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Prior Knowledge Integration via LLM Encoding and Pseudo Event
Regulation for Video Moment Retrieval
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ABSTRACT
In this paper, we investigate the feasibility of leveraging large lan-
guage models (LLMs) for integrating general knowledge and incor-
porating pseudo-events as priors for temporal content distribution
in video moment retrieval (VMR) models. The motivation behind
this study arises from the limitations of using LLMs as decoders
for generating discrete textual descriptions, which hinders their
direct application to continuous outputs like salience scores and
inter-frame embeddings that capture inter-frame relations. To over-
come these limitations, we propose utilizing LLM encoders instead
of decoders. Through a feasibility study, we demonstrate that LLM
encoders effectively refine inter-concept relations in multimodal
embeddings, even without being trained on textual embeddings.
We also show that the refinement capability of LLM encoders can
be transferred to other embeddings, such as BLIP and T5, as long as
these embeddings exhibit similar inter-concept similarity patterns
to CLIP embeddings. We present a general framework for inte-
grating LLM encoders into existing VMR architectures, specifically
within the fusion module. The LLM encoder’s ability to refine con-
cept relation can help the model to achieve a balanced understand-
ing of the foreground concepts (e.g., persons, faces) and background
concepts (e.g., street, mountains) rather focusing only on the visu-
ally dominant foreground concepts. Additionally, we introduce the
concept of pseudo-events, obtained through event detection tech-
niques, to guide the prediction of moments within event boundaries
instead of crossing them, which can effectively avoid the distrac-
tions from adjacent moments. The integration of semantic refine-
ment using LLM encoders and pseudo-event regulation is designed
as plug-in components that can be incorporated into existing VMR
methods within the general framework. Through experimental val-
idation, we demonstrate the effectiveness of our proposed methods
by achieving state-of-the-art performance in VMR. The source code
can be accessed at https://github.com/open_upon_acceptance.

CCS CONCEPTS
• Computing methodologies → Visual content-based index-
ing and retrieval.

KEYWORDS
Video Moment Retrieval, Highlight Detection, LLMs

1 INTRODUCTION
The rapid expansion of video content, driven by advancements in
digital platforms and devices, has elevated video to become one
of the most captivating and information-rich media formats today.
However, this surge has also presented a significant challenge in
efficiently navigating through vast amounts of video content to lo-
cate specific user-requested moments or highlights. In response to
this challenge, research efforts have progressed from traditional ap-
proaches of moment retrieval (MR) and highlight detection (HD) to

more advanced methods, including Moment-DETR [29], UMT [43],
and UniVTG [36]. These cutting-edge techniques have pushed the
boundaries in the field of video understanding, enabling more ef-
fective analysis and extraction of meaningful insights from videos.

An emerging trend observed in these advancements is the incor-
poration of prior knowledge into the learning process to enhance
the semantic context and improve representation learning. This ef-
fort includes the expansion of datasets from a scale of hundreds [61]
to tens of thousands [29], which improves the generality of result-
ing representations across broader domain. Another endeavor is the
introduction of self-supervised pretrianing such as UniVTG [36]
which has been conducted by integrating existing MR/HD datasets
for in-domain knowledge incorporation and QVHignlights [29]
which has been pretrained on Youtube subtitles for cross-domain
knowledge embedding. While these have broken new ground for
prior integration, the question of whether we can innovate beyond
still remains open.

In a post-ChatGPT era, the inclination to utilize large language
models (LLMs) arises naturally due to their success across various
tasks. However, employing LLMs in MR/HD tasks proves to be
challenging since our focus lies primarily on capturing fine-grained
inter-frame salience, whereas LLMs excel in high-level semantic
comprehension. In simpler terms, LLMs perform well in tasks such
as captioning [56] or grounding [27], effectively describing the
content of a video or image as a whole, but they lack the abil-
ity to compare the degree of semantic salience among individual
frames. From a technical standpoint, most applications utilize LLMs
as decoders, where visual representations are first converted into
LLM-compatible tokens using models like Q-Former [32]. These
transformed representations are then integrated into the context
for generating outputs. Unfortunately, neither the Q-Former nor
the LLM models have been trained with frame-level salience infor-
mation during this process. Furthermore, the LLM decoders output
textual tokens which are discrete and determinate and thus less
compatible to the continuous and comparative salience scores. This
also makes the customization of the decoders or integrating MLPs
for fine-grained decision making less feasible.

