., 2022b; Bai et al., 2022). Similarly, building on the
concept of early stopping, Moskovitz et al. (2023) introduces an approach called Constrained PPO to
prevent the policy from surpassing each reward model’s threshold of usefulness while minimizing
KL divergence in the token distribution. However, due to insensitivity to the reward model’s in-
distribution (ID) region, these methods conservatively iterate near the initial model. In contrast,
our algorithm leverages the behavior policy β, allowing relaxed distance constraints and broader
exploration of regions where valid reward model predictions exist.
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On the other hand, previous work in machine learning demonstrates that combining multiple estima-
tors can enhance robustness (Du & Swamy, 2019). Coste et al. (2023) train several proxy models and
develop ensemble-based conservative optimization methods, such as using variance for uncertainty-
weighted optimization (UWO) and applying the worst reward for conservative worst-case optimiza-
tion (WCO). Ramé et al. (2024) propose a more efficient ensemble-based approach by leveraging
weight-averaged reward models. Zhang et al. (2024b) introduce a lightweight uncertainty-weighted
optimization method that quantifies uncertainties of rewards by utilizing only the last layer embed-
dings of the reward model. However, without additional information about OOD responses, reward
model ensembles mitigate but do not eliminate reward hacking (Nalisnick et al., 2018; Eisenstein
et al., 2023). All ensemble proxy models may exhibit consistent error patterns in the OOD region.

Another route to mitigating reward over-optimization is by training more generalized and robust re-
ward models (Wang et al., 2024a;b; Shen et al., 2024). Gao et al. (2023) demonstrated in a synthetic
setup that increasing the reward model size and the training data volume can mitigate this over-
optimization issue. Notably, methods aimed at enhancing the generalization at the reward modeling
stage run parallel to our approach and can be combined. In our implementation, the training of the
reward model incorporates the hidden state regularization technique (Yang et al., 2024b).

3 ANALYSIS: BEHAVIOR-SUPPORTED METHOD

3.1 BEHAVIOR POLICY FOR OOD DETECTION OF REWARD PREDICTION

Since reward learning is inherently data-driven, it faces significant challenges in evaluating re-
sponses that lie outside the distribution of the training dataset. However, current OOD detection
techniques (Yang et al., 2024a) require additional information for the OOD part (Nalisnick et al.,
2018), and are not applicable to reward prediction in LLM. Therefore, we introduce an OOD detec-
tion approach based on the power of well-pretrained LLMs for next-token prediction.

Based on the token-level MDP modeling in RL for LLMs, we use the distribution of the next token,
β : S × A → [0, 1], to characterize the action distribution in the preference dataset. Inspired by
offline RL (Levine et al., 2020; Wu et al., 2022), we refer to this distribution as the behavior policy.
The behavior policy divides actions at a given state s into two categories, defined as follows:

Definition 1 (Behavior-Supported Action). In a given state s, an action a is considered supported
by the behavior distribution β if and only if β(a|s) > 0.

Due to the auto-regressive nature of LLMs, we believe that any OOD action (i.e., one not a behavior-
supported action) leads to the accumulation of extrapolation errors in the resulting unsupported
responses. To validate this hypothesis, we collect all responses generated during the RLHF process
under the same experimental settings of the experiment section. These responses are categorized
into supported responses and unsupported responses, depending on whether they contain behavior-
unsupported actions (i.e., β(a|s) = 0). These responses, along with those generated by the initial
model given the same prompt, construct comparison pairs. We use these comparison pairs and the
gold model as ground truth to test whether the proxy model can correctly predict preferences.

Figure 1(c) shows that as the policy iterates, the proportion of unsupported responses generated by
the LLM increases. For comparison pairs consisting of supported responses, the proxy model ac-
curately predicts preferences, achieving an average accuracy of 75.91%, which is comparable to its
performance on the test set (Figure 2(b)). However, for comparison pairs composed of unsupported
responses, the proxy model’s predictive accuracy drops significantly to 58.10%. These results in-
dicate whether the response contains only behavior-supported actions is an effective indicator for
measuring whether it is OOD for reward prediction. More results are provided in Appendix D.1.

3.2 BEHAVIOR-SUPPORTED REGULARIZATION

A natural idea to mitigate reward over-optimization during the RL is to avoid taking actions that
are not supported by the behavior policy. In this paper, we consider applying regularization to
the value function in order to reduce the ranking of actions that are not supported by the behav-
ior distribution during policy evaluation. Specifically, we define rmin

.
= mins∈S,a∈A [r(s, a)] and
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Qmin
.
=
∑∞

t=0 γ
trmin = rmin

1−γ . Then, we propose the behavior-supported Bellman operator:

T π
β Q(s, a)

.
=

{
T πQ(s, a), if β(a|s) > 0,

Qmin, otherwise.
(1)

where T πQ(s, a)
.
= r(s, a)+ γEa′∼π(·|s′) [Q(s′, a′)] represents the standard Bellman operator, and

s′ = T (s, a) is the next state. This new operator has the following properties:
Theorem 1 (Contraction of T π

β ). For any policy π ∈ Π, the operator T π
β is γ-contraction with

respect to the L∞ norm over the space S ×A.

The proofs are provided in the Appendix A. The γ-contraction property of the operator T π
β guaran-

tees that, for any initial Q-values, iterative application of T π
β converges to a unique fixed point at a

rate of γ. Thus, we find this fixed point by iteratively solving the problem, minQ Eτ∼π(Q(s, a) −
T π
β Q(s, a))2, and use it for policy evaluation to optimize the policy π.

Intuitively, an observation from Equation 1 is that, at each iteration k, T π
β yields the same Qk+1(s, a)

as the standard operator T π for any behavior-supported actions (i.e., ID actions). However, for
actions that are not supported (i.e., OOD actions), T π

β yields smaller Qk+1(s, a). Through this
iterative process, the convergence to a fixed point ensures the validity of the following theorem:
Theorem 2 (Fixed Points). For any policy π ∈ Π, the fixed point Qπ

β of T π
β satisfies{

Qmin ≤ Qπ
β(s, a) ≤ Qπ(s, a), if β(a|s) > 0,

Qπ
β(s, a) = Qmin, otherwise.

(2)

where Qπ(s, a) is fixed point of standard Bellman operator T π .

We refer to the fixed point Qπ
β as the behavior-supported Q-value function. Theorem 2 indicates that

for any policy π, using the behavior-supported Q-value function for policy evaluation underestimates
the future returns of OOD actions, thereby disadvantaging these actions across the action space. This
leads the policy iteration process to reinforce behavior-supported actions and weakens unsupported
ones. Now, we consider a common policy iteration using behavior-supported value, as follows:

πk+1 = argmax
π∈Π

Eτ∼πk

[
π(at|st)
πk(at|st)

Aπk

β (st, at)

]
. (3)

where V πk

β (s) = Ea∼πk(·|s)

[
Qπk

β (s, a)
]
, and Aπk

β (s, a) = Qπk

β (s, a) − V πk

β (s). As the policy
iterates, the action selection will eventually consist only of behavior-supported actions. We define
such a policy as a behavior-supported policy. Specifically, for any state s, the supported action space
of state s is denoted as supp (β(·|s)) .

= {a ∈ A | β(a|s) > 0}. The set of all behavior-supported
policies is defined as

Πβ
.
= {π ∈ Π | π(a|s) = 0, ∀s ∈ S, a /∈ supp (β(·|s))} . (4)

Furthermore, the following corollary guarantees that the policy optimization method in Equation 3
yields behavior-supported policies π ∈ Πβ through regularized policy evaluation Qπ

β .

Corollary 1 (Supported Policy Optimization). The policy optimization method mentioned in Equa-
tion 3 yields behavior-supported policy π ∈ Πβ .

Theoretically, we demonstrate that policy iteration with the regularized value function guarantees
that each iteration results in a behavior-supported policy. This restricts the search for the optimal
policy to the ID region of the reward model. As a result, the reward model does not need to evaluate
OOD responses generated with behavior-unsupported actions, thereby preventing the reward over-
optimization issue caused by extrapolation errors.

Furthermore, the following corollary holds for behavior-supported policy iterations:
Corollary 2. For any behavior-supported policy π ∈ Πβ , the fixed point Qπ

β of T π
β satisfies

Qπ
β(s, a) =

{
Qπ(s, a), if β(a|s) > 0,

Qmin, otherwise.
(5)
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Figure 2: (a) Structure of our ScoreLM model. We retain the original language model head to
predict the next-token distribution and initialize a score head to predict the reward. (b) Compare
with Standard RM. The performance of ScoreLM is comparable to standard reward models under
three scales on the test set. The short vertical lines indicate the standard deviation of four repetitions.

Corollary 2 indicates that the behavior-supported policy evaluation provides the same unbiased Q-
values for all ID actions as the standard Bellman operator T π . Together with Corollary 1, for any
state s, the optimal behavior-supported action is the same under the Qπ

β and Qπ value functions
during behavior-supported policy iteration. This ensures that the method in Equation 3 converges to
the optimal behavior-supported policy π∗

β . Specifically, the following theorem holds:
Theorem 3 (Monotonicity to Optimality). The behavior-supported policy optimization method men-
tioned in Equation 3 results in a strictly monotonic improvement of policy performance, continuing
until the optimal behavior-supported policy π∗

β is attained.

Notably, all proofs of this section are provided in the Appendix A.

4 IMPLEMENTATION: BEHAVIOR-SUPPORTED POLICY OPTIMIZATION

We introduce the behavior-supported method that uses regularized Q-values to guide the policy
iteration within the ID region of the reward model. In this section, we present an implementation of
the Behavior-Supported Policy Optimization (BSPO) algorithm for the RLHF training of LLMs.

