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A VISUALIZATION OF LATENT FEATURES

Figure 1 shows more visualization results of latent features. We project features from latent space
to the color space through t-SNE, and the local patterns indicate the spatial feature redundancy.

Figure 1: More visualization results of latent features in color space.

B DETAILS OF VIEW-DEPENDENT PRUNING

We refer to the pruning strategy proposed by VQRF (Li et al., 2023) as view-dependent pruning as
it relies on training camera poses to generate voxel importance for pruning.

Specifically, VQRF assigns blending weights wi = Ti ·αi to sampled ray points xi as the importance
Ii, and obtains the importance Il of voxel vl by aggregating the importance of neighbor points Nl

around vl, depending on their distance:

Il =
∑

xi∈Nl

(1− |vl − xi|) · Ii, where |vl − xi| ≤ 1. (1)

The algorithm further prunes voxels below the importance threshold θ as:

θ = F−1(β), F (θ) =

∑
Il · 1{Il < θ}∑

Il
, (2)

where the function F denotes the cumulative score rate with 1· representing the binary indicator,
and β is a hyperparameter that indicates the total amount of importance to be pruned.

C DETAILS OF POSITION ENCODING

Following the pruning process, we obtain a more concise point representation that includes both
point positions (approximately 10%) and point features (about 90%). Inspired by previous work
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(Schnabel & Klein, 2006) which organizes point cloud as octree to skip empty space, we employ
octree coding1 to encode point positions.

We conduct experiments on the Synthetic-NeRF dataset to evaluate position encoding. For the
DVGO-based methods, we losslessly compress the occupancy mask of feature voxels with octree
coding. Following the default setting of DVGO, the voxel size is around 200 and the occupancy
mask is 61 KB. The file size of the mask is reduced to 21 KB after encoding, and the time for
encoding and decoding is 0.7 s and 0.2 s, respectively. For the PointNeRF-based method, we encode
the point positions using a 12-depth-level octree (i.e., 4096 resolution). The file size is reduced from
5.8 MB to 0.8 MB, with PSNR being slightly decreased from 33.30 dB to 33.27 dB. The encoding
and decoding time is 4.7 s and 2.6 s, respectively. Recent well-optimized implementation of octree
coding can be implemented in real time (within 0.1 s) (Huang et al., 2020; Biswas et al., 2020; Que
et al., 2021), which further shows the potential of our method.

D DETAILS OF REGION ADAPTIVE HIERARCHICAL TRANSFORM

Different from VQRF (Li et al., 2023) that quantizes features in latent space, our feature encoding
aims to remove the spatial redundancy between point features. As shown in Fig. 1, we project point
features from latent space to the color space through t-SNE. It is clear that the colors (i.e., latent
features) exhibit a certain spatial distribution, indicating a high level of spatial redundancy between
point features.
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Figure 2: A 2D example of Region
Adaptive Hierarchical Transform.

Region Adaptive Hierarchical Transform. To reduce the
spatial redundancy of point features, we employ region adap-
tive hierarchical transform (RAHT) (De Queiroz & Chou,
2016), a point-based wavelet transform that is commonly
used for processing point attributes such as colors. In this
work, we leverage RAHT to encode point features. Specifi-
cally, we use the quantized points with features and convert
the features into frequency-domain coefficients. As shown
in Fig. 2, the subscripts of ld,x,y denote depth, x, and y, re-
spectively. First, feature tensors l1,1,1, l1,1,2, and l1,2,2 are transformed along the x axis. l1,1,1 is
directly transformed to l2,1,1 at the next level as ld+1,x,y = ld,x,y , and two neighbors, l1,1,2 and
l1,2,2, are converted to low- and high-frequency coefficients, l2,1,2 and h2,1,2, as:[

ld+1,x,y

hd+1,x,y

]
= Tw1,w2

[
ld,x,y

ld,x+1,y

]
, Tw1,w2

=
1√

w1 + w2

[ √
w1

√
w2

−√
w2

√
w1

]
, (3)

where Tw1,w2
is the transform matrix, and w1 and w2 are the weights (i.e., number of points at

the corresponding space) of ld,x,y and ld,x+1,y , respectively. The final DC coefficient l3,1,1 and all
high-frequency coefficients h should be compressed and transmitted to the decoder side, and the
inverse RAHT transform can reconstruct all feature tensors. RAHT converts the spatial-domain
features into the frequency-domain coefficients to reduce low-frequency information. However, the
importance obtained by both view-dependent and independent pruning is still in the spatial domain.
Thus, there is no straightforward one-to-one correspondence between coefficients and importance.