In this paper, we tackle these limitations by utilizing LLM en-
coders instead of decoders. Through a feasibility study, we demon-
strate that LLM encoders effectively refine inter-concept relations in
multimodal embeddings, even when not trained on textual embed-
dings. We confirm that the refinement ability of LLM encoders can
be transferred to other embeddings, such as BLIP [33] and T5 [57],
as long as the inter-concept similarities exhibited by these embed-
dings demonstrate similar patterns to CLIP embeddings (which
serve as the original input for most LLMs). Based on these findings,
we propose a general framework for applying LLM encoders in
VMR. We showcase that LLM encoders can be inserted into the fu-
sion module of existing VMR architectures. By doing this, the LLM
encoder’s ability for inter-concept refinement can help the model
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to have a comprehensive understanding of foreground concepts
(e.g., persons, faces) and background concepts (e.g., street, build-
ings), to avoid the leaner to be misled by the visually dominant
foreground concepts. This is especially important when those con-
cepts are scattered over consecutive frames and the combination of
their semantics cannot be identified without an inter-frame relation
modeling. Furthermore, we introduce the use of pseudo-events,
obtained through event detection techniques (e.g., [63]), as priors
for the content distribution of videos. This approach guides the
predicted moments to align with events rather than crossing unrea-
sonable event boundaries, which can effectively avoid distractions
from adjacent moments. The integrations of semantic refinement
using LLM encoders and pseudo-event regulation are designed as
plug-in components that can be incorporated into existing VMR
methods constructed within the general framework. Through our
experiments, we validate that these components can enhance the
performance of five VMR frameworks: Moment-Detr [29], Uni-
VTG [36], QD-DETR [50], CG-DETR [49], and EaTR [23].

2 RELATEDWORK
2.1 Moment Retrieval and Highlight Detection
Moment Retrieval (MR) and Highlight Detection (HD) have become
pivotal in navigating the growing expanse of video content. MR
focuses on localizing video moments pertinent to textual descrip-
tions, employing cross-modal interactions [45, 49, 50, 85, 87, 93]
and temporal relation context [20, 89]. These tasks focus on localiz-
ing user-desired moments and scoring clip-wise correspondence to
queries, respectively. Moment retrieval, aimed at retrieving user-
specific video segments, has evolved significantly [10, 17, 20, 37, 65].
Traditional methods in this domain are categorized into proposal-
based and proposal-free approaches. Proposal-Based Methods uti-
lize predefined proposals like sliding windows [18, 20, 41, 85, 90]or
temporal anchors [8, 39, 85, 86, 91], and in some cases, generate pro-
posals [38, 62, 76, 79, 89]. The essence of thesemethods lies inmatch-
ing these candidates with the text query. In contrast, proposal-free
methods bypass the use of predefined candidates. Instead, they focus
on encoding multimodal knowledge and directly predict temporal
spans using regression heads, making the process more streamlined
and potentially more accurate.

Highlight detection, on the other hand, concentrates on scoring
the importance of each video clip, whether based solely on visual [3,
60, 77, 80] or combined visual-audio inputs [3, 19, 21, 77]. The
methods here vary in their approach to label granularity, with
supervised [19, 68, 80], weakly supervised [5, 53, 77][6, 49, 68], and
unsupervisedmethods [3, 25, 47, 60] all contributing to the field. The
introduction of the QVHighlights dataset [29] marked a significant
shift in this domain, prompting a combined consideration of these
problems. Emerging approaches post-QVHighlights adopt either
DETR or regression-based frameworks. For instance, UMT [43]
explores additional audio modalities, while QD-DETR [50] and CG-
DETR [49]innovate upon the DETR architecture. Other studies [36,
82] underscore the importance of pretraining.

2.2 Vision-Language Models
Inspired by the success of ChatGPT, significant efforts have been
dedicated to developing visual-language models (VLMs) based on

LLMs [11, 12, 51, 52, 70–72]. One commonly employed approach
involves encoding images into tokens that are compatible with LLM
inputs. The pretrained LLMs then serve as decoders for generating
textual descriptions. Awell-known framework is BLIP-2 [32], which
employs QFormer as the encoder and LLMs like FlanT5 [13] as the
decoder. Several successful examples have adopted this framework.
For instance,MiniGPT4 [94] replaces the LLMwith amore advanced
model called LLaMA [72]. InstructBLIP [14] fine-tunes the model
using high-quality instructions, while LLaV [40] explores CLIP’s
open-set visual encoder connected to Vicuna’s linguistic decoder
and performs end-to-end fine-tuning on the generated instructional
vision-language data. Similar frameworks have been extended to
video understanding, resulting inmodels like VideoChat [34], Video-
ChatGPT [46], and LLaMA-VID [35].