Behavior Distribution Prediction Since pre-trained LLMs have already been exposed to an ex-
tensive amount of data, we can directly fit the distribution of the next token in the reward training
dataset without introducing additional OOD response information. In the standard RLHF paradigm,
the reward model is derived by converting the LLMs, replacing the language model head with a
scalar head for scoring. In our work, we retain the original language model head, as shown in Figure
2, to predict the behavior distribution. Specifically, we train this ScoreLM model by minimizing the
following loss function, which consists of two components:

LScoreLM(ϕ;D) = −ED

[
log σ

(
R(x, yw;ϕ)−R(x, yl;ϕ)

)]
︸ ︷︷ ︸

Preference Loss

−αED

[
log β(at|x ∪ a0:t−1;ϕ)

]
︸ ︷︷ ︸

Supervised Loss

,

(6)
where α is a hyperparameter to balance the two losses. We integrate reward prediction and behavior
distribution prediction into the same model for two main reasons. First, experimental results indicate
that this integration has almost no impact on prediction accuracy, as shown in Figure 2(b). Addition-
ally, the supervised learning loss helps preserve the language capabilities of the transformer, thereby
improving the generalization of the reward model (Yang et al., 2024b). Second, compared to stan-
dard PPO, using ScoreLM introduces negligible additional memory and computational overhead.

Behavior-Supported Value Function In our implementation of value regularization, we pre-
dict behavior-supported V-values instead of Q-values to achieve greater stability while maintaining
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equivalent policy evaluation. The deterministic state transition of the token-level MDP (i.e., given a
state s = a0:t−1 and a next token at, the next state s′ = a0:t is determined) ensures this equivalence.
It is important to clarify that this determinism inherently holds due to the auto-regressive nature of
next-token prediction in LLMs. Specifically, the behavior-supported Bellman V-operator is

T π
β,V V (x ∪ a0:t−1)

.
=

{
T π
V V (x ∪ a0:t−1), if β(at−1|x ∪ a0:t−2) > 0,

1
γ [Qmin − r(x ∪ a0:t−2, at−1)] , otherwise,

(7)

where T π
V V (x∪a0:t−1)

.
= Eat∼π(·|x∪a0:t−1) [r(x ∪ a0:t−1, at) + γV (x ∪ a0:t)] is the standard Bell-

man operator for the V-value function. Then, the following theorem and corollary hold:
Theorem 4 (Contraction of T π

β,V ). For any policy π ∈ Π, the operator T π
β,V is γ-contraction with

respect to the L∞ norm over the state space S.

Corollary 3 (Equivalent Policy Evaluation). ∀π ∈ Π, denote V π
β as the fixed point of the Bell-

man operator T π
β,V in Equation 7. Then, its corresponding state-action value function Qπ

β(s, a) =

r(s, a) + γV π
β (T (s, a)) is equal to the fixed point of the Bellman operator T π

β in Equation 1.

The proofs of Theorem 4 and Corollary 3 are provided in the Appendix B. These results guarantee
that the T π

β,V V converges to a unique fixed point, V π
β , which provides policy evaluation equivalent

to that of the behavior-supported Q-values, Qπ
β . For a parameterized critic model Vφ(x ∪ a0:t−1),

we train it by minimizing the loss function with T π
β,V Vφ calculated from ScoreLM Rϕ at step k:

LV (φ;π) = Eτ∼πk

[(
Vφ(x ∪ a0:t−1)− T πk

β,V Vφ(x ∪ a0:t−1)
)2]

. (8)

Behavior-Supported Policy Optimization We combine the behavior-supported method with the
widely used Proximal Policy Optimization (PPO) (Schulman et al., 2017) algorithm. Specifically,
for the parameterized LLM πθ, we optimize it by minimizing the following loss function at step k:

Lπ(θ) = −Eτ∼πθk
[min (ρt(θ)A

πθk (st, at), clip(ρt(θ), 1− ϵ, 1 + ϵ)Aπθk (st, at))] (9)

where ρt(θ) =
πθ(at|st)
πθk

(at|st) , and Aπθk represents the advantage estimates, which are calculated based
on the predictions from behavior-supported value model Vϕk

.

Importantly, PPO ensures the accuracy of gradient prediction when reusing data by clipping the
gradients where the policy ratio difference exceeds a certain threshold, thereby enhancing sample
efficiency. If we focus solely on the portion used to update the policy gradient, Equation 9 provides
an unbiased estimate of the optimization objective in Equation 3. Together with the equivalent
policy evaluation demonstrated in Corollary 3, our implementation of the Behavior-Supported Policy
Optimization algorithm (BSPO) is theoretically consistent with the analysis in Section 3.

Bringing everything together, the pseudo-code of our algorithm is shown in Algorithm 1.

5 EXPERIMENTS

In this section, we present experiments to demonstrate the effectiveness of the BSPO algorithm.
Specifically, we focus on the following three aspects:

• BSPO outperforms baseline algorithms, proving its capacity to better mitigate reward over-
optimization and find the optimal in-distribution policies (Section 5.2).

• BSPO reduces the generation of OOD responses during the RL, thereby avoiding overestimation
caused by the extrapolation errors of the reward prediction (Section 5.3).

• BSPO effectively avoids over-optimization at larger KL divergence distances (Section 5.4).

5.1 EXPERIMENTAL SETTINGS

To rigorously evaluate our algorithm, we compare it with five baseline methods across three proxy
model scales in the synthetic setup. The specific experimental settings are as follows:
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Figure 3: Main results. The training curves of various algorithms across three experimental settings
show upward trends in proxy rewards. Most baselines suffer from reward over-optimization. In
contrast, our BSPO algorithm effectively mitigates this issue and achieves the highest gold reward.

Synthetic Setup Given the high cost of human evaluations for studying reward over-optimization,
we employ a widely used synthetic setup in over-optimization research (Gao et al., 2023; Moskovitz
et al., 2023; Coste et al., 2023). In this setup, labels are generated by a “gold-standard” reward
model (gold model) rather than by humans. Meanwhile, the proxy model is a proxy of the ground
truth, trained to fit the labels from the gold model.

In our experiments, we train the gold model based on Llama3-8B (Dubey et al., 2024). For the
proxy model, we utilize three smaller models: 774M (GPT-2-large (Radford et al., 2019)), 1.1B
(TinyLlama (Zhang et al., 2024a)), and 2.7B (ShearedLlama (Xia et al., 2023)), employing the
ScoreLM architecture as described in Section 4. The gold model is trained using 57k preference
pairs from the binarized UltraFeedback dataset (Cui et al., 2023). The gold model re-annotates 30k
data points, which are then used for training the proxy models, whose training curves are provided
in Appendix D.2. During RL, Alpaca-7B (Taori et al., 2023) is employed as the initial actor model.
All algorithms are trained using the same proxy model and evaluated against the same gold model.

Baselines We implement five baseline algorithms for comparison (details in Appendix C.1):

• Standard PPO: The standard implementation of Proximal Policy Optimization (PPO) (Schul-
man et al., 2017) without the KL penalty in the LLM RLHF (Ouyang et al., 2022a).

• KL-Penalty: Add a per-token KL penalty to the standard PPO algorithm (Gao et al., 2023).
• CPPO: Constrained PPO identifies potentially over-optimized proxy points through experimenta-

tion and constrains the reward value to be below those points during RL (Moskovitz et al., 2023).
• ENS-UWO & ENS-WCO: The ensemble baseline (ENS) integrates four reward models, utilizing

variance for uncertainty-weighted optimization (UWO) or employing the worst reward for con-
servative worst-case optimization (WCO) (Eisenstein et al., 2023; Coste et al., 2023).

5.2 MAIN RESULTS

Figure 3 presents the training curves of different algorithms across three proxy model scales. Our
BSPO algorithm effectively mitigates reward over-optimization across all parameter sizes, as evi-
denced by the consistent upward trends in both the proxy reward and the gold reward. One possible
explanation is that BSPO reduces the OOD generation, thereby minimizing extrapolation errors from
the proxy model, which we empirically validate in Section 5.3. We also observe that BSPO more
reliably finds the optimal policies achieving the highest gold reward.

In contrast, most baseline algorithms continue to suffer from the reward over-optimization problem.
First, the inability of ensemble methods to handle OOD responses, as noted in Eisenstein et al.
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Figure 4: (a) Win Rates. The win rates of different algorithms against the initial SFT model using
the 2.7B proxy model. (b) Count behavior-unsupported actions during RL. We track the average
number of actions (tokens) that are not supported by the behavior policy for each response during
RL. Over-optimization in traditional methods leads to a sharp rise in unsupported actions, as shown
by the dashed line, while our BSPO algorithm keeps these actions consistently low during training.
(c) Compare with KL penalty. Compared with the KL penalty method using different penalty
coefficients, BSPO effectively avoids reward over-optimization at larger KL divergence distances.

(2023), remains a concern. These methods mitigate overestimation within the ID setting, but for
OOD responses, multiple models may still consistently overestimate. As the policy iteration, the
frequency of OOD responses tends to increase, further amplifying this issue. Second, methods that
apply KL penalties or maximum constraints to the reward can be viewed as limiting the policy search
to a specific region. However, unlike BSPO, these methods do not explicitly model the ID region of
the reward model, and thus may only mitigate over-optimization in the overlapping region (typically
near the initial policy). Third, while the constraints of CPPO successfully keep the proxy reward
near the threshold, the gold reward continues to change. Therefore, relying solely on the proxy
reward may be insufficient to establish a threshold that indicates when over-optimization occurs.
Furthermore, CPPO introduces instability inherent to the Lagrangian approach (Platt & Barr, 1987).

Finally, to further validate the results, we evaluate the final model on the test set and calculate its
win rate against the initial Alpaca-7B, as shown in Figure 4(a). Unlike other baseline methods
that adjust the sequence-wise reward, BSPO penalizes action-wise OOD values without affecting
ID ones, allowing it to find the same optimal ID policies as standard policy evaluation. This may
explain why the model trained with BSPO outperforms the other baselines shown in the figure.

5.3 ABLATION ON THE BEHAVIOR SUPPORTED PREDICTION

We employ the behavior policy β, which denotes the next token distribution in the reward model’s
training dataset, as a method for OOD detection of the reward model. To experimentally illustrate
how BSPO mitigates the issue of over-optimization, we track the average number of actions (tokens)
that are not supported by the behavior policy for each response during the RL process.

The results are shown in Figure 4(b). We observe that the occurrence of the over-optimization phe-
nomenon in traditional methods is accompanied by a significant increase in the number of behavior-
unsupported actions, as indicated by the dashed line. In contrast, our BSPO algorithm maintains
a consistently low number of such actions throughout the training process. This supports one of
our core insights: regularizing the value function reduces the generation of OOD responses, thereby
avoiding the overestimation problem caused by the extrapolation error from OOD evaluation.

