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Abstract

We explore the task of event extraction and classification by harnessing the power of distant supervision. We present
a novel text labeling method leveraging the redundancy of temporal information in a data lake. This method enables
the creation of large programmatically annotated corpus, allowing the training of transformer models in a distant
supervision manner. This aim to reduce expert annotation time, a scarce and expensive resource. Our approach
utilizes temporal redundancy between structured sources and text, enabling the design of a replicable framework
applicable to diverse real-world databases and use cases. We employ this method to create multiple silver datasets to
reconstruct key events in cancer patients’ pathways, using clinical notes from a cohort of 380,000 oncological patients.
By employing various noise label management techniques, we validate our end-to-end approach and compare
it with a baseline classifier built on expert-annotated data. The implications of our work extend to accelerating
downstream applications, such as patient recruitment for clinical trials, treatment effectiveness studies, survival
analysis, and epidemiology research. While our study showcases the potential of the method, there remain avenues
for further exploration, including advanced noise management techniques, semi-supervised approaches, and a
deeper understanding of biases in the generated datasets and models.

Keywords: Distant Supervision, Electronic Health Records, Programmatic Annotation

1. Introduction

Natural language processing (NLP) techniques ap-
plied to health care notes have already shown
satisfactory results in the literature, in particular
with supervised learning approaches based on ma-
chine learning (ML) (Esteva et al., 2019; Hahn and
Oleynik, 2020; Wu et al., 2020). However, this good
performance depends strongly on the existence of
many annotated records and, moreover, these an-
notations must be performed by domain experts.
This annotation task is in practice a bottleneck for
the development of research because the experts’
available time is a scarce and expensive resource
(Ratner et al., 2020, 2016). Furthermore, the major-
ity of annotated datasets issued from clinical notes
could not be shared and reused due to patient pri-
vacy regulations (Carlini et al., 2021; Lehman et al.,
2021).

On the other hand, the recent digitization of
health records and their collection, in a near real-
time basis, in Clinical Data Warehouses (CDWs)
offer new perspectives for research, steering activi-
ties and policy making. Electronic Health Records
(EHRs) contain extensive clinical data that have
been collected as part of routine care and may be
analyzed leveraging big data technologies (Kim
et al., 2019; Wang et al., 2018). The collected
data generated at the hospital come from multiple
sources (biology, demographic, drug prescription,
claim data, clinical notes, images, etc.) and the in-
formation becomes partially redundant in multiple
cases (Suri et al., 2020; Cabitza et al., 2019, 2005).
Additionally, it could be partial or incomplete if we
consider each source separately. Even if promising,
CDWs gather the information of millions of EHRs

and taking advantage of them is still a current chal-
lenge, on the one hand because of the limitations
and biases of Real-World Data (RWD), and on the
other hand because of the volumetry (Big Data)
and the impossibility of manually reviewing each
record (Hanauer et al., 2015; Newgard et al., 2012).
This makes a fertile ground for the development of
algorithms and ML.

The distant supervision approach allows the use
of multiple data sources to build annotated datasets
automatically, consequently, much faster than what
can be produced by a manual annotation (Ratner
et al., 2016). However, this programmatic anno-
tation is imperfect, producing a silver standard
dataset with unreliable labels, also called noisy
labels. Deep neural networks (DNNs) are suscepti-
ble to overfit on noisy labels due to the large num-
ber of model parameters (Zhang et al., 2017) and
therefore several efforts and methods have been
developed to be able to learn from noisy labels with
DNNs, even though most of these methods have
been developed for image applications (Song et al.,
2022).