Other variants that may not strictly stick to the framework in-
clude GILL [26], Emu [69], mPLUG [31], CogVLM [75] andMiniGPT-
5 [92] for visual question answering, and Vision-LLM [74], Kosmos-
2 [55], Qwen-VL [4], MiniGPT-v2 [9], GPT4-Vison [1], and Gemi-
niProVision [70] that support multimodal inputs and outputs. How-
ever, the role of LLMs in these frameworks is still a decoder for dis-
crete outputs (mainly textual descriptions/answers), which makes
them limited to continuous outputs such as the salience scores or
inter-frame correlations. In this paper, we explore the feasibility
of employing LLMs as encoders for semantic relation refinement,
based on which the outputs are still continuous embeddings and
thus open the opportunity for fine-grained information processing
or decoding. This particular direction remains under-explored, with
only one existing work [54] in the literature that has attempted a
similar approach for image understanding tasks. This paper distin-
guishes from [54] in two aspects: we conduct a feasibility study to
investigate the rationale behind this approach, and we focus on the
integration of prior knowledge in the LLM.

3 LEVERAGING LLM ENCODERS FOR
INTER-CONCEPT RELATION REFINEMENT

Before introducing our VMR framework, let us examine the via-
bility of utilizing LLM encoders to refine inter-concept relations.
LLM encoders serve as natural inter-concept relation refiners since
they operate as Transformers, taking concepts (represented as to-
ken embeddings) as input and generating refined embeddings as
output. This becomes particularly evident when contrastive losses
are employed, as they encourage similar concepts to move closer in
the embedding space while pushing dissimilar ones further apart.
However, this approach appears to be effective only for textual
embeddings and is tightly coupled with the specific embeddings
used by the LLM (e.g., CLIP [56], BLIP [33], T5 [57]). In this feasi-
bility study, our aim is to investigate whether this approach can be
applied to multimodal embeddings and delve into the underlying
reasoning. Additionally, we will explore the possibility of reducing
computational costs by utilizing only a subset of internal layers
from an LLM encoder instead of loading the entire model.

3.1 LLM Encoders are Relation Refiners
We conducted an experiment to validate the hypothesis that an
LLM Encoder can be utilized for relation refinement. The experi-
ment commenced by requiring GPT-4 to recommend 1,000 triplets,
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(a) (b) (c)

(d) (e) (f)

Improved
Deteriorated

Improved
Deteriorated

Improved
Deteriorated

Figure 1: The proportions of improved and deteriorated triplets after the refinement (a–c), and the inter-concept similarity
matrices of the concept embeddings before and after the refinement (d–f): in (a) and (d), CLIP is used as the textual embeddings,
while BLIP is used for (b) and (e), and T5 is used for (c) and (f).

wherein each triplet (e.g., sock, shoe, galaxy) comprises two “paired”
concepts (e.g., sock and shoe) that possess a strong semantic re-
lation, while the third concept (e.g., galaxy) is significantly less
related to the other two. We label a triplet as “unreasonable” if the
similarity between the paired concepts is lower than that of any
unpaired concepts; otherwise, it is deemed “reasonable.” We input
CLIP embeddings of these concepts into the LLaMA-2 [72] encoder
and obtain refined embeddings. To assess the extent of refinement
in the embeddings, we measure the percentage of unreasonable
triplets in the CLIP space that become reasonable in the refined
space. The result shows that 83.33% (300/360) of the initially unrea-
sonable triplets have been refined to a reasonable state, while none
of the reasonable triplets were transformed into unreasonable ones.