5.4 FURTHER COMPARISON WITH DISTANCE CONTROL

We further highlight the necessity of modeling the ID region of the reward model. Figure 4(c)
presents a comparison between the KL penalty method, using different penalty coefficients, and
BSPO. The KL penalty method can be seen as an approach that constrains the policy from deviating
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too far from the initial one under a distance measure (Gao et al., 2023). The results show that BSPO
avoids over-optimization even at larger KL divergence distances, whereas the KL penalty method
fails at closer distances, only ensuring a consistent increase of gold reward within a proximal region.

This phenomenon suggests that the region defined by the distance constraint does not align with the
ID region of the proxy model. As a result, valid reward prediction without extrapolation error can
only be guaranteed within the proximal region that is fully covered by the ID region (as the inner
dashed circle in Figure 1(b)). In contrast, our algorithm models the ID region directly through the
behavior policy β, enabling us to relax the distance constraint and fully explore the entire region
where the reward model can generate valid predictions.

6 CONCLUSION AND DISCUSSION

A primary cause of reward over-optimization is the extrapolation error that occurs when the reward
model evaluates OOD responses. However, current methods still fail to prevent the increasing gen-
eration of OOD responses during the RL process and are not effective at handling extrapolation er-
rors from their reward prediction. Furthermore, they apply reward regularization to pessimistically
handle OOD responses which, meanwhile, introduces unintended changes to ID ones, potentially
leading to suboptimal solutions. In this work, we propose the Behavior-Supported Policy Optimiza-
tion (BSPO), a method grounded in two core insights. First, we define behavior policy as the next
token distribution of the reward training dataset to model the ID region of the reward model. Second,
we introduce the behavior-supported Bellman operator to regularize the value function, penalizing
all OOD values without impacting the ID ones. It illustrates that BSPO iterates the policy in the
ID region of the reward model, thereby avoiding the reward model to evaluate the OOD response.
Theoretically, we prove that BSPO ensures a monotonic improvement of the supported policy until
convergence to the optimal ID policy, a guarantee that other methods lack. Extensive experiments
demonstrate that BSPO outperforms baselines and exhibits two key strengths. First, BSPO reduces
the generation of OOD responses during the RL, thereby avoiding overestimation caused by the
extrapolation errors. Second, BSPO effectively avoids reward over-optimization at larger distances,
facilitating the search for the optimal ID policy.

6.1 LIMITATION AND FUTURE WORK

This study has several notable limitations. First, due to the unaffordable costs of human analyzing for
studying the reward over-optimization, we employ the widely accepted synthetic setup (Gao et al.,
2023; Coste et al., 2023; Moskovitz et al., 2023). However, there are some differences between
the synthetic setup and real-world scenarios. For example, model-based evaluations tend to exhibit
higher consistency, while human preferences are subject to greater variability. Therefore, further
validation experiments in real-world settings are concerned. In Appendix D.5, We emulate human
behavior by a LLM to conduct experiments in a realistic setting and engage in further discussions.

Second, our algorithm primarily addresses the issue of reward over-optimization during the RL
phase caused by OOD responses in evaluations (Eisenstein et al., 2023; Laidlaw et al., 2024; Yang
et al., 2024b), assuming the use of a well-trained reward model by default. However, if the reward
model fails to accurately capture preferences during the reward learning phase, this could also lead to
deviations from human values (Miao et al., 2024). It is important to recognize that this issue parallels
our concerns and is at a different stage of training. Another aspect to be considered additionally is
the presence of an OOD prompt in the RL phase, as there may be no response for the reward model
ID on these OOD prompt. This requires a further study of the data distribution shift between the
reward model phase and the RL phase.

Third, a current research direction in LLM alignment involves multiple reward models (Moskovitz
et al., 2023; Ji et al., 2023a; Dai et al., 2023a). Extending our algorithm to multi-objective scenarios
to mitigate the over-optimization of each reward model presents a promising direction.
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Alexandre Ramé, Nino Vieillard, Léonard Hussenot, Robert Dadashi, Geoffrey Cideron, Olivier
Bachem, and Johan Ferret. Warm: On the benefits of weight averaged reward models, 2024.
URL https://arxiv.org/abs/2401.12187.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation, 2018. URL https:
//arxiv.org/abs/1506.02438.

13

http://www.jstor.org/stable/2236703
http://www.jstor.org/stable/2236703
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2211.08714
https://arxiv.org/abs/2211.08714
https://arxiv.org/abs/2401.12187
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438


Published as a conference paper at ICLR 2025

Jiaming Shen, Ran Xu, Yennie Jun, Zhen Qin, Tianqi Liu, Carl Yang, Yi Liang, Simon Baumgart-
ner, and Michael Bendersky. Boosting reward model with preference-conditional multi-aspect
synthetic data generation, 2024. URL https://arxiv.org/abs/2407.16008.

Wei Shen, Rui Zheng, Wenyu Zhan, Jun Zhao, Shihan Dou, Tao Gui, Qi Zhang, and Xuanjing
Huang. Loose lips sink ships: Mitigating length bias in reinforcement learning from human
feedback, 2023. URL https://arxiv.org/abs/2310.05199.

Prasann Singhal, Tanya Goyal, Jiacheng Xu, and Greg Durrett. A long way to go: Investigating
length correlations in rlhf, 2024. URL https://arxiv.org/abs/2310.03716.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and character-
izing reward gaming. Advances in Neural Information Processing Systems, 35:9460–9471, 2022.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–3021, 2020.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul Christiano. Learning to summarize from human feedback, 2022. URL
https://arxiv.org/abs/2009.01325.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan Dou, Caishuang Huang, Wei Shen, Senjie Jin,
Enyu Zhou, Chenyu Shi, Songyang Gao, Nuo Xu, Yuhao Zhou, Xiaoran Fan, Zhiheng Xi, Jun
Zhao, Xiao Wang, Tao Ji, Hang Yan, Lixing Shen, Zhan Chen, Tao Gui, Qi Zhang, Xipeng Qiu,
Xuanjing Huang, Zuxuan Wu, and Yu-Gang Jiang. Secrets of rlhf in large language models part
ii: Reward modeling, 2024a. URL https://arxiv.org/abs/2401.06080.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences
via multi-objective reward modeling and mixture-of-experts, 2024b. URL https://arxiv.
org/abs/2406.12845.

Jialong Wu, Haixu Wu, Zihan Qiu, Jianmin Wang, and Mingsheng Long. Supported policy opti-
mization for offline reinforcement learning. Advances in Neural Information Processing Systems,
35:31278–31291, 2022.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu,
and Yi Wu. Is dpo superior to ppo for llm alignment? a comprehensive study, 2024. URL
https://arxiv.org/abs/2404.10719.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
Dian Wang, Dong Yan, Fan Yang, Fei Deng, Feng Wang, Feng Liu, Guangwei Ai, Guosheng
Dong, Haizhou Zhao, Hang Xu, Haoze Sun, Hongda Zhang, Hui Liu, Jiaming Ji, Jian Xie, JunTao
Dai, Kun Fang, Lei Su, Liang Song, Lifeng Liu, Liyun Ru, Luyao Ma, Mang Wang, Mickel Liu,
MingAn Lin, Nuolan Nie, Peidong Guo, Ruiyang Sun, Tao Zhang, Tianpeng Li, Tianyu Li, Wei
Cheng, Weipeng Chen, Xiangrong Zeng, Xiaochuan Wang, Xiaoxi Chen, Xin Men, Xin Yu,
Xuehai Pan, Yanjun Shen, Yiding Wang, Yiyu Li, Youxin Jiang, Yuchen Gao, Yupeng Zhang,
Zenan Zhou, and Zhiying Wu. Baichuan 2: Open large-scale language models, 2023. URL
https://arxiv.org/abs/2309.10305.

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection:
A survey. International Journal of Computer Vision, pp. 1–28, 2024a.

14

https://arxiv.org/abs/2407.16008
https://arxiv.org/abs/2310.05199
https://arxiv.org/abs/2310.03716
https://arxiv.org/abs/2009.01325
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2401.06080
https://arxiv.org/abs/2406.12845
https://arxiv.org/abs/2406.12845
https://arxiv.org/abs/2404.10719
https://arxiv.org/abs/2309.10305


Published as a conference paper at ICLR 2025

Long Yang, Jiaming Ji, Juntao Dai, Linrui Zhang, Binbin Zhou, Pengfei Li, Yaodong Yang,
and Gang Pan. Constrained update projection approach to safe policy optimization. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 9111–9124. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/3ba7560b4c3e66d760fbdd472cf4a5a9-Paper-Conference.pdf.

Rui Yang, Ruomeng Ding, Yong Lin, Huan Zhang, and Tong Zhang. Regularizing hidden states
enables learning generalizable reward model for llms. arXiv preprint arXiv:2406.10216, 2024b.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model, 2024a. URL https://arxiv.org/abs/2401.02385.

Xiaoying Zhang, Jean-Francois Ton, Wei Shen, Hongning Wang, and Yang Liu. Overcoming re-
ward overoptimization via adversarial policy optimization with lightweight uncertainty estima-
tion. arXiv preprint arXiv:2403.05171, 2024b.

15

https://proceedings.neurips.cc/paper_files/paper/2022/file/3ba7560b4c3e66d760fbdd472cf4a5a9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/3ba7560b4c3e66d760fbdd472cf4a5a9-Paper-Conference.pdf
https://arxiv.org/abs/2401.02385


Published as a conference paper at ICLR 2025

ETHICS STATEMENT

This paper presents work that aims to advance the field of machine learning, specifically focusing
on mitigating reward over-optimization in RLHF. There are many potential societal consequences
of our work, none of which we feel must be specifically highlighted here.