We address in this work the task of event extrac-
tion and classification. We leverage information
redundancy present in a portion of EHRs to build
a large programmatically annotated corpus which
allows us to fit a transformer model in a distant
supervision fashion. This model is therefore used
for inference where information is not redundant
or lacking. Overall, we propose a new text label-
ing method that leverages temporal information re-
dundancy from external sources without using any
other text information apart from dates itself, pro-
viding a framework that can be replicated for other
use cases or in other real-world databases. Then,
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we test this method to build multiple silver datasets
for classification in order to reconstruct key events
of cancer patients’ pathway using clinical notes of a
cohort of 380,000 patients. We train a classifier us-
ing different methods for noise label management,
we validate the end-to-end approach and we com-
pare it with a baseline classifier using an expert
annotated corpus.

2. Related Work

NLP applications in the clinical text domain encom-
pass various tasks and use cases. Named Entity
Recognition (NER) and normalization are among
the most common, as recently demonstrated in a
comprehensive review of concept extraction by Fu
et al. (2020). For instance, Lerner et al. (2020)
employed a neural network for clinical entity recog-
nition, while Zhang et al. (2019) utilized a deep
learning NER model for a breast cancer application.
Text classification and entity characterization tasks
have also been widely explored. For example, Wu
et al. (2014) delved into the classification of nega-
tion and hypothesis forms within sentences, which
holds significant relevance when analyzing clinical
text. Lastly, relation extraction is a well-established
area in clinical NLP. It encompasses diverse ap-
plications such as temporal relationship extraction,
disease-gene associations, and drug-dose relation-
ships, as evidenced by Lv et al. (2016); Bose et al.
(2021).

In contrast to traditional NLP approaches reliant
on supervised learning, the weak supervised ap-
proach is a burgeoning field that aims to reduce or
eliminate the need for human annotation. Health
applications have witnessed innovations in this do-
main, including the use of external ontologies for
deep learning NER on EHR, as demonstrated by
Fries et al. (2021). Weak supervision and deep
representation have also been applied to clinical
text classification (Wang et al., 2019), for medical
image classification using clinical notes to weakly
label images (Dunnmon et al., 2020), and for the
relation extraction task (Wang et al., 2022; Amin
et al., 2020; Mintz et al., 2009; Zhao et al., 2020).
In addition, this approach has been used for phe-
notype extraction from EHR while minimizing the
annotation effort (Agarwal et al., 2016; Halpern
et al., 2016) .

Simultaneously, the ML community is actively de-
veloping novel methods for training models with
noisy labels. Conventional regularization tech-
niques, such as data augmentation, weight decay,
dropout, and batch normalization, have seen exten-
sive use to mitigate overfitting to noise. However,
they may not entirely resolve the issue. As a result,
achieving strong generalization capabilities in the
presence of noisy labels remains a significant chal-

lenge, as highlighted by Hedderich et al. (2021) and
Song et al. (2022). Active research directions in
enhancing noise label robustness include sample
selection, robust regularization, robust loss func-
tions, robust architecture, and others.

3. Methodology

We consider a task of event extraction and classifi-
cation, from an organizational data lake containing
text and other sources of information about events.
All these sources can be noisy or incomplete. Mul-
tiple facets of the same real-world event could be
represented in different data sources of an organi-
zation (company, hospital, public institution, etc.),
producing a potential redundancy of information. In
the example illustrated by Figure 1, the information
about the yellow type event (A) is stored both in
a structured form and in an unstructured textual
form. For some reason, the second yellow event
(B) is not collected in the structured database, but
it is systematically recorded in the text. Under the
assumption that both yellow type events are men-
tioned using a similar language distribution, we will
leverage the text around the mention of the first
event to train a model which allows us to identify
from text the second yellow event. We use the
time dimension as a pivot to align complementary
information present in different data sources.

In the rest of this section, we describe our tem-
poral text alignment algorithm for date labeling
(programmatic annotation). Then, we briefly in-
troduce the noise management methods used and
the adopted modelling.