3.2 LLM Encoders for Multimodal Embeddings
While the LLM encoder’s capability to refine semantic relations is
expected, our primary focus lies in investigating whether this ability
can be transferred to multimodal embeddings. In most applications,
multimodal embeddings are generated by combining non-textual
embeddings with textual ones using methods such as weighted
summation or more advanced cross-attention mechanisms. These
fusion approaches aim to align the non-textual embeddings with the
textual ones, forming the foundation for stacking and fine-tuning
task-specific decision-making layers. In our subsequent experiment,
we simulate the fusion and alignment process by fusing the textual
embeddings with randomly generated embeddings.
Dose the LLM encoders work for fused embeddings? Let c
represent a textual concept embedding obtained through CLIP,
and let c′ denote a concept-dependent randomly generated vector
used to simulate a non-textual embedding. We combine these two

embeddings using a weighted summation, as

c∗ = (1 − 𝛼)c + 𝛼c′ . (1)

It should be noted that the simulated embedding vector c′ is spe-
cific to each concept. This implies that each concept is associated
with its own fixed vector, and the vectors corresponding to dif-
ferent concepts are distinct from one another. Due to the random
nature of the vectors c′, the expected similarities between such
non-textual embeddings are zero. This allows c′ to simulate real-
world scenarios where non-textual embeddings are extracted using
specific encoders. In these scenarios, the embeddings are aligned
to concepts, but the inter-concept similarities are not necessarily
regulated in a reasonable manner. Consequently, the parameter 𝛼
in Eq. (1) controls the extent to which the textual embeddings are
influenced by the randomness and misalignment introduced by the
non-textual embeddings.

The results in Fig. 1(a) indicate that when the textual embed-
dings are predominant (i.e., 𝛼 ≤ 0.5), the LLaMA encoder effectively
refines the majority of unreasonable pairs without causing any de-
terioration. Fortunately, this aligns perfectly with the requirements
of many multimodal applications, where, during the representation
learning phase, the goal is to align the non-textual modalities with
the textual one.
What will happen when non-textual embeddings are dis-
torted? To expand the experiment, we introduce a distortion factor
by randomly setting elements of a non-textual embedding vector c′
to zero with a probability of 𝑝 , which results in a distorted vector
c′𝑝 . This simulation reflects real-world multimodal scenarios where
the alignment of non-textual embeddings to concepts is not con-
sistently reliable. We can substitute the c′ with c′𝑝 in Eq. (1) and
repeat the experiment. The results shown in Fig. 2 demonstrate
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that the distortion of non-textual embeddings would not degrade
the refinement when the textual embeddings are dominant.

Proportion of DeterioratedProportion of Improved

Figure 2: Proportions of Improved and Deteriorated Triplets
over the contribution of non-textual embeddings controlled
by the 𝛼 and the degree of alignment between the textual
and non-textual embeddings controlled by the distortion
probability 𝑝.

Through the conducted experiments, we have confirmed the
effectiveness of LLM encoders as reliable relation refiners. This
can be attributed to the fact that LLM encoders are based on the
Transformer architecture. Transforms heavily rely on self-attention
mechanisms which are driven by the inter-concept (token) sim-
ilarities. In other words, as long as the input concepts maintain
inter-concept similarities similar to those of the CLIP embeddings,
the LLM encoder can refine the concept relations in a manner
comparable to using CLIP embeddings as input. In the experiment
above, when there are two CLIP concept embeddings c1 and c2, the
similarity of their fused embeddings is written

𝑠𝑖𝑚(c∗1, c
∗
1) =c

∗
1 (c

∗
2)

⊤

=((1 − 𝛼)c1 + 𝛼c′1) ((1 − 𝛼)c2 + 𝛼c′2)
⊤ (2)

=(1 − 𝛼)2c1c⊤2 + (1 − 𝛼)𝛼 (c1c′⊤2 + c′1c
⊤
2 ) + 𝛼c′1c

′⊤
2 .

Obviously, the expectations of concept similarities before and after
fusion have a relation of E[c∗1 (c

∗
2)

⊤] ≈ (1 − 𝛼)2E[c1 (c2)⊤]. This is
because the expectations of the last two terms in Eq. (2) are zero
due to the randomness of the simulated non-textual embeddings.
This indicates that the fused concept embedding still maintains
similar (even when scaled) inter-concept similarities compared to
the original embeddings, which explains why the relations of the
fused concepts can also be refined using the LLM encoder.

To validate the discovery, we propose replacing the CLIP embed-
dings with its variant, BLIP, and introducing a more distant textual
embedding model, T5. The results depicted in Fig. 1(b) and Fig. 1(c)
indicate improvements when either BLIP or T5 embeddings are

utilized. It is not surprising that by using BLIP embeddings which
are more similar to CLIP embedings, the results demonstrate a
better balance between the improved and deteriorated, and the
pattern closely resembles that of the CLIP. However, T5 still works
because it is also a well-trained model in the text domain, in which
we expect a significant overlap in inter-concept similarities with
CLIP. In Fig. 1(d–f), we visualize the inter-concept similarities of
these three types of embeddings before and after the refinement. It
is evident that the patterns exhibit similarity, and the refinement
process further enhances this similarity.