A SUPPLEMENTARY DETAILS OF ANALYSIS SECTION

A.1 PROOFS

Notations. For any state s, the supported action space of state s is denoted as supp (β(·|s)) .
=

{a ∈ A | β(a|s) > 0}. The set of all behavior-supported policies is denoted as

Πβ
.
= {π ∈ Π | π(a|s) = 0 ,∀a /∈ supp (β(·|s))} . (10)

We define rmin
.
= mins∈S,a∈A [r(s, a)] and Qmin

.
=
∑∞

t=0 γ
trmin = rmin

1−γ . Then, we propose the
following behavior-supported Bellman operator:

T π
β Q(s, a)

.
=

{
T πQ(s, a), if β(a|s) > 0,

Qmin, otherwise.
(11)

where T πQ(s, a)
.
= r(s, a) + γEa′∼π(·|s′) [Q(s′, a′)] is the traditional Bellman operator and s′ =

T (s, a) is the next state. This new operator has the following properties:
Theorem 1 (Contraction of T π

β ). For any policy π ∈ Π, the operator T π
β is γ-contraction with

respect to the L∞ norm over the space S ×A.

Proof. For any functions f1, f2 : S × A → R, any policy π, and ∀s ∈ S, a ∈ A, if β(a|s) = 0 we
have ∣∣T π

β f1(s, a)− T π
β f2(s, a)

∣∣ = |Qmin −Qmin| = 0 ≤ γ ∥f1 − f2∥∞ ; (12)

else if β(a|s) > 0 we have∣∣T π
β f1(s, a)− T π

β f2(s, a)
∣∣ = ∣∣γEa′∼π(·|s′) [f1(s

′, a′)− f2(s
′, a′)]

∣∣
≤ γEa′∼π(·|s′) |f1(s′, a′)− f2(s

′, a′)|
≤ γ max

s∈S,a∈A
|f1(s, a)− f2(s, a)|

= γ ∥f1 − f2∥∞

(13)

where s′ = T (s, a).

Thus, we have
∥∥∥T π

β f1 − T π
β f2

∥∥∥
∞

≤ γ ∥f1 − f2∥∞, that is, T π
β is γ-contraction.

The γ-contraction property of the operator T π
β guarantees that, for any initial Q-values, iterative

application of T π
β converges to a unique fixed point at a rate of γ. Thus, we find this fixed point by

iteratively solving the problem, minQ Eτ∼π(Q(s, a)−T π
β Q(s, a))2, and use it for policy evaluation

to optimize the policy π.

The fixed point Qπ
β has the following properties:

Theorem 2 (Fixed Points). For any policy π ∈ Π, the fixed point Qπ
β of T π

β satisfies{
Qmin ≤ Qπ

β(s, a) ≤ Qπ(s, a), if β(a|s) > 0,

Qπ
β(s, a) = Qmin, otherwise.

(2)

where Qπ(s, a) is fixed point of standard Bellman operator T π .

Proof. By Theorem 1, T π
β is γ-contraction. Assume the Qπ

β is the fixed point, then we have

Qπ
β(s, a) = T π

β Qπ
β(s, a) =

{
T πQπ

β(s, a), if β(a|s) > 0,

Qmin, otherwise.
(14)
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where s′ = T (s, a).

Denoting (ŝ, â) is the minimum point of Qπ
β(s, a) when β(a|s) > 0, that is, we define (ŝ, â)

.
=

argmins∈S,a∈supp(β(·|s)) Q
π
β(s, a). Then, we have

Qπ
β(ŝ, â) = r(ŝ, â) + γEa′∼π(·|s′)

[
Qπ

β(s
′, a′)

]
where s′

.
= T (ŝ, â)

= r(ŝ, â) + γ

 ∑
a′∈supp(β(·|s′))

π(a′|s′)T πQπ
β(s

′, a′) +
∑

a′ /∈supp(β(·|s′))

π(a′|s′)Qmin


= r(ŝ, â) + γ

 ∑
a′∈supp(β(·|s′))

π(a′|s′)Qπ
β(s

′, a′) +
∑

a′ /∈supp(β(·|s′))

π(a′|s′)Qmin


≥ r(ŝ, â) + γ

 ∑
a′∈supp(β(·|s′))

π(a′|s′)

Qπ
β(ŝ, â) + γ

 ∑
a′ /∈supp(β(·|s′))

π(a′|s′)

Qmin

(15)

The last inequality in Equation 15 holds since (ŝ, â) is the minimum point of Qπ
β(s, a). To simplify

the expression, we define λ
.
=
∑

a′∼supp(β(·|s′)) π(a
′|s′). Then, 1 − λ =

∑
a′ /∈supp(β(·|s′)) π(a

′|s′).
Bringing it into the above inequality and since γ ∈ [0, 1), λ ∈ [0, 1], we have

Qπ
β(ŝ, â) ≥ r(ŝ, â) + γλQπ

β(ŝ, â) + γ(1− λ)Qmin

(1− γλ)Qπ
β(ŝ, â) ≥ r(ŝ, â) + γ(1− λ)Qmin

Qπ
β(ŝ, â) ≥

r(ŝ, â) + γ(1− λ)Qmin

1− γλ

(16)

Since r(ŝ, â) ≥ rmin = (1− γ)Qmin, it follows that

Qπ
β(ŝ, â) ≥

(1− γ)Qmin + γ(1− λ)Qmin

1− γλ
= Qmin (17)

Since (ŝ, â) is the minimum point of Qπ
β(s, a), the following equation holds

∀s ∈ S, a ∈ supp(β(·|s)), Qπ
β(s, a) ≥ Qπ

β(ŝ, â) ≥ Qmin (18)

Then, since ∀s ∈ S, a /∈ supp(β(·|s)), Qπ
β(s, a) = Qmin, we have ∀s ∈ S, a ∈ A, Qπ

β(s, a) ≥ Qmin.

Next, we will prove the relationship between Qπ
β(s, a) and Qπ(s, a).

∀s ∈ S, a ∈ A, we have

T πQπ
β(s, a) = r(s, a) + γEa′∼π(·|s′)

[
Qπ

β(s
′, a′)

]
where s′

.
= T (ŝ, â)

≥ r(s, a) + γEa′∼π(·|s′) [Qmin]

= (1− γ)Qmin + γQmin

= Qmin

(19)

Thus, for any s ∈ S, a ∈ A, we have

T π
β Qπ

β(s, a) =

{
T πQπ

β(s, a), if β(a|s) > 0,

Qmin ≤ T πQπ
β(s, a), otherwise

≤ T πQπ
β(s, a)

(20)

17
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∀s ∈ S, a ∈ supp(β(·|s)), it holds that
Qπ

β(s, a) = T π
β Qπ

β(s, a)

= T πQπ
β(s, a)

= r(s, a) + γEa′∼π(·|s′)
[
Qπ

β(s
′, a′)

]
where s′

.
= T (ŝ, â)

= r(s, a) + γEa′∼π(·|s′)
[
T π
β Qπ

β(s
′, a′)

]
≤ r(s, a) + γEa′∼π(·|s′)

[
T πQπ

β(s
′, a′)

]
= r(s, a) + γEa′∼π(·|s′)

[
r(s′, a′) + γEa′′∼π(·|s′′)

[
Qπ

β(s
′′, a′′)

]]
where s′′

.
= T (ŝ′, â′)

= r(s, a) + γEa′∼π(·|s′)
[
r(s′, a′) + γEa′′∼π(·|s′′)

[
T π
β Qπ

β(s
′′, a′′)

]]
≤ r(s, a) + γEa′∼π(·|s′)

[
r(s′, a′) + γEa′′∼π(·|s′′)

[
T πQπ

β(s
′′, a′′)

]]
· · ·

≤ Eπ

[ ∞∑
i=0

γir(si, ai) | s0 = s, a0 = a

]
= Qπ(s, a)

(21)

Combining Equation 18 and Equation 21, we prove that ∀π ∈ Π, the fixed point Qπ
β of T π

β satisfies{
Qmin ≤ Qπ

β(s, a) ≤ Qπ(s, a), if β(a|s) > 0,

Qπ
β(s, a) = Qmin, otherwise.

(22)

We refer to the fixed point Qπ
β as the behavior-supported Q-value function. It underestimates the

future returns of OOD actions, thereby disadvantaging these actions across the action space. Now,
we consider a common policy iteration using behavior-supported value, as follows:

πk+1 = argmax
π∈Π

Eτ∼πk

[
π(at|st)
πk(at|st)

Aπk

β (st, at)

]
. (23)

where V πk

β (s) = Ea∼πk(·|s)

[
Qπk

β (s, a)
]
, and Aπk

β (s, a) = Qπk

β (s, a) − V πk

β (s). Furthermore, the
following corollary guarantees that the policy optimization method in Equation 3 yields behavior-
supported policies π ∈ Πβ through regularized policy evaluation.
Corollary 1 (Supported Policy Optimization). The policy optimization method mentioned in Equa-
tion 3 yields behavior-supported policy π ∈ Πβ .

Proof. For any s ∈ S,

dπk
µ (s) = dπk

µ (x ∪ a0:t−1) =
∑
x∈X

µ(x)

t−1∏
i=0

πk(ai|x ∪ a0:i−1). (24)

Then, we have

πk+1(a|s) = argmax
π∈Π

Eτ∼πk

[
π(at|st)
πk(at|st)

Aπk

β (st, at)

]
,

= argmax
π∈Π

∑
s∈S

dπk
µ (s)

∑
a∈A

πk(a|s)
[
π(a|s)
πk(a|s)

Aπk

β (s, a)

]
,

= argmax
π∈Π

∑
s∈S

dπk
µ (s)

∑
a∈A

π(a|s)
[
Aπk

β (s, a)
]
,

= I
[
a = argmax

a′∈A
Aπk

β (s, a′)

]
,

= I
[
a = argmax

a′∈A

(
Qπk

β (s, a′)− V πk

β (s)
)]

,

= I
[
a = argmax

a′∈A
Qπk

β (s, a′)

]
.

(25)
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Since Qπk

β (s, a) is equal to the fixed point of the T πk

β , it holds that, ∀s ∈ S,∀a′ ∈ supp(β(·|s)),
∀a′′ /∈ supp(β(·|s)),

Qπk

β (s, a′) ≥ Qmin = Qπk

β (s, a′′) (26)
where the inequality holds because of Theorem 2. Therefore, the maximum solution will only
choose behavior-supported actions. It follows that

πk+1(a|s) = I
[
a = argmax

a′∈A
Qπk

β (s, a′)

]
= I

[
a = argmax

a′∈supp(β(·|s)
Qπk

β (s, a′)

]
∈ Πβ (27)

In conclusion, for arbitrary policy πk, the policy optimization method mentioned in Equation 3
yields a supported next policy πk+1 ∈ Πβ .