By applying uniform quantization to the transform coefficients (Ballé et al., 2017), feature encoding
can be performed in a differentiable manner as the primary operation of RAHT is matrix multiplica-
tion (Eq. (3)). Therefore, it is feasible to impose a bitrate constraint on these coefficients to regulate
the storage size of the original feature tensors through optimization.

E DISCUSSION OF POINT-BASED ALGORITHM

As shown in Fig. 3, we evaluate point pruning and importance-based modules on our PointNeRF-
based method (ACRF-F). Considering that PointNeRF (Xu et al., 2022) assigns each point with a
confidence score for pruning, we directly adopt the learned confidence as the importance measure
and prune around 10% points in this experiment (VQRF (Li et al., 2023) prunes around 90% voxels).

1We use octree coding with entropy coding in the MPEG reference implementation:
https://github.com/MPEGGroup/mpeg-pcc-tmc13.
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(a) (b)

Figure 3: Ablation study of point pruning and importance-based modules.
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Figure 4: We draw the quantile-quantile curve following (Li et al., 2023), which means x% of
least important points contributes to y% percent of total importance. In contrast to the voxel-based
method (Li et al., 2023), the point-based method contains points with similar importance.

In Fig. 3 (a), we tune the uniform quantization step of feature coding to obtain two rate-distortion
curves, and the only difference between them is enabling pruning or not. The results indicate that the
further pruning might lead to a performance drop on both Synthetic-NeRF. In Fig. 3 (b), we include
our importance-guided feature encoding and importance-prioritized entropy model. The results also
show a performance drop, especially at a low bitrate.

To further investigate this problem, we analyze the importance of each point in Fig. 4. We provide
the quantile-quantile curve following (Li et al., 2023), which means x% of least important points
contributes to y% percent of total importance. We note that, in contrast to feature voxels, the neural
points are more compact and share similar importance scores. Consequently, we do not merge point
pruning and importance-based modules for our point-based NeRF framework and leave it as a future
problem.

F IMPLEMENTATION DETAILS

We conduct experiments for both voxel- and point-based NeRF models (DVGO and PointNeRF).

For ACRF-F (DVGO), we set pruning quantile βp = 0.9999 for voxel pruning (prune less important
voxels contributing 0.01% importance). We set the importance threshold θi, according to importance
quantile βimp;i, where βimp;0 = 0, βimp;1 = 0.99 and βimp;2 = βp = 0.9999. The corresponding
quantization factors are set as Q1 = 1 · λQ and Q2 = 10 · λQ. Thus, we can simply tune the factor
λQ to obtain the rate-distortion curve of ACRF-F.

For ACRF (DVGO), we set βp = 0.999, βimp;0 = 0, βimp;1 = 0.99 and βimp;2 = βp = 0.999. We
also set Q1 = 1 · λQ and Q2 = 10 · λQ but fix λQ as 0.5. The loss factor λ is tuned from 0.002 to
0.01 to obtain the rate-distortion curve of ACRF.

For ACRF-F (PointNeRF) and ACRF (PointNeRF), we simply disable the pruning and importance-
based modules, and employ the basic framework for our experiments.
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Figure 5: Statistical analysis of view-independent importance. (a): The relationship between impor-
tance and information entropy. (b): The relationship between importance and rendering quality. (c)
to (f): Rendering results with top 2%, top 2%-4%, top 4%-6% and top 6%-8%, respectively.

G STATISTICAL EVIDENCE FOR MAXIMUM ABSOLUTE VALUE

We provide more statistical analyses of our proposed view-independent importance in Fig. 5. No-
tably, the importance is calculated based on the maximum absolute value of the feature, following
Sec. 4.1. Our objective is to quantify the amount of information through (a) information entropy,
indicating the average level of ”information”, and (b) rendering quality, which directly reflects the
performance of a NeRF model. Subsequently, we conduct statistical analyses on these metrics with
our importance measure, aiming to unveil the relationship between our importance (the maximum
absolute value) and the amount of information.

