
DiffWake: A General Differentiable
Wind Farm Solver in JAX

Maria Bånkestad1,2,3∗, Leon Sütfeld1, Aleksis Pirinen1,2,3, Hamidreza Abedi1
1RISE Research Institutes of Sweden

2Climate AI Nordics
3Swedish Centre for Impacts of Climate Extremes

Abstract

We introduce DiffWake, an end-to-end differentiable and curl-conserving flow
solver for wind farms implemented in JAX. It preserves the core physics of wake
formation and recovery while enabling exact gradient backpropagation through
wake, thrust, and power calculations on GPUs. Unlike traditional engineering
models with fixed empirical parameters, DiffWake offers a general, differentiable
foundation for wind farm simulation that supports optimization, calibration, and
machine learning-enhanced modeling. We demonstrate its use for (i) layout op-
timization under spatial constraints and (ii) probabilistic turbulence calibration
from SCADA data using a lightweight neural network. Together, these results
demonstrate a unified framework linking physical modeling with machine learning
for accurate and scalable wind farm simulation. 1

1 Introduction

Figure 1: Wake interactions among tur-
bines in the horizontal plane at hub height.

Accurate modeling of wind farms requires capturing
complex airflow interactions, known as wakes (see
Fig. 1), between turbines [1, 2]. High-fidelity com-
putational fluid dynamics (CFD) methods, such as
Large-Eddy Simulation (LES) or Reynolds-Averaged
Navier–Stokes (RANS), can resolve wake dynamics in
detail but are far too computationally expensive for use
in optimization or control [1]. Simplified engineering
models, therefore, provide analytic approximations that
balance physical realism and computational efficiency,
yet they remain limited in accuracy under diverse
atmospheric and layout conditions.

This motivates hybrid formulations that retain physical consistency in the engineering models while
leveraging machine learning for parameter inference and model improvement [3, 4]. However, most
existing engineering wake models remain based on hand-derived equations and CPU-bound solvers,
which restrict scalability and compatibility with modern ML workflows [2, 5]. Gradient-based
optimization has been explored through analytic or adjoint sensitivities [6, 7, 8] and, more recently,
differentiable rotor-averaged formulations [9], yet fully differentiable implementations suitable for
GPU acceleration are still lacking.

To address these gaps, we present DiffWake—a fully differentiable, JIT-compiled wind farm solver
that preserves the core physics of wake, thrust, and power interactions while exposing exact gradients

∗Corresponding author: maria.bankestad@ri.se
1Code is available at github.com/mariabankestad/DiffWake , along with a PyTorch version.

1st Workshop on Differentiable Systems and Scientific Machine Learning @ EurIPS 2025.

https://github.com/mariabankestad/DiffWake


throughout the computation. The model bridges established analytical wake formulations with modern
machine-learning tools, enabling direct inference of physical parameters from data and gradient-
based optimization of layouts and control strategies. Built in JAX [10], DiffWake provides, to our
knowledge, the first differentiable implementation of the cumulative–curl (CC) wake model [11, 12],
a momentum-conserving extension of the Gaussian deficit formulation, using compiled tensor
operations for efficient reverse-mode differentiation and GPU acceleration. We demonstrate its utility
in two representative applications: (i) gradient-based layout optimization under spatial constraints
and (ii) probabilistic calibration of turbulence intensity from SCADA data2.

2 Background and method

Automatic differentiation (AD, the general form of backpropagation) [13, 14] computes exact
(machine-precision) derivatives by recording elementary operations during execution. In JAX [10],
these computational traces are just-in-time (JIT) compiled into efficient GPU kernels, allowing com-
plex iterative solvers to remain both numerically stable and differentiable. This enables the rewriting
of legacy numerical models—such as wake simulators—as differentiable modules, thereby elimi-
nating finite-difference approximations and facilitating gradient-based inference and optimization.