Theoretically, we demonstrate that policy iteration with the regularized value function guarantees
that each iteration results in a behavior-supported policy. This restricts the search for the optimal
policy to the ID region of the reward model. As a result, the reward model does not need to evaluate
trajectories generated by OOD actions, thereby preventing the over-optimization issue caused by
extrapolation errors. For behavior-supported policy iterations, the following corollary holds:
Corollary 2. For any behavior-supported policy π ∈ Πβ , the fixed point Qπ

β of T π
β satisfies

Qπ
β(s, a) =

{
Qπ(s, a), if β(a|s) > 0,

Qmin, otherwise.
(5)

Proof. By Theorem 1, T π
β is γ-contraction. Assume the Qπ

β is the fixed point, then we have

Qπ
β(s, a) = T π

β Qπ
β(s, a) =

{
T πQπ

β(s, a), if β(a|s) > 0,

Qmin, otherwise.
(28)

where s′ = T (s, a).

For all supported policy π ∈ Πβ , it holds that ∀s ∈ S, a /∈ supp(β(·|s), π(a|s) = 0. Then, we have

Ea∼π(·|s)
[
T π
β Qπ

β(s, a)
]
=

∑
a∈supp(β(·|s))

π(a|s)T πQπ
β(s, a) +

∑
a/∈supp(β(·|s))

π(a|s)Qmin

=
∑

a∈supp(β(·|s))

π(a|s)T πQπ
β(s, a)

=
∑

a∈supp(β(·|s))

π(a|s)T πQπ
β(s, a) +

∑
a/∈supp(β(·|s))

π(a|s)T πQπ
β(s, a)

= Ea∼π(·|s)
[
T πQπ

β(s, a)
]

(29)
Thus, ∀s ∈ S, a ∈ supp(β(·|s)), it holds that
Qπ

β(s, a) = T π
β Qπ

β(s, a)

= T πQπ
β(s, a)

= r(s, a) + γEa′∼π(·|s′)
[
Qπ

β(s
′, a′)

]
where s′

.
= T (ŝ, â)

= r(s, a) + γEa′∼π(·|s′)
[
T π
β Qπ

β(s
′, a′)

]
= r(s, a) + γEa′∼π(·|s′)

[
T πQπ

β(s
′, a′)

]
= r(s, a) + γEa′∼π(·|s′)

[
r(s′, a′) + γEa′′∼π(·|s′′)

[
Qπ

β(s
′′, a′′)

]]
where s′′

.
= T (ŝ′, â′)

= r(s, a) + γEa′∼π(·|s′)
[
r(s′, a′) + γEa′′∼π(·|s′′)

[
T π
β Qπ

β(s
′′, a′′)

]]
= r(s, a) + γEa′∼π(·|s′)

[
r(s′, a′) + γEa′′∼π(·|s′′)

[
T πQπ

β(s
′′, a′′)

]]
· · ·

= Eπ

[ ∞∑
i=0

γir(si, ai) | s0 = s, a0 = a

]
= Qπ(s, a)

(30)
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Corollary 2 indicates that the behavior-supported policy evaluation provides the same unbiased Q-
values for all ID actions as the standard Bellman operator T π . Together with Corollary 1, for any
state s, the optimal behavior-supported action is the same under the Qπ

β and Qπ value functions
during behavior-supported policy iteration.

Furthermore, we use the following lemma to prove the monotonicity of our method:

Lemma 1 (Performance Difference, Lemma 6.1 in (Kakade & Langford, 2002)). For any policies
π and π′ and any starting state distribution µ,

J (π′)− J (π) =
1

1− γ
Es∼dπ′

µ ,a∼π′(·|s) [A
π(s, a)] (31)

Theorem 3 (Monotonicity to Optimality). The behavior-supported policy optimization method men-
tioned in Equation 3 results in a strictly monotonic improvement of policy performance, continuing
until the optimal behavior-supported policy π∗

β is attained.

Proof. First, we prove the monotonicity. Given a sequence of policies {πi}∞i=0 generated by the
policy optimization method in Equation 3. From Lemma 1, for any k ≥ 0, we have

J (πk+1)− J (πk) =
1

1− γ
E
s∼d

πk+1
µ ,a∼πk+1(·|s) [A

πk(s, a)]

=
1

1− γ

∑
s∈S

dπk+1
µ (s)

∑
a∈A

πk+1(a|s)Aπk(s, a)

=
1

1− γ

∑
s∈S

dπk+1
µ (s)

∑
a∈A

πk+1(a|s)
[
Qπk

β (s, a)− V πk

β (s)
]

=
1

1− γ

∑
s∈S

dπk+1
µ (s)

[∑
a∈A

πk+1(a|s)Qπk

β (s, a)− V πk

β (s)

]

=
1

1− γ

∑
s∈S

dπk+1
µ (s)

[∑
a∈A

πk+1(a|s)Qπk

β (s, a)−
∑
a∈A

πk(a|s)Qπk

β (s)

]

=
1

1− γ
E
s∼d

πk+1
µ

[
Ea∼πk+1(·|s)Q

πk

β (s, a)− Ea∼πk(·|s)Q
πk

β (s, a)
]

≥ 0
(32)

where the last inequality holds since πk+1 is the greedy policy with respect to Qπk

β , i.e., πk+1(a|s) =
I
[
a = argmaxa′∈supp(β(·|s)) Q

πk

β (s, a′)
]
.

Second, we prove the convergence. For any k ≥ 0, if J (πk+1) − J (πk) = 0, since ∀s ∈
S, dπk+1

µ (s) > 0, we have

Ea∼πk+1(·|s)Q
πk

β (s, a) = Ea∼πk(·|s)Q
πk

β (s, a) (33)

Since Qπk

β is equal to the fixed point of the Bellman Operator T πk

β , it holds that

Qπk

β (s, a) = T πk

β Qπk

β (s, a) =

{
T πkQπk

β (s, a), if β(a|s) > 0,

Qmin, otherwise.
(34)
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As a result, ∀s ∈ S, a ∈ A, β(a|s) > 0, we have

Qπk

β (s, a) = T πkQπk

β (s, a)

= r(s, a) + γEa′∼πk(·|s′)

[
Qπk

β (s′, a′)
]

where s′ = T (s, a)

= r(s, a) + γEa′∼πk+1(·|s′)

[
Qπk

β (s′, a′)
]

from Equation 33

= r(s, a) + γ
∑
a∈A

I

[
a = argmax

a′∈supp(β(·|s′))
Qπk

β (s′, a′)

]
Qπk

β (s′, a) from Equation 27

= r(s, a) + γ max
a′∈supp(β(·|s′))

Qπk

β (s′, a′)

= T ∗
β Qπk

β (s, a)
(35)

Thus, Qπk

β is the fixed point of the Bellman optimality operator T ∗
β , i.e., Qπk

β = Q∗
β . From Equa-

tion 27, we have,

πk+1(a|s) = I

[
a = argmax

a′∼supp(β(·|s))
Qπk

β (s, a′)

]
= I

[
a = argmax

a′∼supp(β(·|s))
Q∗

β(s, a
′)

]
= π∗

β(a|s)

(36)

B SUPPLEMENTARY DETAILS OF IMPLEMENTATION SECTION

B.1 PROOFS

Behavior-Supported Value Function The core of our algorithm involves training a critic model
to perform behavior-supported policy evaluation. In our implementation, we predict behavior-
supported V-values instead of Q-values to achieve greater stability while maintaining equivalent
policy evaluation. The deterministic state transition equation of a token-level MDP in LLM,
T (x∪a0:t−1, at) = x∪a0:t, ensures this equivalence. Specifically, the behavior-supported Bellman
V-operator is defined as:

T π
β,V V (x ∪ a0:t−1)

.
=

{
T π
V V (x ∪ a0:t−1), if β(at−1|x ∪ a0:t−2) > 0,

1
γ [Qmin − r(x ∪ a0:t−2, at−1)] , otherwise,

(37)

where T π
V V (x∪a0:t−1)

.
= Eat∼π(·|x∪a0:t−1) [r(x ∪ a0:t−1, at) + γV (x ∪ a0:t)] is the standard Bell-

man operator for the V-value function. This operator has the following properties:
Theorem 4 (Contraction of T π

β,V ). For any policy π ∈ Π, the operator T π
β,V is γ-contraction with

respect to the L∞ norm over the state space S.

Proof. ∀f1, f2 : S → R, ∀π ∈ Π, and ∀s ∈ S, denoting s = x∪ a0:t−1, if β(at−1|x∪ a0:t−2)=0, it
follows that ∣∣T π

β,V f1(s)− T π
β,V f2(s)

∣∣ = |Vmin(s)− Vmin(s)| = 0 ≤ γ ∥f1 − f2∥∞ ; (38)

if β(at−1|x ∪ a0:t−2) > 0, we have∣∣T π
β,V f1(s)− T π

β,V f2(s)
∣∣ = ∣∣Ea∼π(·|s) [r(s, a) + γf1(s

′)]− Ea∼π(·|s) [r(s, a) + γf2(s
′)]
∣∣

=
∣∣γEa∼π(·|s) [f1(s

′)− f2(s
′)]
∣∣

≤ γEa∼π(·|s) |f1(s′)− f2(s
′)|

≤ γmax
s∈S

|f1(s)− f2(s)|

= γ ∥f1 − f2∥∞

(39)

where s′ = T (s, a). Thus, ∥T π
β,V f1 − T π

β,V f2∥∞ ≤ γ∥f1 − f2∥∞, that is, T π
β,V is a γ-contraction

operator in the L∞ norm within the S space.
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We refer to the fixed point V π
β as the behavior-supported V-value function. Now, we will prove that

Qπ
β and V π

β have the equivalent policy evaluation.
Corollary 3 (Equivalent Policy Evaluation). ∀π ∈ Π, denote V π

β as the fixed point of the Bell-
man operator T π

β,V in Equation 7. Then, its corresponding state-action value function Qπ
β(s, a) =

r(s, a) + γV π
β (T (s, a)) is equal to the fixed point of the Bellman operator T π

β in Equation 1.