In Fig. 5 (a), we illustrate the relationship between our importance Il and the information entropy
H(fv) of gird feature fv . We sort all grid points based on their importance and select top x% to y%
points with features. To further obtain their information entropy H(fv), we discretize the continuous
variable fv into a discrete variable f̂v and calculate information entropy as:

H(fv) ≈ H(f̂v) = −
∑
f̂v∈f̂v

p(f̂v) log p(f̂v), where f̂v = round(fv). (4)

The results, as shown in Fig. 5 (a), demonstrate that point features with higher importance con-
tain larger information entropy. This observation indicates that the maximum absolute value can
effectively serve as a measure to quantify the amount of information.

In Fig. 5 (b), we depict the relationship between our importance and rendering quality. Following the
sorting of all grid points based on their importance, we retain the top x% to y% points with features.
The results highlight that points with higher importance play a more crucial role in maintaining
the performance of a NeRF model. Additionally, qualitative rendering results of the top 2% to top
6%-8% points are provided in Fig. 5 (c) to (f). These qualitative results align with the quantitative
findings in Fig. 5 (b), reinforcing that the amount of information can be effectively indicated by our
importance measure based on the maximum absolute value.
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Figure 6: (a): Visualization of the GT image (first row), view-independent importance (second row)
and the top 1% point features sorted by view-independent importance (last row). (b): Visualization
of the GT image, view-dependent importance and the corresponding top 1% point features.

H STRAIGHTFORWARD IMPLEMENTATION OF IMPORTANCE-GUIDED
FEATURE ENCODING

Given point positions p and features f , we transform features into coefficients through RAHT trans-
form as e = RAHT (p, f). Details about RAHT are provided in appendix Sec. D.

Incorporating importance Il as prior information, our objective is to leverage Il to effectively pre-
serve point features with heightened significance. In the initial implementation described in Sec.
4.2, we obtain coefficients as:

e = RAHT (p, fIl), fIl = f · Il. (5)

Throughout the decoding process, the reconstructed features f̂ can be recovered from the inverse
RAHT transform while considering importance:

f̂ =
f̂Il
Il

, f̂Il = iRAHT (p, e). (6)

Note that, for the recovery of point features, the transmission of importance values is requisite for
decoding.

We further provide an examination of the high-frequency noise issue. As shown in Fig. 6 (a) and
(b), we visualize the GT image, view-independent and view-independent importance, and the top
1% point features sorted by their corresponding importance. Importance is visualized as a heatmap,
where red signifies higher values and blue lower ones, and features are projected into color space
through t-SNE. In Fig. 6 (a), the point feature representation of the black stick of the lego in the
GT image appears as green in the projected feature image. However, in the importance figure, it
is composed of red, yellow, and blue elements. A similar observation is also shown in Fig. 6 (b).
This illustrates that, unlike point features, point importance lacks a robust correlation with the scene
color. Consequently, the direct combination of features with importance may introduce additional
noise to the original features.
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I ABLATION STUDIES ON SYNTHETIC-NERF

Ablation studies on the whole Synthetic-NeRF dataset are provided in Fig. 7, and these findings are
consistent with the results obtained for the chair.

(a) (b)

Figure 7: Ablation studies on Synthetic-NeRF. (a): Ablation study on the importance-based feature
and entropy encoding. (b): Ablation study on each component of our framework.

J COMPARISON WITH OTHER METHODS

Additional quantitative compression results for different methods are presented in Fig. 8. We com-
pare our ACRF and ACRF-F with VQRF (Li et al., 2023), Re:NeRF (Deng & Tartaglione, 2023) and
Rho et al. (Rho et al., 2023). Notably, ACRF, ACRF-F, VQRF and Re:NeRF are based on DVGO,
while Rho et al. is built upon TensoRF.

Figure 8 (a) shows comparisons on the Synthetic-NeRF dataset. It is clear that our ACRF outper-
forms other DVGO-based algorithms. Note that Rho et al. attains the highest rendering result due
to its original model, TensoRF-VM-384, achieving a PSNR of 33.21 dB on Synthetic-NeRF, while
DVGO only gets 31.91 dB. Despite a relatively large performance drop in PSNR, Rho et al. still
gets the best quantitative results.