Engineering wake models describe the mean flow velocity u(x, y, z) and its reduction behind turbines,
known as the velocity deficit. Downstream of a turbine, the flow can be viewed as a freestream
component plus a deficit that decays laterally and vertically due to turbulence. A common formulation
is the Gaussian wake model [15], which defines the local deficit as udef(x, y, z) = U∞ − u(x, y, z)
and approximates its cross-section by a Gaussian profile:

udef(x, y, z) ≈ ∆U0 exp

[
− 1

2

(
y − δ(x)

σy

)2

− 1
2

(
z − zh
σz

)2
]
, (1)

where ∆U0 is the maximum (centerline) deficit scaling with thrust and local turbulence intensity (TI),
zh is the hub height, and δ(x) is the lateral deflection (zero for aligned wakes). The wake widths σy

and σz grow approximately linearly with downstream distance.

The cumulative–curl (CC) model [11] extends the Gaussian formulation by replacing its empirical
deficit with a curl-based velocity field that enforces momentum and circulation conservation. Each
turbine induces a local velocity perturbation ∆ut from this formulation, and the total downstream
velocity is

u(x, y, z) = U∞ −
Nt∑
t=1

∆ut(x, y, z;CT, γyaw, I), (2)

where U∞ is the inflow velocity, Nt the number of turbines, CT the thrust coefficient, and I the
turbulence intensity.

Differentiable implementation. DiffWake re-implements the cumulative–curl wake equations in
JAX using pure tensor operations for full reproducibility and differentiability. Wake propagation is
performed within a single compiled lax.fori_loop, preserving causality—each turbine influences
only downstream ones—while supporting batched evaluation across wind conditions. This design
yields exact gradients of farm power with respect to turbine positions, yaw angles, and model
parameters, enabling stable, GPU-accelerated gradient-based optimization.

Optimization and inference. For parameter inference, DiffWake acts as a differentiable forward
model, P̂i = DiffWake(ci, θ), where ci denotes fixed simulation inputs or context (e.g., inflow condi-
tions or turbine states) and θ are the optimized parameters such as empirical coefficients, layouts, or
yaw angles. Gradients ∇θP are computed automatically and can therefore be used directly in optimiz-
ers such as L-BFGS [16] or Adam [17]. Because the entire solver compiles into a single XLA graph
[18], gradient evaluations are numerically stable and typically orders of magnitude faster than finite-
difference methods. Our implementation follows the NumPy-based CC model in FLORIS [19] for
physical consistency, but is entirely re-implemented in JAX for differentiability and GPU execution.

2SCADA data are turbine-level operational measurements such as wind speed, direction, and power used for
monitoring and control.

2



Figure 2: Final wind farm layouts (left), power increase (center-right), and optimization runtime
(far-right) for the Baseline, FLORIS (SciPy/SLSQP), and DiffWake (L-BFGS) methods. FLORIS
terminated after five iterations due to numerical instability, whereas DiffWake converged in 73
iterations with much lower time per step. Power is the wind-rose–weighted mean over 66 wind
conditions. While results may vary slightly with initialization, DiffWake remained stable and
completed in 53 s versus 2,890 s for FLORIS, which did not converge.

3 Experiments

We design two experiments to demonstrate how DiffWake can be used in different ways: (i) as
a differentiable simulator for wind farm layout optimization, and (ii) as a tool for probabilistic
calibration of turbulence intensity. These two use cases highlight complementary aspects of our
approach: (i) gradient-based design and (ii) physics-consistent uncertainty modeling.

3.1 Wind farm layout optimization

Figure 3: Wind rose at the Horns
Rev site.

Optimizing turbine layouts is a long-standing challenge in wind
energy. Closely spaced turbines experience wake losses, while
overly sparse layouts waste area and cabling costs. The goal
is to maximize expected farm power under realistic wind con-
ditions [20, 19], but power depends nonlinearly on wake in-
teractions and site-specific wind statistics. We embed the dif-
ferentiable DiffWake solver directly within the optimization,
providing exact power gradients with respect to turbine coor-
dinates for use in gradient-based optimizers such as L-BFGS.