Proof. By Theorem 4, T π
β,V is a γ-contraction operator in the L∞ norm within the S space. Assume

the V π
β is the fixed point, then we have ∀s = x ∪ a0:t−1 ∈ S,

V π
β (x ∪ a0:t−1) =

{
T π
V V (x ∪ a0:t−1), if β(at−1|x ∪ a0:t−2) > 0,

1
γ [Qmin − r(x ∪ a0:t−2, at−1)] , otherwise,

(40)

∀s = x ∪ a0:t−1 ∈ S, at ∈ A, if β(at|x ∪ a0:t−1) = 0, it holds that
Qπ

β(x ∪ a0:t−1, at) = r(x ∪ a0:t−1, at) + γV π
β (x ∪ a0:t)

= r(x ∪ a0:t−1, at) + γ · 1
γ
[Qmin − r(x ∪ a0:t−1, at)]

= Qmin

(41)

if β(at|x ∪ a0:t−1) > 0, it holds that
Qπ

β(x ∪ a0:t−1, at) = r(x ∪ a0:t−1, at) + γV π
β (x ∪ a0:t)

= r(x ∪ a0:t−1, at) + γT π
V V (x ∪ a0:t)

= r(x ∪ a0:t−1, at) + γEat+1∼π(·|x∪a0:t)

[
r(x ∪ a0:t, at+1) + γV π

β (x ∪ a0:t+1)
]

= r(x ∪ a0:t−1, at) + γEat+1∼π(·|x∪a0:t)

[
Qπ

β(x ∪ a0:t, at+1)
]

= T πQπ
β(x ∪ a0:t−1, at)

(42)
Therefore, we have

Qπ
β(x ∪ a0:t−1, at) = T π

β Qπ
β(x ∪ a0:t−1, at)

=

{
T πQπ

β(x ∪ a0:t−1, at), if β(at|x ∪ a0:t−1) > 0,

Qmin, otherwise.
(43)

which means Qπ
β is the fixed point of the Bellman operator T π

β in Equation 1.

On the other hand, we will prove that if Qπ
β is the fixed point of the Bellman operator T π

β in Equa-
tion 1, then its corresponding state value function V π

β is the fixed point of the Bellman operator T π
β,V

in Equation 7.

Assume Qπ
β is the fixed point of the Bellman operator T π

β . ∀s = x ∪ a0:t−1 ∈ S , ∀at ∈ A, it holds
that

Qπ
β(x ∪ a0:t−1, at) =

{
T πQπ

β(x ∪ a0:t−1, at), if β(at|x ∪ a0:t−1) > 0,

Qmin, otherwise.
(44)

Since Qπ
β(x ∪ a0:t−2, at−1) = r(x ∪ a0:t−2, at−1) + γV π

β (x ∪ a0:t−1), ∀s = x ∪ a0:t−1 ∈ S, if
β(at−1|x ∪ a0:t−2) = 0, it follows that

V π
β (x ∪ a0:t−1) =

1

γ

[
Qπ

β(x ∪ a0:t−2, at−1)− r(x ∪ a0:t−2, at−1)
]

=
1

γ
[Qmin − r(x ∪ a0:t−2, at−1)]

(45)

if β(at−1|x ∪ a0:t−2) > 0, it follows that

V π
β (x ∪ a0:t−1) = Eat∼π(·|x∪a0:t−1)

[
Qπ

β(x ∪ a0:t−1, at)
]

= Eat∼π(·|x∪a0:t−1)

[
r(x ∪ a0:t−1, at) + γV π

β (x ∪ a0:t)
] (46)

Therefore, ∀s ∈ S, we have V π
β (s) = T π

β,V V
π
β (s) which means V π

β is the fixed point of the Bellman
operator T π

β,V in Equation 7.
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B.2 PSEUDO-CODE

We provide the pseudo-code of the implementation of our BSPO algorithm as follows:

Algorithm 1 Behavior-Supported Policy Optimization
1: Require: Reward function r(x, y), behavior function β(a|s), initial policy π0, initial value

function V0

2: for step k = 1, . . . ,K do
3: Generate responses

ŷb = (ab,0, . . . , ab,T−1) ∼ pπk−1
(yb|xb) =

T−1∏
t=0

πk−1(ab,t|sb,t)

where sb,0 = xb, and b = 1, · · · , B refers to the index within the batch.
4: Compute reward with KL penalty†:

rRM
b,T−1 = r(xb, ŷb),

rKL
b,t = − log

πk(ab,t|xb ∪ ab,0:t−1)

π0(ab,t|xb ∪ ab,0:t−1)
, (0 ≤ t ≤ T − 1),

r̂b,t = rRM
b,t + ν · rKL

b,t , (0 ≤ t ≤ T − 1),

where ν represents the KL penalty coefficient.
5: Compute advantage estimates:

Âb,t = δb,t + γλδb,t+1 + · · ·+ (γλ)T−t−1δb,T−1,

where δb,t
.
= r̂b,t + γVk−1(sb,t+1)− Vk−1(sb,t).

6: Compute actor loss:

LPPO = − 1

BT

B∑
b=1

T−1∑
t=0

min{ρb,t(k)Âb,t, clip(ρb,t(k), 1− ϵ, 1 + ϵ)Âb,t},

where ρb,t(k) =
πk(ab,t|sb,t)

πk−1(ab,t|sb,t) .
7: Compute behavior-supported value function and critic loss‡:

T πθk

β,V Vk(xb ∪ ab,0:t−1)
.
=

{
r̂b,t + γVk(xb ∪ ab,0:t) if β(ab,t−1 | xb ∪ ab,0:t−2) > ϵβ ,

Vmin, otherwise,

LV =
1

BT

B∑
b=1

T−1∑
t=0

[(
V (sb,t)− T πk−1

β,V Vk(sb,t)
)2]

.

where ϵβ and Vmin are constant minimal values representing the unsupported action’s thresh-
old and the minimum of the value function.

8: Update actor model and critic model with LPPO and LV

9: end for
10: Return πK

†: Since our value regularization method is compatible with the reward regularization method based
on KL divergence control, we preserve this component of the standard RLHF implementation in the
pseudo-code. Notably, we ensure a fair comparison against the KL-only method in main experiments
and provide a detailed analysis of the differences between the two methods in Section 5.4.
‡: In the implementation, a parameterized method predicts the behavior policy. To prevent modeling
errors, an infinitesimal value ϵβ is used as a threshold, instead of zero, to determine whether an
action is supported.
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C SUPPLEMENTARY DETAILS OF EXPERIMENTS

C.1 BASELINES

In this section, we elaborate on baseline algorithms and provide details of our implementation.

C.1.1 STANDARD PPO

We adopt the training procedure proposed by Ouyang et al. (2022b), with a focus on the RL ob-
jective. In this setup, the output from the score head of the ScoreLM model serves as the reward
function for RL training of baselines to ensure a fair comparison. Given a prompt x ∼ Dprompt, the
current actor model πθ(y|x) generates a corresponding response y = a0:T−1 with length T . Then
the reward for tokens a0:T−1 is defined as:

rRM
t =

{
0, 0 ≤ t < T − 1,

Rϕ(x, y), t = T − 1,
(47)

In the RLHF fine-tuning phase, we use the Proximal Policy Optimization (PPO) algorithm (Schul-
man et al., 2017) to train the LLM. The surrogate PPO clip loss for the RL training objective is
formulated as:

LRL(θ;Dprompt) = −Ex∼Dprompt,y∼πθ(y|x)

[
Et

[
min

(
ρt(θ)Â

r̂t , clip (ρt(θ), 1− ϵ, 1 + ϵ) Âr̂t
)]]

(48)

where ρt(θ) = πθ(at|x∪a0:t−1)
πθold (at|x∪a0:t−1)

is the importance sampling weight and θold is model parameters

from the previous gradient update, ϵ ∈ (0, 1) is the PPO clip ratio. Âr̂
t is the advantage of the reward

estimated by the GAE method (Schulman et al., 2018).

C.1.2 KL PENALTY

The primary difference from standard PPO is the addition of a per-token KL penalty to the reward
function used in the RL training. With the prompt x ∼ Dprompt and the corresponding response
y = a1:T , the reward function can be expressed as:

rKL
t = − log

πθ(at|x ∪ a0:t−1)

πref(at|x ∪ a0:t−1)
, (0 ≤ t ≤ T − 1), (49)

r̂t = rRM
t + β · rKL

t , (0 ≤ t ≤ T − 1), (50)

where πref(· | x) denotes the reference model, and β ≥ 0 represents the KL penalty coefficient. For
each token, a dense reward is applied, penalized by the KL divergence between the current actor
model and the reference model. The score head of the ScoreLM model provides a sparse reward
only on the final token. The reference model is a frozen LLM initialized with the actor model’s
parameters at the start of the RLHF phase.

C.1.3 ENSEMBLE

We propose to learn an ensemble of reward models {R1, ..., Rk} in the reward model training stage.
During policy optimization, we combine the reward estimates from different reward models within
the ensemble according to the following two methods which have been proved to be more effective.

Worst-Case Optimization Worst-case optimization (WCO) creates a conservative estimate by
choosing the lowest reward from the ensemble at every step. Choosing the lowest reward helps
ensure that as long as at least one ensemble member does not overestimate the true reward, policy
optimization will not result in over-optimization.
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RWCO(x, y) := min
i

Ri(x, y) (51)

A major advantage of WCO is that it does not have any hyperparameters that might require tuning.
However, it can sometimes result in a performance penalty due to its highly conservative nature.