Figure 8 (b) shows comparisons on the Tanks&Temples dataset. In this more complex real-world
dataset, our ACRF outperforms all other algorithms. Although TensoRF still achieves a better ren-
dering quality than DVGO (28.56 dB versus 28.31 dB in PSNR), the relatively large distortion
introduced by Rho et al. places this TensoRF-based algorithm behind both ACRF and VQRF. No-
tably, our lightweight model, ACRF-F, achieves a similar compression result to Rho et al, while our
ACRF-F requires only a few seconds for encoding, while Rho et al. demands 24 mins for training
(see Table 1 in appendix of Rho et al.).

(a) (b)

Figure 8: Quantitative results of our ACRF and other NeRF compression approaches on Synthetic-
NeRF (Synthetic) and Tanks&Temples (T&T).
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K ADDITIONAL EXPERIMENTAL RESULTS

We provide additional quantitative (Tables 1, 3, 2 and 4) and qualitative (Figs. 9 and 10) results
to show our compression performance. DVGO-Q and PointNeRF-Q are obtained by direct weight
quantization of features from float64 to int8. The results on these datasets are consistent with those
provided in our paper, which shows the effectiveness of our proposed method.
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Synthetic-NeRF
Method Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.

Size(MB) (↓)

DVGO 106.54 95.81 109.86 133.80 124.54 176.07 49.87 103.42 112.49
DVGO-Q 16.60 14.43 17.67 21.53 20.37 26.32 6.81 17.71 17.68

VQRF (DVGO) 0.99 0.90 1.06 1.46 1.48 3.10 0.41 2.06 1.43
ACRF (DVGO) 0.84 0.98 0.98 0.85 1.07 2.60 0.37 1.54 1.15

VQRF-F (DVGO) 0.99 0.90 1.06 1.46 1.48 3.10 0.41 2.06 1.43
ACRF-F (DVGO) 1.13 0.84 0.89 1.21 1.39 2.41 0.39 1.61 1.23

PSNR(dB) (↑)

DVGO 34.09 25.47 32.68 36.66 34.59 29.51 33.15 29.12 31.91
DVGO-Q 33.68 25.39 32.64 36.60 34.53 29.51 31.89 28.94 31.65

VQRF (DVGO) 33.78 25.37 32.69 36.51 34.25 29.28 33.15 29.16 31.77
ACRF (DVGO) 33.98 25.46 32.69 36.12 34.34 29.41 33.12 29.20 31.79

VQRF-F (DVGO) 32.94 25.11 32.33 36.03 33.41 29.09 32.63 28.92 31.31
ACRF-F (DVGO) 33.51 25.28 32.37 35.72 33.60 29.21 32.56 28.65 31.36

SSIM(↑)

DVGO 0.976 0.930 0.978 0.980 0.976 0.950 0.983 0.878 0.956
DVGO-Q 0.974 0.929 0.978 0.980 0.976 0.950 0.977 0.877 0.955

VQRF (DVGO) 0.974 0.927 0.977 0.978 0.973 0.945 0.982 0.877 0.954
ACRF (DVGO) 0.975 0.930 0.977 0.975 0.973 0.947 0.982 0.877 0.954

VQRF-F (DVGO) 0.969 0.924 0.976 0.976 0.970 0.944 0.980 0.874 0.952
ACRF-F (DVGO) 0.972 0.925 0.976 0.971 0.970 0.942 0.978 0.871 0.951

LPIPSALEX (↓)

DVGO 0.027 0.078 0.025 0.034 0.027 0.059 0.018 0.160 0.054
DVGO-Q 0.029 0.080 0.025 0.034 0.027 0.060 0.024 0.161 0.055

VQRF (DVGO) 0.032 0.083 0.028 0.039 0.030 0.066 0.020 0.160 0.057
ACRF (DVGO) 0.030 0.080 0.027 0.053 0.033 0.065 0.021 0.165 0.059