We use the Horns Rev offshore wind farm as a case study, fixing
the number of turbines, turbine type, and layout bounds [21].
Wind directions, speeds, and weights are drawn from the measured wind rose (Fig. 3), so the objective
reflects annual production under observed conditions. Turbulence intensity is held fixed at I0. The
optimization problem is

max
X={xn}N

n=1

K∑
k=1

wk P (X; ck), ck = (wdk,wsk, I0)

s.t. xn ∈ [xmin, xmax]× [ymin, ymax], n = 1, . . . , N,

∥xi − xj∥2 ≥ dmin, dmin = 2D, 1 ≤ i < j ≤ N.

where P (X; ck) is the total farm power predicted by DiffWake under wind condition ck, and wk

are wind-rose weights. This objective corresponds to maximizing the expected annual energy
production (AEP) subject to spatial and operational constraints. Coordinates are parameterized in an
unconstrained space and mapped into the layout box via a tanh transform, while minimum spacing is
enforced through a differentiable softplus penalty. Optimization uses L-BFGS with a Strong–Wolfe
line search [22, 16].

Results. Fig. 2 compares optimized turbine layouts and power for the baseline, FLORIS, and
DiffWake (L-BFGS) solvers. The FLORIS–SciPy implementation frequently failed to converge, as
its finite-difference gradients are noisy and numerically unstable, often leading to nonphysical wake
velocities and premature termination. The FLORIS baseline (v4.5, cumulative–curl model) utilized
identical physical parameters and adjusted solver tolerances according to the official documentation,
ensuring a fair setup. DiffWake, by contrast, converged reliably to higher-power layouts and ran over
50× faster, benefiting from exact, stable gradients computed via automatic differentiation.

3



Figure 4: Learned TI distributions for different wind speeds at fixed day, hour, and direction. Each
panel displays the predicted probability density, with the mean (solid) and standard deviation (dotted).

3.2 Data-driven turbulence modeling

Figure 5: Change in RMSE versus
wind speed when replacing the fixed TI
with the learned model, both evaluated
against measured power. The improve-
ment increases with wind speed, indi-
cating that the learned TI captures the
stronger and more variable turbulence
more effectively at higher inflow speeds.
Shaded areas indicate 95% bootstrap
confidence intervals, and the empirical
wind speed distribution in the dataset
weights the overall RMSE values.

Turbulence intensity (TI) significantly impacts wake recov-
ery: higher TI enhances mixing and accelerates wake de-
cay, while lower TI enables wakes to persist. Yet SCADA-
derived TI is often unreliable—missing, smoothed over
10-minute intervals, or biased by nacelle effects. We
utilize the publicly available Smarteole SCADA dataset
[23], which comprises 10-minute measurements of wind
speed, direction, power, and turbulence. Engineers often
rely on IEC classes [24] or site-specific tables [25], but
these overlook real atmospheric variability [26, 27, 28].

We model turbulence as a bounded random variable,

I = Imin+(Imax−Imin)Z, Z ∼ Kumar(aθ(x), bθ(x)),

where aθ(x), bθ(x) > 0 are predicted by a neural network
from features x (wind direction, speed, hour, and day-of-
year). The Kumaraswamy distribution [29], though less
familiar than the Beta, has similar flexibility and support
on [0, 1] but provides closed-form CDF and inverse
CDF expressions, making it computationally efficient
for sampling and likelihood evaluation. This formulation
captures the stochastic variability and uncertainty of TI
while remaining physically bounded and numerically
stable. Embedded in DiffWake, it enables end-to-end
calibration from turbine power observations under the
governing wake physics. Training and likelihood details are provided in Appendix A.

Results. The inferred TI distributions (Fig. 4) increase with wind speed as expected, since stronger
inflow enhances shear and velocity fluctuations [25]. Fig. 5 shows RMSE differences in a turbine
power output prediction task between the fixed and learned TI models. The learned model reduces the
overall RMSE from 0.25 to 0.21, with the most significant gains at low and high wind speeds. Both
models perform similarly near 9 m/s, where the baseline TI (0.09) is already adequate. Although the
absolute improvement is modest, which is expected since TI affects power only indirectly through
wake recovery, the result demonstrates a fully differentiable, physics-consistent calibration that gener-
alizes to other CC parameters (ky , kz , xnw, CT) for uncertainty-aware model tuning and optimization.