3.1. Programmatic Annotation

3.1.1. Positive examples

We develop a general method for date alignment
between an external source of structured data in-
cluding event dates and a paired text corpus (e.g.,
linked by a person/client/user identifier). The algo-
rithm is based on the hypothesis that if the event
date (known from a structured source) is mentioned
on a text of the same person/client/user, there is
a probability P0 that the text context around the
identified date refers to the event. Inherently, the
text context could not refer to the targeted event
with probability 1− P0. We assume that for these
latter cases, the topic distribution of text context
is not systematic (and ideally random), producing
therefore a label noise that could be statistically
distinguished. Our method should lead to a P0

greater than annotation performed through random
selection.

The algorithm consists of a first step of NLP rule-
based dates recognition (named entity recognition
task - NER) in the text corpus using the open source
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Figure 1: Illustration of information redundancy
in an organizational data lake. The same facet
of a real-world event could be represented in dif-
ferent data sources and formats. In the example,
some information of the first yellow type event (A)
is stored in a structured form and some other in
an unstructured text form. For some reason, the
second yellow event (B) is not collected in the struc-
tured database, but it is systematically recorded in
text. Furthermore, multiple events could take place
at the same moment (C and D) and both recorded
in multiple databases.

edsnlp implementation (Dura et al., 2022). This al-
gorithm recognizes absolute and relative dates in
text presented in multiple forms (e.g. “01/01/2010”,
“the first of January”, “01/01”, “1.1.2010”, “last Tues-
day”, etc) and normalizes them. Secondly, for the
alignment step, we select only dates mentioned
once in the document (e.g., we discard date men-
tions corresponding to event C and D of Figure 1
if multiple mentions are found). The rationale be-
hind this selection is to prevent erroneous matches
caused by other events mentioned in the text shar-
ing the same date, we aim to be precise and not
exhaustive (we want to maximize P0). Then, for
each person/client/user, we join the dates from the
structured data to the ones extracted from the text.
This results in “aligned dates”, i.e., a set of labeled
dates with respect to their event type. As we work
with normalized dates, our algorithm allows a tem-
poral approximate matching with a given threshold.

3.1.2. Negative Examples

We propose two methods for the selection of alter-
native examples (i.e., a negative class in the case
of binary classification):

• Random Selection (RS): A naive random se-
lection among all non-matched dates in the
previous step;

• Proximity Selection (PS): A random selection
weighted by a score of distance in text with
respect to the matched dates.

The second approach is more likely to choose
dates close to the ones already identified in the text,
which are presumably more challenging examples.
However, this method also has the potential for a
higher rate of false negatives.

3.1.3. Dataset Creation

For each labeled date, we extract a textual context
surrounding the date, using a window of k1 words
before and k2 words after it. Consequently, each
training example in the dataset includes a text snip-
pet, an offset denoting the start and end of the date
entity, and a label that results from the alignment
process. Additionally, the date to be classified is
substituted with a mask token. This entire approach
generates a dataset for classification with labels
that may have some noise (referred to as silver
labels).

3.1.4. Illustrative Example

We illustrate our approach with a task consisting in
extracting the dates of three event types from clini-
cal reports: biopsy1, surgery2 and an "other" class.
Table 1 shows several text examples, together with
their automatic silver label and the ground truth.
Example 1 represents event A of Figure 1, i.e., the
event took place in the hospital and it was recorded
both in a structured database and in clinical reports.
On the other hand, example 2 represents event B
of Figure 1, i.e., the biopsy event was done outside
the hospital (ambulatory care) and therefore the
only reference to this event is available in text (see
Figure 2 and Section 4 for more details about our
application use case).

One notable distinction between our approach
and relation extraction methods, which focus on
predicting relationships between entity pairs iden-
tified in text (such as the connection between a
date and a concept) (Bach and Badaskar, 2007),
is that our annotation method is not reliant on any
NER task for identifying the concepts. No previ-
ous knowledge vocabulary dictionary or model is
used. This allows the model by itself to learn the
label of date entities from context. This approach
is particularly interesting when concepts are not
explicitly mentioned, or vocabulary could be very

1A biopsy is a medical procedure that involves the
extraction of sample cells or tissues for examination to
determine the presence or extent of a disease, the tissue
is generally examined under a microscope by a patholo-
gist.