VQRF-F (DVGO) 0.037 0.088 0.029 0.043 0.035 0.068 0.023 0.165 0.061
ACRF-F (DVGO) 0.037 0.088 0.029 0.063 0.037 0.073 0.029 0.172 0.066

LPIPSV GG(↓)

DVGO 0.017 0.060 0.015 0.018 0.013 0.027 0.014 0.116 0.035
DVGO-Q 0.019 0.062 0.015 0.018 0.014 0.028 0.023 0.118 0.037

VQRF (DVGO) 0.018 0.061 0.017 0.019 0.013 0.033 0.014 0.113 0.036
ACRF (DVGO) 0.017 0.059 0.017 0.026 0.015 0.031 0.014 0.119 0.037

VQRF-F (DVGO) 0.023 0.066 0.017 0.021 0.017 0.034 0.017 0.121 0.039
ACRF-F (DVGO) 0.021 0.066 0.017 0.031 0.017 0.039 0.020 0.127 0.042

Table 1: Per-scene results on Synthetic-NeRF of the DVGO-based methods.

Synthetic-NeRF
Method Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.

Size(MB) (↓)

PointNeRF 111.79 87.21 64.69 65.39 78.19 191.42 82.10 106.92 98.46
PointNeRF-Q 27.23 21.81 16.58 16.48 19.66 46.46 20.59 26.23 24.38

ACRF 11.82 10.53 10.54 6.69 9.06 19.47 9.39 12.06 11.19
ACRF-F 17.54 14.79 12.95 10.01 12.80 28.73 13.31 17.24 15.92

PSNR(dB) (↑)

PointNeRF 35.40 26.08 36.13 37.25 35.04 29.61 35.95 30.97 33.30
PointNeRF-Q 35.39 26.07 36.12 37.25 35.04 29.60 35.94 30.97 33.30

ACRF 35.49 26.05 36.34 37.20 34.94 29.57 35.78 30.92 33.29
ACRF-F 35.33 26.05 36.10 37.19 34.97 29.58 35.86 30.90 33.25

SSIM(↑)

PointNeRF 0.991 0.954 0.993 0.991 0.988 0.971 0.994 0.942 0.978
PointNeRF-Q 0.991 0.954 0.993 0.991 0.988 0.971 0.994 0.942 0.978

ACRF 0.991 0.954 0.993 0.990 0.988 0.970 0.993 0.941 0.978
ACRF-F 0.991 0.954 0.993 0.991 0.988 0.971 0.994 0.941 0.978

LPIPSALEX (↓)

PointNeRF 0.010 0.054 0.009 0.016 0.011 0.041 0.007 0.070 0.027
PointNeRF-Q 0.010 0.054 0.009 0.016 0.011 0.041 0.007 0.070 0.027

ACRF 0.010 0.054 0.009 0.018 0.011 0.044 0.008 0.072 0.028
ACRF-F 0.010 0.054 0.009 0.017 0.011 0.042 0.008 0.071 0.028

LPIPSV GG(↓)

PointNeRF 0.023 0.076 0.022 0.037 0.024 0.072 0.014 0.124 0.049
PointNeRF-Q 0.023 0.076 0.022 0.038 0.024 0.072 0.014 0.124 0.049

ACRF 0.024 0.077 0.021 0.042 0.025 0.074 0.015 0.127 0.051
ACRF-F 0.024 0.077 0.022 0.039 0.024 0.073 0.015 0.125 0.050

Table 2: Per-scene results on Synthetic-NeRF of the PointNeRF-based methods.
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Tanks&Temples
Method Barn Caterpillar Family Ignatius Truck Avg.

Size(MB) (↓)

DVGO 137.69 116.76 97.70 102.08 112.73 113.39
DVGO-Q 21.01 17.60 15.28 14.85 17.61 17.27

VQRF (DVGO) 1.81 1.46 1.20 1.12 1.43 1.41
ACRF (DVGO) 1.64 1.50 1.03 0.98 1.44 1.32

VQRF-F (DVGO) 1.81 1.46 1.20 1.12 1.43 1.41
ACRF-F (DVGO) 1.63 1.30 1.05 0.98 1.29 1.25

PSNR(dB) (↑)