Uncertainty-Weighted Optimization In uncertainty-weighted optimization (UWO), the reward
for a sample is calculated by combining the average reward across all models in an ensemble with
the intra-ensemble variance, weighted by a coefficient λ. Intuitively, UWO works by penalizing the
policy for generating responses for which there is high disagreement among reward models within
the ensemble. This helps prevent the exploitation of a single faulty reward model which might
be erroneously assigning high rewards to incorrect or low-quality responses. Mathematically, this
objective is given by:

RUWO(x, y) =
1

k

∑
i

Ri(x, y)︸ ︷︷ ︸
mean

−λ
1

k

∑
i

(
Ri(x, y)−

1

k

∑
i

Ri(x, y)

)2

︸ ︷︷ ︸
variance

(52)

where λ is a hyperparameter which controls the weight of the uncertainty component.

C.1.4 CONSTRAINED PPO

The basic idea of Constrained PPO (Moskovitz et al., 2023) is to model the over-optimization prob-
lem as a constraint in the RLHF process and then solve it using the Safe RL (Ji et al., 2024b; 2023c;
Yang et al., 2022; Dai et al., 2023b; Meng et al., 2021; Dai et al., 2024; Achiam et al., 2017) do-
main approach. Unlike the original paper which uses several rule-based rewards, we employ an
LLM-based reward model. To identify proxy point, we train PPO agents (Schulman et al., 2017)
to maximize the reward model (without KL regularization) and plot the resulting evaluation scores
against the gold model. We observe that the evaluation score initially increase before falling, so we
identify the point where further optimization will lead to a decrease in the gold score. After per-
forming the above steps multiple times, we select the most conservative proxy point to ensure that
roo will not occur.

Once one has identified proxy point for the reward model, the next question is how to train agents
to maximize the reward until they hit this critical value. In constrained reinforcement learning, an
agent seeks to maximize its value while adhering to constraints on its behavior. Mathematically, this
problem is formalized as a constrained MDP (Altman, 1999). For clarity, we will hereafter refer to
r0 as the “task reward” rather than just the reward, and the CMDP optimization problem is given by:

max
π

vπ0 s.t. vΠi ≥ θi, i = 1, . . . , N (53)

As mentioned in the paper, r0 is selected as kl divergence, and we have only one reward model, that
is, N=1. Given our possible objectives, we can now consider how to optimize them. One popular
approach to solving constrained problems is to use Lagrangian relaxation:

max
π

min
µ≥0

vπ0 +

N∑
i=1

µi(v
π
i − θi) (54)

where the weights on the value of each RMs µ = [µ1, . . . , µN ]T ∈ RN
≥0 are the Lagrange multipliers

associated with each constraint.

We implemented the algorithm referred to as ξ−PPO in the paper, which is also the best-performing
among the several algorithms proposed. It is designed to stay close to π0 and ensure reward models
hit the target, with an objective of the following form:

max
π

vπKL s.t. vj = θj∀j ̸= i (55)
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With this objective, we then design mixed advantages which are a convex combination of the task
and constraint advantages:

Aπ
µ(s, a) = (N −

N∑
i=1

µi)A
π
0 (s, a) +

N∑
i=1

µiA
π
i (s, a) (56)

This equation has the intuitive interpretation of placing more weight on optimizing constraint reward
ri > 0 when µi > 0 is high (indicating a constraint violation), and more weight on task reward r0
when µ1:N are low (indicating that constraints are satisfied).

The original paper employs a tanh function to constrain the Lagrange multipliers between -1 and 1.
However, in our experiment, the total number of training steps is relatively low due to the large batch
size. Using the tanh function slows down the optimization of the Lagrange multipliers, causing them
to remain elevated for too long when constraints are satisfied, and vice versa. Therefore, we replace
the tanh function with a simple clipping of the Lagrange multipliers between -1 and 1.

C.2 HYPER-PARAMETERS

In this section, we provide all the hyper-parameters used in our experiments.

Table 1: Hyper-parameters of three experimental settings of BSPO.
Hyper-parameters Proxy-774M Proxy-1.1B Proxy-2.7B
epochs 3 3 3
max length 512 512 512
temperature 1.2 1.2 1.2
top p 1 1 1
num return sequences 1 1 1
repetition penalty 1.0 1.0 1.0
per device prompt batch size 8 8 8
per device train batch size 8 8 8
gradient accumulation steps 1 1 1
actor lr 1.00E-5 1.00E-5 1.00E-5
actor weight decay 0.01 0.01 0.01
actor lr scheduler type cosine cosine cosine
actor lr warmup ratio 0.03 0.03 0.03
actor gradient checkpointing TRUE TRUE TRUE
critic lr 5.00E-06 5.00E-06 5.00E-06
critic weight decay 0.0 0.0 0.0
critic lr scheduler type constant constant constant
critic lr warmup ratio 0.03 0.03 0.03
critic gradient checkpointing TRUE TRUE TRUE
clip range ratio (ϵ) 0.2 0.2 0.2
unsupported value -15 -15 -15
epsilon beta (ϵβ) 1.00E-4 1.00E-4 1.00E-4
bf16 TRUE TRUE TRUE
tf32 TRUE TRUE TRUE
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Table 2: Hyper-parameters of Reward Model Training.
Hyper-parameters Gold-8B Proxy-774M Proxy-1.1B Proxy-2.7B
epochs 2 2 2 2
max length 1024 1024 1024 1024
per device train batch size 16 16 16 16
per device eval batch size 16 16 16 16
gradient accumulation steps 1 1 1 1
gradient checkpointing TRUE TRUE TRUE TRUE
regularization 0.001 0.001 0.001 0.001
lr 2.00E-05 2.00E-05 2.00E-05 2.00E-05
lr scheduler type cosine cosine cosine cosine
lr warmup ratio 0.03 0.03 0.03 0.03
weight decay 0.1 0.1 0.1 0.1
lm coef (α) NULL 0.01 0.01 0.01
bf16 TRUE TRUE TRUE TRUE
tf32 TRUE TRUE TRUE TRUE

C.3 RUNTIME ENVIRONMENT

All experiments in this paper utilize the following runtime environment. The server’s CPU is
an Intel(R) Xeon(R) Platinum 8358P CPU @ 2.60GHz with 128 cores, and the graphics cards
are NVIDIA A100-SXM4-80GB ×8, with NVLink support and the graphics driver version being
550.54.15.
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D MORE EXPERIMENTAL RESULTS

D.1 PROXY MODEL FAILS TO EVALUATE UNSUPPORTED RESPONSES

Since reward learning is inherently data-driven, it faces significant challenges in evaluating re-
sponses that lie outside the distribution of the reward training dataset. As described in Section
3, we introduce an OOD detection approach for reward prediction of RLHF based on the power of
well-pretrained LLMs for next-token prediction.
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Figure 5: The prediction accuracy of the proxy model on pairs of supported and unsupported re-
sponses is evaluated across three repeated standard PPO experiments, each conducted with different
random seeds.

We collect all responses generated during RLHF under the same experimental settings and categorize
them as supported or unsupported based on whether the behavior policy supports the actions. These
responses, along with those from the initial model given the same prompts, form comparison pairs.
We then test whether the proxy model can correctly predict preferences using the gold model as
ground truth. The results are provided in Figure 5.

Figure 5 shows that as the policy iterates, the proportion of unsupported responses generated by
the LLM increases. For comparison pairs consisting of supported responses, the proxy model pre-
dicts preferences with accuracies of 75.91%, 71.56%, and 74.81%, which are comparable to its
performance on the test set (Figure 2(b)). In contrast, for comparison pairs involving unsupported
responses, the model’s accuracy drops markedly to 58.10%, 62.25%, and 59.01%. These findings
suggest that whether the response contains only behavior-supported actions is an effective indica-
tor for measuring whether it is OOD for reward prediction. Furthermore, the occurrence of reward
over-optimization is also directly related to the percentage of unsupported responses and the validity
of the evaluation of responses (extrapolation error).

D.2 MORE TRAINING CURVES OF SCORELM

We train three ScoreLM models for our algorithm and baselines using the loss function in Equa-
tion 6 with different model scales, as shown in Figure 6. The accuracies on the evaluation dataset
demonstrate a scaling law, where larger pretrained models consistently achieve better performance
on the downstream task.
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Figure 6: Training curves of ScoreLM models

D.3 MORE TRAINING CURVES OF ENSEMBLE BASELINES

The ensemble baselines, ENS-UWO and ENS-WCO, require multiple reward or ScoreLM models.
Therefore, we train four reward models for each pretrained model the same experimental settings,
varying only the random seed. The training curves and evaluation curves are presented in Figure 7.

D.4 RESPONSE LENGTH

Improvements in reward are often driven by longer responses, as LLMs exploit human raters’ pref-
erence for detailed content (Singhal et al., 2024; Shen et al., 2023). Several methods aim to control
this length bias (Dubois et al., 2024a; Singhal et al., 2024; Shen et al., 2023; Chen et al., 2024; Ji
et al., 2025; 2024a). Our method provides a more comprehensive solution, effectively mitigating
various biases, including response length.

We collect response length statistics for different methods during training, as shown in Figure 8.
Both the PPO and ENS-UWO algorithms approach the model’s maximum generation length, while
ENS-WCO generates shorter responses due to conservation optimization. KL-penalty PPO produces
shorter responses by strictly enforcing KL-divergence constraints. Constrained PPO is the most
unstable, with response lengths varying unpredictably. Although there is no control for length, our
proposed approach strikes a balance and achieves an appropriately concise and detailed response.

D.5 NON-SYNTHETIC SETTING

Studying reward over-optimization requires continuous evaluation during the training and effective
comparison with the proxy reward. However, human evaluation is not only expensive but also unable
to provide timely scalar feedback. As a result, to the best of our knowledge, nearly all prior works
(Gao et al., 2023; Coste et al., 2023; Eisenstein et al., 2023) rely on synthetic settings.

The differences between synthetic settings and real-world scenarios are an important concern. In this
section, we emulate human behavior by the GPT-4o (Achiam et al., 2023) to conduct experiments
in a realistic setting and engage in further discussions.
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Figure 7: Training curves of four reward models used in ensemble baselines, with variations only in
random seeds.
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Figure 8: Mean generated length in different algorithms

D.5.1 IMPLEMENTATION DETAILS

Assigning a scalar score to responses through human evaluation is inherently challenging. There-
fore, an effective alternative involves comparing the responses generated by different checkpoints on
an evaluation dataset. Specifically, we train a 7B reward model from Alpaca-7B (Taori et al., 2023)
on the UltraFeedback preference dataset (Cui et al., 2023), achieving a test set accuracy of 82.94%.
This reward model was subsequently used to conduct training for BSPO and the baseline methods
(PPO (Ouyang et al., 2022a), WCO (Coste et al., 2023)).
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Figure 9: The training curves and ELO scores of different algorithms in the non-synthetic setup.