2Medical procedure that could occasionally lead to an
extraction of tissue for analysis done by a pathologist.
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ID Text Silver label Gold label
1 The patient was biopsied on

<masked date> at the hospital
Biopsy Biopsy

2 The patient showed the results of the
biopsy done outside the hospital on
<masked date> [..]

Other Biopsy

3 digestive endoscopy on <masked date>.
The pathological analysis indicates [..] On
17.08.2019 the patient underwent abdomi-
nal surgery

Biopsy Biopsy

4 digestive endoscopy on February 15th,
2019. The pathological analysis indicates
[..] On <masked date> the patient under-
went abdominal surgery

Surgery Surgery

5 Mr. Smith came to consultation on
<masked date>

Other Other

6 Mrs. Dupont came to consultation on
<masked date>

Biopsy Other

Table 1: Examples of produced data points. The silver label is the product of the programmatic annotation
and the gold label is the one given by an expert. For example 2 a biopsy is mentioned in the text, but it is
not in the structured records, producing a false negative label. For the example 6, the date corresponds
to a biopsy date but also to another event of the same day, leading to a false positive label.

heterogeneous. In the example 3 of Table 1, no ex-
plicit mention of biopsy is done, there is a mention
of an endoscopy3 followed by a mention of anatom-
ical pathology analysis4, the combination of these
two mentions implies an implicit biopsy, however
none of the concepts separately implies a biopsy.
Example 4 illustrates the lexical similarity between
two types of different events (Biopsy and Surgery).

Example 5 corresponds to a correctly labeled al-
ternative example extracted by a random selection
among all non-matched dates. Example 6 repre-
sents a case when multiple events happen at the
same day. A date is labeled as a biopsy with the
alignment procedure, but the text does not mention
any biopsy, leading to a mislabeled example.

Note that for each snippet, only the date to be
classified is masked, for which we know the position
in text.

3.2. Modelling
As our experiments are carried out on texts in
French, we use CamemBERT (Martin et al., 2020)
for the text encoder. To classify the date spans, we
add a RoBERTa token classification head (Liu et al.,
2019) that takes as input the vector representation
at the masked position (illustration in supplemen-
tary materials). Nevertheless, it’s possible to utilize
a different contextual encoder.

The rationale behind masking the date is that it
is not the date in isolation that signifies the event

3Medical procedure to look inside the body.
4The laboratory examination of organs and tissues

for the diagnosis of disease.

we aim to detect, but rather the context surround-
ing it. Consequently, the vector representation of
the masked date incorporates the surrounding text
context.

3.3. Noise Management
In order to learn with a dataset with noisy labels,
we test three methods selected from literature. We
choose them considering the generalization capa-
bility to be extended to other applications (e.g., we
avoided methods based on specific robust architec-
tures), the implementation simplicity, the need for
gold label annotated data, the existence of theoret-
ical demonstration and the proved performances
in other contexts. With these criteria and following
the taxonomy presented by Song et al. (2022), we
select a method from the family of Robust Loss
Functions, one from the Sample Selection family
and a last from the Label Refurbishment family.

3.3.1. Robust Loss Function

In the context of ML and optimization, a robust loss
function refers to a loss function that is less sen-
sitive or resistant to outliers or noisy data points,
compared to regular clean points. The term “ro-
bust” here refers to the ability of the loss function
to provide reliable and consistent optimization re-
sults in the presence of data that deviates from the
underlying assumptions of the model. The Cross
Entropy (CE) loss has been shown to be not robust
against label noise in classification tasks (Ghosh
et al., 2017). We used the Normalized Cross En-
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tropy - Reverse Cross Entropy (NCE-RCE) loss, an
Active-Passive loss introduced by Ma et al. (2020),
with theoretical robustness properties.