DVGO 26.82 25.71 33.74 28.20 27.09 28.31
DVGO-Q 26.51 25.46 33.47 28.06 26.96 28.09

VQRF (DVGO) 26.72 25.55 33.67 28.07 26.97 28.20
ACRF (DVGO) 26.82 25.55 33.65 28.05 27.08 28.23

VQRF-F (DVGO) 26.35 25.24 33.24 28.05 26.61 27.90
ACRF-F (DVGO) 26.44 25.35 33.23 28.09 26.75 27.97

SSIM(↑)

DVGO 0.838 0.904 0.962 0.943 0.905 0.910
DVGO-Q 0.834 0.902 0.960 0.942 0.904 0.908

VQRF (DVGO) 0.838 0.901 0.961 0.941 0.903 0.909
ACRF (DVGO) 0.840 0.903 0.960 0.941 0.905 0.910

VQRF-F (DVGO) 0.830 0.898 0.958 0.941 0.898 0.905
ACRF-F (DVGO) 0.832 0.898 0.958 0.941 0.899 0.906

LPIPSALEX (↓)

DVGO 0.294 0.169 0.070 0.087 0.161 0.156
DVGO-Q 0.299 0.173 0.071 0.090 0.162 0.159

VQRF (DVGO) 0.296 0.177 0.071 0.089 0.164 0.159
ACRF (DVGO) 0.295 0.173 0.073 0.089 0.164 0.159

VQRF-F (DVGO) 0.310 0.180 0.076 0.091 0.171 0.166
ACRF-F (DVGO) 0.307 0.181 0.076 0.092 0.170 0.165

LPIPSV GG(↓)

DVGO 0.289 0.151 0.063 0.092 0.146 0.148
DVGO-Q 0.296 0.156 0.064 0.096 0.149 0.152

VQRF (DVGO) 0.285 0.154 0.060 0.091 0.144 0.147
ACRF (DVGO) 0.282 0.152 0.063 0.092 0.143 0.146

VQRF-F (DVGO) 0.310 0.164 0.066 0.096 0.156 0.158
ACRF-F (DVGO) 0.306 0.163 0.067 0.097 0.155 0.157

Table 3: Per-scene results on Tanks&Temples of the DVGO-based methods.

Tanks&Temples
Method Barn Caterpillar Family Ignatius Truck Avg.

Size(MB) (↓)

PointNeRF 212.68 322.19 453.13 350.36 396.74 347.02
PointNeRF-Q 51.59 77.70 106.66 84.44 94.03 82.89

ACRF 22.56 35.12 36.57 37.75 35.72 33.54
ACRF-F 32.53 50.29 64.31 54.89 60.60 52.53

PSNR(dB) (↑)

PointNeRF 29.41 27.14 36.27 29.20 28.45 30.09
PointNeRF-Q 29.41 27.14 36.27 29.20 28.44 30.09

ACRF 29.37 27.09 36.27 29.16 28.56 30.09
ACRF-F 29.35 27.11 36.18 29.19 28.42 30.05

SSIM(↑)

PointNeRF 0.940 0.941 0.989 0.967 0.955 0.958
PointNeRF-Q 0.940 0.940 0.989 0.967 0.955 0.958

ACRF 0.939 0.940 0.989 0.967 0.955 0.958
ACRF-F 0.939 0.940 0.989 0.967 0.954 0.958

LPIPSALEX (↓)

PointNeRF 0.125 0.100 0.016 0.060 0.070 0.074
PointNeRF-Q 0.125 0.100 0.016 0.060 0.070 0.074

ACRF 0.126 0.102 0.017 0.060 0.070 0.075
ACRF-F 0.127 0.101 0.017 0.060 0.071 0.075

LPIPSV GG(↓)

PointNeRF 0.181 0.145 0.034 0.072 0.106 0.107
PointNeRF-Q 0.181 0.145 0.034 0.072 0.106 0.107

ACRF 0.182 0.146 0.035 0.072 0.107 0.108
ACRF-F 0.183 0.146 0.035 0.072 0.107 0.109

Table 4: Per-scene results on Tanks&Temples of the PointNeRF-based methods.
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Figure 9: Qualitative results on Synthetic-NeRF.
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Figure 10: Qualitative results on Tanks&Temples.
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