4 Discussion and conclusions

We introduced DiffWake, a fully differentiable, curl-conserving flow solver for wind farm modeling.
Implemented in JAX, it combines analytical wake physics with automatic differentiation and GPU
acceleration to provide efficient gradients through wake, thrust, and power computations. This
enables gradient-based inference and design at realistic scales. Across two applications—turbulence
calibration and layout optimization—DiffWake illustrates how differentiable solvers can unify
physical modeling and machine learning. Beyond these examples, DiffWake provides a general
foundation for hybrid modeling, supporting the quantification of uncertainty and integration with
surrogate models. The same principles extend to other flow and energy systems, highlighting its
potential as a broadly applicable differentiable framework.

4



Acknowledgments and Disclosure of Funding

This work was funded by the Swedish Energy Agency (through grant No. 2023-204936). The
computations and data storage were enabled by resources provided by the National Academic
Infrastructure for Supercomputing in Sweden (NAISS), partially funded by the Swedish Research
Council through grant agreement no. 2022-06725.

References
[1] Benjamin Sanderse, Sander P. van der Pijl, and Barry Koren. Review of computational fluid

dynamics for wind turbine wake aerodynamics. Wind Energy, 2011.

[2] Richard J. A. M. Stevens and Charles Meneveau. Flow structure and turbulence in wind farms.
Annual Review of Fluid Mechanics, 2017.

[3] Jae H. Lee, Hao Gao, and Michael Döllinger. Editorial: Integrating machine learning with
physics-based modeling of physiological systems. Frontiers in Physiology, 16, 2025.

[4] T. Göçmen, J.-W. van Wingerden, P. A. Fleming, et al. Data-driven wind farm flow control
and challenges towards practical implementation. Renewable and Sustainable Energy Reviews,
199:114115, 2025.

[5] Bart M. Doekemeijer, Paul A. Fleming, and Jan-Willem van Wingerden. A tutorial on the
FLOw redirection and induction in steady state (FLORIS) framework for wind farm control.
Wind Energy Science, 5(2):287–300, 2020.

[6] Aaron Klein, Paul Fleming, and Katherine Dykes. A continuously differentiable turbine layout
optimization. In Journal of Physics: Conference Series, 2016.

[7] Jennifer King, Katherine Dykes, Peter Graf, Peter Hamlington, and Julie Lundquist. Adjoint
optimization of wind farm layouts for systems engineering applications. In Journal of Physics:
Conference Series, 2016.

[8] David Criado Risco, Jesper Rasmussen, and Søren Ott. Gradient-based wind farm layout
optimization with inclusion and exclusion zones. Wind Energy Science, 2024.

[9] Abdullah Ali, Søren Ott, and Anders B. Pedersen. Direct integration of non-axisymmetric
gaussian wind-turbine wake profiles for differentiable rotor-averaged models. Wind Energy
Science, 2025.

[10] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, et al. JAX:
Composable transformations of python+numpy programs. https://github.com/google/
jax, 2018.

[11] L. A. Martínez-Tossas, J. King, M. J. Churchfield, and F. Sotiropoulos. The curl model: A
three-dimensional and momentum-conserving approach for wind turbine wakes. Wind Energy
Science, 2019.

[12] Christopher J. Bay, Paul Fleming, Bart Doekemeijer, Jennifer King, Matthew Churchfield,
and Rafael Mudafort. Addressing deep array effects and impacts to wake steering with the
cumulative-curl wake model. Wind Energy Science, 2023.

[13] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey A. Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: A survey. Journal of Machine Learning Research,
2018.

[14] Charles C. Margossian. A review of automatic differentiation and its efficient implementation.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2019.

[15] M. Bastankhah and F. Porté-Agel. Experimental and theoretical study of wind turbine wakes in
yawed conditions. Journal of Fluid Mechanics, 2016.

[16] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2nd edition, 2006.

5

https://github.com/google/jax
https://github.com/google/jax


[17] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[18] Google. XLA: Accelerated linear algebra. https://www.tensorflow.org/xla, 2017.