3.3.2. Sample Selection

This category of methods aims to select true-
labeled examples from a noisy training dataset. We
tested the O2U-Net approach (Huang et al., 2019).
The idea of the authors of the O2U-Net method is
to introduce multiple rounds of status transfer in
training, changing between underfitting and overfit-
ting using a cyclical learning rate. A large learning
rate is first applied, then linearly decreases, and is
then reset to the original value to jump from overfit-
ting to underfitting (O2U) cyclically. After the whole
cyclical training, the average of the losses of every
sample is computed. All the average losses are
then ranked in descending order, and the top k%
(forget rate) of samples are removed from the orig-
inal dataset as noisy labels. Then a final step of
training is done on cleaned data. We tested this ap-
proach in two forms: a O2U sample selection step
followed by a regular training using the CE loss,
and a second implementation using the NCE-RCE
loss during the training step.

3.3.3. Label Refurbishment

This third method is based on a similar idea. When
training a network on a noisy dataset, the value of
probabilities granted by the network to the different
possible labels for each sample is an indicator of the
complexity - or noisiness - of the data. In their work,
Zheng et al. (2020) give theoretical proof that when
a classifier trained on noisy data has low confidence
in the label of a sample, that label is likely to be
false. First the method applies a Likelihood Ratio
Test (LRT) on noisy classifier predictions to check
label purity, the likelihood ratio is compared with a
predetermined threshold δ; then, it corrects wrong
labels for future training. To avoid overfitting of the
DNN, they recommend the use of a robust loss
function. For simplicity reasons, we adopt the NCE-
RCE loss presented before.

4. Application

The CDW of a big hospital5 contains the EHR of
11.4 million patients, including 380,000 patients
with cancer and around 35,000 new cancer cases
each year. We address the problem of cancer pa-
tient journey reconstruction, particularly we focus
on the diagnosis date because of its importance in
oncology research (e.g., implication in treatment

5Anonymized for review. This information will be pro-
vided in the final version.

effectiveness studies, survival analysis, epidemiol-
ogy, etc.). Although cancer patients receive close
monitoring at the hospital, their diagnosis, typically
determined through a biopsy procedure, is often
conducted in an ambulatory care setting (outside
the hospital). As a result, this information is not
readily available in a structured format. Nonethe-
less, clinicians do transcribe this crucial date in an
unstructured and varied manner during systematic
reporting in clinical documents. Ultimately, only
around 30% of patients undergo their cancer diag-
nostic biopsy at the hospital. In such cases, the
biopsy date information is duplicated, appearing
in both the textual clinical report and a structured
format. We will leverage the redundancy of infor-
mation present for this subset of patients in order
to build a programmatic labeled dataset of biopsy
dates and train a model to classify a given date as
corresponding to a biopsy or not (see Figure 2).

4.1. Experiment Setting
4.1.1. Initial Data Selection

After discussion with oncologists, we select two dif-
ferent external sources of information. For patients
in the cohort (see supplementary materials), we
extract biopsy dates present in an semi-structured
form in pathology reports, and surgery dates ex-
tracted from CCAM6 structured claim data. For both
sources, we extract a table with the information of
the date, the event type and a patient identifier. For
these patients, we select their clinical reports7 as
the text corpus (in French) in order to apply our pro-
posed methodology. Note that patients for which
a structured event exists have only been used for
the training step.

We conduct experiments using only the pathol-
ogy reports source and using both sources (Sec-
tion 4.1.3).

4.1.2. Test & Development Corpus

We reserve 101 and 60 documents for the test and
development set, respectively. The selection of the
documents for the development set is biased in
order to find potentially alignable dates, in contrast
to the test set sampled in a random way. This cor-
responds to 1,474 and 680 date entities annotated
in a binary way for the test and development set re-
spectively (4.5% and 10% correspond to biopsies).
All dates present in both corpora are annotated by
a senior oncologist. The development set (expert
labeled - EL) is used for three purposes, to optimize
hyper-parameters, to use it as a train set to the pro-
posed approach against a baseline training with an

6French medical procedures classification (“Classifi-
cation Commune des Actes médicaux” - CCAM).