Table 3: The win rate of different checkpoints
Win Ratio Initial PPO:79step PPO:158step WCO:79step WCO:158step BSPO:79step BSPO:158step

Initial 0.5 0.4921 0.5316 0.4683 0.4821 0.4246 0.3849
PPO:79step 0.5079 0.5 0.5258 0.4722 0.4942 0.4227 0.3952 7

PPO:158step 0.4684 0.4742 0.5 0.4643 0.4603 0.4048 0.369
WCO:79step 0.5317 0.5278 0.5357 0.5 0.5161 0.4724 0.4365
WCO:158step 0.5179 0.5058 0.5397 0.4839 0.5 0.4782 0.4325
BSPO:79step 0.5754 0.5773 0.5952 0.5276 0.5218 0.5 0.4484
BSPO:158step 0.6151 0.6048 0.631 0.5635 0.5675 0.5516 0.5

To quantify evaluation results, we compared the checkpoints on the test set to calculate the win rate
between checkpoints and fit an ELO score (Askell et al., 2021) as the scalar evaluation metric. The
ELO update formula is as follows:

R′
A = RA +K ·

(
SAB − 1

1 + 10(RB−RA)/400

)
(57)

where SAB represents the win rate of Model A over Model B on the test set, K is the update
coefficient, and RA and RB are the ELO scores of Models A and B, respectively.

D.5.2 EXPERIMENTAL RESULTS

The training curves and ELO scores can be found in Figure 9 and Table 4. The specific win rates
between different checkpoints are presented in Table 3.

Our experiments reveal interesting insights. We observed that while the proxy reward exhibits con-
sistently increases across the three approaches, their performance under human evaluation reveals
differences. Naı̈ve PPO shows performance improvement at 79 steps but suffers a severe decline by
158 steps, highlighting the issue of reward over-optimization. WCO maintains stable human eval-
uation performance across both steps, indicating its effectiveness in mitigating over-optimization.
However, it does not identify the optimal solution as effectively as BSPO. BSPO demonstrates con-
tinuous improvement in both proxy reward and human evaluation, indicating its capability to address
over-optimization while identifying optimal policies.

D.6 DATA WITH LABEL NOISE

Many studies (Gao et al., 2023; Coste et al., 2023; Eisenstein et al., 2023) utilize re-annotated data
with label noise to train their proxy models. Similarly, we conducted experiments to demonstrate
the robustness of our algorithm. By introducing 15% label noise to the training data of the proxy
reward models (TinyLlama-1.1B (Zhang et al., 2024a)), we obtained the results shown in Figure 10.

We observed the following phenomena. The inclusion of additional noisy data results in a decrease
in the performance of all algorithms when evaluated on the gold reward, compared to the Figure 3 of
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Table 4: The ELO scores of different checkpoints
Model Initial PPO:79step PPO:158step WCO:79step WCO:158step BSPO:79step BSPO:158step

ELO 1178.30 1181.77 1164.17 1201.77 1195.39 1224.92 1253.68

Figure 10: Training curves of different algorithms with label noise

the paper. Despite this, BSPO consistently mitigates reward over-optimization and achieves better
performance than the baseline methods, demonstrating its robustness to noise.

D.7 ABLATION STUDIES OF HYPER-PARAMETERS

D.7.1 ROBUSTNESS OF VMIN

Vmin is designed to suppress the V -values corresponding to OOD actions, necessitating that Vmin be
lower than all possible V -values.

In general, Vmin can be determined by calculating the minimum V -value, such as Vmin = 1
1−γ rmin,

where rmin denotes the minimum value of the reward function. Specifically, for RLHF of LLMs,
where only the final token receives a nonzero reward, we have V (s) = Eτ∼π[γ

∥τ∥r(τ) | s0 = s] ≥
min(0, rmin) = Vmin.

On the other hand, empirical evidence suggests that as long as Vmin remains smaller than all pos-
sible V -values, the performance of BSPO is not sensitive to the Vmin. To evaluate this, we con-
ducted experiments under the condition rmin = −10, testing a range of Vmin values: Vmin =
−10,−15,−20,−25.

The resulting experimental outcomes are summarized in Figure 11. We observe that, across different
values of Vmin, the training curves of BSPO exhibit similar behavior, consistently improving both
the proxy reward and the gold reward while effectively addressing the issue of over-optimization.
These results demonstrate the robustness of the Vmin selection.

D.7.2 ROBUSTNESS OF ϵβ

Since we use a parameterized model to predict the behavior policy. Thus, to prevent modeling
errors, an infinitesimal value ϵβ is used as a threshold, instead of 0, to determine whether a response
is supported. To analyze the sensitivity of the BSPO algorithm to ϵβ , we conducted experiments
with a range of values: ϵβ = 1e− 3, 1e− 4, 1e− 5, 1e− 6, 1e− 7.
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Figure 11: Training curves of different Vmin values

Figure 12: Training curves of different ϵβ values

The experimental results are presented in the Figure 12. Our observations indicate that for ϵβ =
1e − 4, 1e − 5, 1e − 6, BSPO mitigates reward over-optimization and identifies the optimal policy.
However, the performance for ϵβ = 1e − 3 and ϵβ = 1e − 7 shows slower improvement. This
behavior may result from excessively large ϵ values, which can incorrectly classify some actions
as behavior-unsupported, or excessively small ϵ values, which may fail to account for certain OOD
actions. In conclusion, BSPO is robust to ϵβ within a reasonable range, but extreme values should
be avoided.

D.8 COMPARISON WITH DPO

Direct Preference Optimization (DPO) (Rafailov et al., 2024) is an efficient algorithm for aligning
LLMs with human preferences. DPO learns from preference data with the following objective:

LDPO(πθ;πref) = −Ex,yw,yl
∼ D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
(58)
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Figure 13: Training curves of DPO and RPO

Table 5: The win rate of DPO and RPO compared to other algorithms
vs. vs. Alpaca-7B (ref) vs. PPO vs. BSPO (ours)
DPO 0.6592 0.6226 0.2627
RPO 0.7058 0.6664 0.297

DPO-based algorithms have also been reported to have over-optimization issues (Liu et al., 2024;
Xu et al., 2024). However, the over-optimization problems of DPO-based algorithms differ from the
reward over-optimization problem that our work addresses:

• Over-optimization studies for DPO focus on mitigating overfitting to the training dataset in DPO-
based algorithms, which results in reduced generalization to the test set. DPO-based algorithms do
not use a reward model to evaluate responses generated from exploration. Instead, the policy learns
preferences solely from the ”chosen” and ”rejected” labels in the training dataset. Consequently,
the reward over-optimization problem solved in our work does not arise in this context.

• In contrast, our work addresses a distinct challenge: in RL-based algorithms, exploration can
produce OOD responses for the reward model, leading to reward overestimation and, ultimately,
reward hacking.

To tackle the issue of over-optimization in DPO-based algorithm, Liu et al. (2024) proposes Regular-
ized Preference Optimization (RPO). This method aims to identify the optimal policy by leveraging
an adversarially chosen reward model that minimizes a weighted combination of its expected value
and the maximum likelihood estimation (MLE) loss. The corresponding policy objective is

LRPO(θ) = ηβ · Ex∼d0,a0∼πbase(·|x)
[
− log(πθ(a

0|x))
]
+ LD

(
β · log

(
πθ(·|·)
πref(·|·)

))
(59)

The training curves is shown in Figure 13. Although our work does not focus on the same problem,
we compare the performance of the two approaches with our algorithm and baselines in Table 5.

Both DPO and RPO exhibit improvements compared to the original Alpaca-7B model, with the
integration of SFT loss further enhancing their performance. The performance of PPO training is
relatively poor due to severe reward over-optimization issues. In contrast, DPO and RPO do not
rely on the reward model during training, thereby avoiding reward over-optimization problems and
outperforming PPO. Nevertheless, because DPO and RPO lack the ability to explore new responses
and depend heavily on the quality of the training dataset (Xu et al., 2024), their performance falls
short of RL-based BSPO.

For this phenomenon, we believe the following is a plausible discussion for the comparison between
BSPO and DPO-based methods:

• As demonstrated in Theorem 3, although we apply regularization to the value of OOD actions to
avoid overestimation, BSPO can still converge to the same optimal solution for the ID region as the
standard value. BSPO retains the exploration capability inherent in RL-based methods. Therefore,
the comparison between BSPO and DPO-based algorithms primarily reflects the broader distinc-
tion between RL-based and DPO-based approaches.
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• As reported in Xu et al. (2024), compared to RL-based methods, DPO-based methods have several
limitations: over-fitting to the training dataset (a different manner of over-optimization), generat-
ing a biased policy that favors OOD responses, and sensitivity to the quality of preference data.

D.9 OTHER DATASET

We also applied our pipeline to the AlpacaFarm dataset (Dubois et al., 2024b). Our gold reward
model, based on Llama3-8B (Dubey et al., 2024), is trained on a combined preference dataset com-
prising UltraFeedback and a 20k preference dataset annotated by GPT-4 from AlpacaFarm. The
gold model with the best performance over three training epochs is selected. For the proxy reward
model, we used TinyLlama (Zhang et al., 2024a), training it on the 20k re-annotated AlpacaFarm
dataset. This proxy model was then employed in the training of PPO, WCO, and BSPO. The results
are presented in Figure 14.
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Figure 14: Training curves of different algorithms using AlpacaFarm

Due to the relatively smaller size of the AlpacaFarm dataset, the accuracy of the ScoreLM proxy
model is lower compared to when using the UltraFeedback dataset. This limitation results in an
earlier occurrence of the roo phenomenon in both PPO and WCO. However, only BSPO shows
continuous improvement in both proxy rewards and gold rewards, highlighting its ability to mitigate
over-optimization while identifying optimal policies effectively.
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