[19] Pieter Gebraad, Matthew Churchfield, and Paul Fleming. Wind plant power optimization
through yaw control using a parametric model for wake effects—a CFD simulation study. Wind
Energy, 2017.

[20] Sten Truelsen Frandsen, Rebecca Jane Barthelmie, and Sara C. Pryor. Analysis of turbulence
intensity and mean wind speed offshore at the horns rev site. Wind Energy, 2006.

[21] R. J. Barthelmie et al. Modelling and measuring flow and wind turbine wakes at the horns rev
offshore wind farm. Boundary-Layer Meteorology, 2009.

[22] Jorge Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of Compu-
tation, 1980.

[23] Smarteole Consortium. Smarteole wind farm SCADA dataset (field test 1), 2020.

[24] IEC 61400-1: Wind Energy Generation Systems – Part 1: Design Requirements, 2019.

[25] Sten Frandsen. Turbulence and turbulence-generated structural loading in wind turbine clusters.
Technical report, Risø National Laboratory, 2007.

[26] Alfredo Peña, Sven-Erik Gryning, and Jakob Mann. On the length-scale of the wind profile.
Quarterly Journal of the Royal Meteorological Society, 2010.

[27] Ameya Sathe, Jakob Mann, Thanasis Barlas, Wim Bierbooms, and Gerard van Bussel. Influence
of atmospheric stability on wind turbine loads. Wind Energy, 2011.

[28] Fernando Porté-Agel, Majid Bastankhah, and Saeed Shamsoddin. Wind-turbine and wind-farm
flows: A review. Boundary-Layer Meteorology, 2020.

[29] Ponnambalam Kumaraswamy. A generalized probability density function for double-bounded
random processes. Journal of Hydrology, 1980.

[30] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In International
Conference on Learning Representations (ICLR), 2014.

[31] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In International Conference on Machine
Learning (ICML), 2014.

Appendix

Here we present some supplementary information on the experiments conducted in this paper. All
experiments run on JAX 0.7.1, Python 3.12.3, and CUDA 12.6. GPU results use an NVIDIA A100.

Appendix A: Probabilistic turbulence model details

We parameterize turbulence intensity (TI) as a bounded random variable I ∈ [Imin, Imax] using
the Kumaraswamy family, chosen for its simple closed-form inverse CDF and reparameterizable
sampling:

Z(u; a, b) = (1− (1− u)1/b)1/a, u ∼ U(0, 1),
I = Imin + (Imax − Imin)Z, Z ∼ Kumar(aθ(x), bθ(x)).

The neural network outputs positive shape parameters aθ(x), bθ(x) from input features

x = (sin(wd), cos(wd),ws, sin(h), cos(h), sin(doy), cos(doy)),

which ensures periodicity in wind direction, hour, and day-of-year. This parameterization allows
backpropagation through stochastic sampling using the reparameterization trick [30, 31].

6

https://www.tensorflow.org/xla


Likelihood and training. For each SCADA observation Pi with context ci (layout, inflow, turbine
states), the differentiable DiffWake solver maps a sampled turbulence Ii,s to predicted power:

P̂i,s = DiffWake(ci, Ii,s), Pi | Ii,s, ci ∼ N (P̂i,s, σ
2),

where σ > 0 captures measurement and model noise. The marginal likelihood is approximated via
Monte-Carlo sampling over S draws from pθ(I | xi), yielding the loss:

L(θ, σ) = − 1

N

∑
i

log
[
1
S

∑
s

N (Pi | P̂i,s, σ
2)
]
+ λKL

(
pθ(I | xi) ∥ p0(I)

)
,

where p0(I) = Kumar(a0 = 1, b0 = 3.75) serves as a weak prior that mildly favors lower I values
while remaining broad, reflecting that strong turbulence is rare and often corresponds to transient
conditions. All parameters (θ, σ) are optimized with Adam [17].

7


	Introduction
	Background and method
	Experiments
	Wind farm layout optimization
	Data-driven turbulence modeling

	Discussion and conclusions