7Multidisciplinary meeting reports (MDM).
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Figure 2: Representation of biopsy dates dataset generation and trained model application. The training
set is constituted by means of redundant information from patients treated in the same hospital from the
first examinations (here, a biopsy event is recorded, and mentioned later in the text reports). The trained
model is applied to patient records whose history is only mentioned in the texts written at admission (here
an ambulatory biopsy).

annotated corpus, and to evaluate the performance
of the alignment strategy.

4.1.3. Programmatic Annotation

We apply our proposed programmatic annotation
on four settings, product of the combination of differ-
ent data sources and different methods of selection
of alternative examples. These are:

1. PR-RS: Pathology Reports and Random Se-
lection.

2. PR-PS: Pathology Reports and Proximity Se-
lection.

3. PR-SP-RS: Pathology Reports, Surgery Pro-
cedures and Random Selection.

4. PR-SP-PS: Pathology Reports, Surgery Pro-
cedures and Proximity Selection.

PR-RS and PR-PS datasets are used to train
a binary classifier (biopsy or not). Alternatively,
the PR-SP-RS and PR-SP-PS datasets are used
to train a three classes classifier (biopsy, surgery,
other). If for a patient the same date has two dif-
ferent labels, priority is given to the surgery label.
For each data point, we extract a window of 30
and 45 words before and after the date of interest,
respectively. We perform a binomial test against
the null hypothesis H0 of a labeling by chance.

4.1.4. Training Configurations

For each produced dataset we test different training
configurations:

1. Regular training with CE loss.
2. NCE-RCE loss.
3. O2U strategy with CE loss.

4. O2U strategy with NCE-RCE loss.
5. LRT strategy.

For all experiences, we use a pre-trained
CamemBERT language model trained on French
clinical reports (Dura et al., 2022). Also, we per-
formed each experience with 5 different seeds in
order to explore the robustness of each model. We
use the AdamW optimizer (see supplementary ma-
terial for details) (Loshchilov and Hutter, 2019). As
no recommendation exists for the application of
these strategies to NLP tasks, we use 15 docu-
ments (105 entities) randomly sampled from the de-
velopment set to search for good hyper-parameters
(see supplementary material). We set α to 0.1 and
β to 1 for the NCE-RCE loss. We apply the O2U
framework for 4 cycles of 6 epochs each and we
set the forget rate to 30%. During the cycle step the
CE loss was used. For the LRT training we start
switching labels at the end of epoch 2, we set δ to
1.3 and we use the NCE-RCE loss from epoch 0.

We perform multiple training with different num-
ber of examples of the development set in order to
measure performance as a function of the size of
the expert annotated training data. We also com-
pare the performance within patients with and with-
out a biopsy done at hospital.

5. Results

Following our proposed distant annotation method-
ology, we produced four programmatically anno-
tated datasets. The PR-RS and PR-PS are com-
posed of 10,850 data points with two classes (50%
biopsies). When combining with a third resource
(PR-SP-RS and PR-SP-PS datasets), we obtain
a dataset of 16,200 examples with three classes
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(33% biopsies). As shown in Table 2, when compar-
ing the four programmatically annotated datasets,
the best results of F1-score are achieved when
combining different sources of information. Be-
sides, we obtain the best results when combining
the label refurbishment method (LRT) with a robust
loss function.

Table 3 shows the confusion matrix of the pro-
grammatic annotation for the PR-RS dataset mea-
sured over the development dataset. It allows us to
estimate the degree of noise of the aligned dataset
in a given setting. The precision of the method for
the biopsy class obtained for this case is 0.91 and
0.96 for the alternative class, before application of
any noise management strategy.

As shown in Figure 3, model performance in-
creases in function of the number of examples used
for training using an expert annotated dataset. How-
ever, performance increase is slower when using
more than 20 documents. The distant supervised
approaches perform comparably to the results ob-
tained with 450 clean labeled entities (Table 2).

Lastly, in Table 4 , we present a comparison of
model performance for two patient groups: those
who underwent at least one hospital biopsy, and
the others. Notably, we identify higher recall rates
among the first group. Upon examining the ran-
domly sampled test set, we discover that 29% of
patients in the dataset underwent at least one hos-
pital biopsy, and this subgroup contributes to 45%
of the entities labeled as "biopsy" by the expert
clinician.

6. Discussion

We confirm that in a context of an organizational
data lake such as a clinical data warehouse, it
is possible to leverage information redundancy
present in a portion of data to build a large pro-
grammatically annotated corpus which allows us to
learn patterns from text in a distant supervision fash-
ion. As shown in Table 2, the proposed approach
achieves successful results (median F1-score of
0.70), comparable with models fitted on an expert
annotated corpus (median F1-score of 0.76). As
shown in Figure 3, a turning point between a super-
vised strategy and distant supervised one is found;
This point will depend on each application use case.
Moreover, combining the development set with the
programmatically annotated one in order to train a
model in a semi-supervised approach should be
considered.

Our findings validate the presence of informa-
tion redundancy in an organizational data lake that
holds data related to real-world events. Notably, our
algorithm relies solely on the knowledge of dates
sourced from multiple data sources. In Table 3,
we show the estimate of P0 following our proposed

Figure 3: Median F1-score ([min-max] over 5 iter-
ations) in function of training examples using an
expert labeled dataset. The line represents the me-
dian F1-score of 5 iterations and the area represent
the min and max F1-score of each configuration.
For each iteration a random subset of documents
of the corpus is selected and a different inital ran-
dom seed is used for training. The lower X axis
represent the number of annotated documents and
the upper X axis represents the mean number of
entities.

methodology, proving that the annotation method
based on date mentions performs much better than
a random labeling (p-value < 10−200). Moreover,
because our method does not use other text infor-
mation apart from dates itself, we assume that the
produced label noise is independent from text.

Moreover, the benefit of using noise manage-
ment methods is also demonstrated, we improve
performance up to 59%, all approaches are dis-
tinctly better than a classic training using the CE
loss, even in an non optimal setting of hyper-
parameters. However, the choice between the dif-
ferent explored noise management methods and
their hyper-parameters is still not clear. Different
training experiences lead to large confidence inter-
vals just varying the random seed. Further research
or experiences should be done concerning stabil-
ity on the convergence of training models in this
setting.

In line with results shown by Suri et al. (2020),
it has been experimentally shown that the use of
multiple sources combined together reach better
results (PR-* vs. PR-SP-* datasets). This could
be explained by two possible reasons. On the one
hand none of the external information sources are
intrinsically reliable, so the combination of both in
the labeling process seems to be more robust. On
the other hand, as illustrated in section 3.1.4, the
mention of biopsy and surgery events could share
similar vocabulary; Therefore, giving the model the
possibility to discriminate the vector space between

7



Method PR-RS PR-PS PR-SP-RS PR-SP-PS
CE 0.54 (0.53 - 0.54) 0.49 (0.44 - 0.54) 0.46 (0.45 - 0.48) 0.44 (0.42 - 0.45)

NCE-RCE 0.55 (0.53 - 0.60) 0.58 (0.55 - 0.60) 0.60 (0.58 - 0.70) 0.69 (0.40 - 0.74)
O2U - NCE-RCE 0.51 (0.46 - 0.58) 0.56 (0.50 - 0.61) 0.68 (0.67 - 0.71) 0.64 (0.63 - 0.71)

O2U - CE 0.58 (0.50 - 0.59) 0.56 (0.54 - 0.59) 0.67 (0.60 - 0.72) 0.68 (0.63 - 0.71)
LRT 0.56 (0.47 - 0.62) 0.58 (0.56 - 0.62) 0.65 (0.57 - 0.70) 0.70 (0.65 - 0.70)

Table 2: Median F1-score ([min-max] over 5 iterations) comparison between methods using different
training datasets. These are: i. PR-RS: Pathology Reports and Random Selection; ii. PR-PS: Pathology
Reports and Proximity Selection; iii. PR-SP-RS: Pathology Reports, Surgery Procedures and Random
Selection; iv. PR-SP-PS: Pathology Reports, Surgery Procedures and Proximity Selection.

Class Precision Recall Support
Biopsy 0.91 0.62 34
Other 0.96 0.99 280

Table 3: Performance of the programmatic annota-
tion for the PR-RS dataset, evaluated on develop-
ment set.

w/ biopsy w/o biopsy
Method Prec. Rec. Prec. Rec.
CE 0.38 0.90 0.27 0.53
NCE-RCE 0.61 0.90 0.59 0.69
O2U - NCE-RCE 0.54 0.93 0.57 0.69
O2U - CE 0.56 0.93 0.60 0.69
LRT 0.64 0.90 0.59 0.69
EL dataset - CE 0.69 0.93 0.62 0.75

Table 4: Median precision and recall (over 5 itera-
tions) for patients with and without a biopsy done
at the hospital, evaluated on test set. Model trained
on PR-SP-PS and EL datasets.

these two events could explain the gain in perfor-
mance (3 class model vs 2 class model).

Nevertheless, some drawbacks are found. First,
all models, including the expert labeled one, under-
perform when evaluated on patients without biopsy
procedures done at the hospital. Results presented
in Table 4 evidence this, major differences were
found on the recall of biopsy dates mentions and
not on the precision, suggesting that clinicians re-
fer differently in text according to the origin of the
medical procedure. This result should be studied
in a qualitative form. Second, our method helps to
minimize the necessary annotation effort in a con-
text when experts’ available time is scarce, such as
healthcare; however, we reduce expert annotation
effort in exchange for an industry knowledge invest-
ment. Especially, the selection of the appropriate
structured sources or terminologies could poten-
tially not be straightforward. However, when a new
project starts, annotating a small development set
can be a good opportunity to better understand the

task’s complexity and its perimeter.
Finally, a novelty of our method is the absence

of any NER procedure for the concepts to identify,
this allows us to learn complex patterns from text.
We find in our application case that biopsy acts are
often non mentioned explicitly, but an expert could
infer it from the subtext. Additionally, this makes our
method language- and vocabulary-independent8,
and therefore directly applicable to other CDWs or
to retrieve other important dates. The possibility to
replicate the method in other healthcare institutions
is a non-negligible strength, as the patient privacy
regulations prevent researchers to share datasets
and deep learning models. This distant supervision
approach allows us to share a strategy to train a
deep learning model without having to annotate a
training dataset.

7. Conclusion

We successfully show that it is possible to leverage
information redundancy of an organizational data
lake to build a programmatically annotated corpus
and train ML models, minimizing the required ex-
pert time for the annotation task. We develop a
domain agnostic approach, particularly interesting
in settings with scarce experts’ available time, huge
amounts of data collected and industry knowledge,
such as healthcare. The development of efficient
methods of information extraction from unstruc-
tured data for further use is, therefore, essential. A
direct implication of the presented application case
study is the precomputation of structured variables
retrieving information from text in order to acceler-
ate downstream applications as patient recruitment
for clinical trials, treatment effectiveness studies,
survival analysis or epidemiology studies. Also, the
method allows the finetuning of deep learning mod-
els without sharing weights or datasets. Other tech-
niques of noise management and semi-supervised
approaches, as well as a better bias understanding,
are still to be explored.

8except from the dates entity recognition task imple-
mented in French.
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