3.3 Using A Subset of Layers as the Encoder
Our last experiment for the feasibility is to use a subset of LLaMA
encoder as a relation refiner. The motivation is that the layers of
a Transformer process data in a similar manner, suggesting that a
subset of layers may possess a similar ability to refine relations. If
this hypothesis holds true, it would enable a significant reduction
in computational requirements, thereby enhancing the feasibility
of applying this approach to a wider range of applications. The
results in Fig. 3 validate the hypothesis by demonstrating that a
subset of the LLaMA encoder can also effectively refine relations.

The 4th layer as the encoder
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The 32th layer as the encoder The 14-17th layers as the encoder
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Deteriorated

Contribution of the non-textual embeddings (𝛼) Contribution of the non-textual embeddings (𝛼)

Improved

Deteriorated

Improved

Deteriorated

Improved

Deteriorated

Figure 3: The impact of utilizing specific layers from the LLM
encoder for relation refinement. The performance of indi-
vidual layers (4𝑡ℎ , 8𝑡ℎ , and 32𝑛𝑑 ) as well as combined layers
(14𝑡ℎ to 17𝑡ℎ) have been studied.

4 METHOD
4.1 A General Framework for VMR
Before introducing the proposed method, we summarize existing
VMR approaches into a general framework to ease the description
(see Fig. 4). The VMR task takes a video 𝑉 and a textual query 𝑄
as input and predicts a set of candidate video segments {m𝑘 } that
are relevant to the query 𝑄 . This process is accomplished by an
inference process of a neural network 𝑓𝜃 with parameters 𝜃 as

{m𝑘 } = 𝑓𝜃 (𝑄,𝑉 ) . (3)

The process begins by encoding the query and video into embed-
dings {q𝑖 } and {v𝑖 }, respectively, as

{q𝑖 } = 𝐶𝐿𝐼𝑃𝑡 (𝑄), {v𝑗 } = 𝐶𝐿𝐼𝑃𝑣 (𝑉 ) ⊕ 𝑆𝑙𝑜𝑤𝐹𝑎𝑠𝑡 (𝑉 ), (4)
4
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Figure 4: The proposed general framework for VMR with the proposed prior knowledge integration components.

where the 𝐶𝐿𝐼𝑃𝑡 and 𝐶𝐿𝐼𝑃𝑣 are the textual and visual encoders
of CLIP [56], respectively, and the SlowFast [16] is a commonly
used video encoder. The operator ⊕ denotes concatenation. The
embeddings are then fused by a network 𝐹 with parameters 𝜃𝐹 as

{v∗𝑗 } = 𝐹𝜃𝐹 ({q𝑖 }, {v𝑗 }) . (5)

A decoder 𝐷 with parameters 𝜃𝐷 then predicts the moments as

{m𝑘 } = 𝐷𝜃𝐷 ({v∗𝑗 }) . (6)

A loss function is defined with the ground truth 𝐺 as

L𝑚𝑛𝑡 = 𝐷𝑖𝑠𝑡 ({m𝑘 },𝐺), (7)

where 𝐷𝑖𝑠𝑡 is a distance metric and often implemented using Hun-
garian Match [6]. The learning goal is to find an optimal set of
parameters 𝜃 = {𝜃𝐹 , 𝜃𝐷 }.

A large portion of VMR methods can be structured within this
general framework, with their unique characteristics stemming
from proposed variations in the fusion network 𝐹𝑢 or adjustments
to the loss function L. In our paper, we introduce two plug-in
elements to this framework, which implement prior integration
of semantic refinement and pseudo-event regulation, respectively.
These plug-in elements are designed to be compatible with a range
of existing methods, emphasizing their versatility and adaptability.

4.2 Integration of Semantic Refinement
To incorporate semantic refinement within the general framework,
we can insert an LLM encoder between the fusion and decoding
processes. The feasibility is that the fusion process exhibits similar-
ities to the process described in Eq. (1), where video embeddings
are merged with textual query embeddings. Furthermore, CLIP
embeddings play a significant role in both the encoding and fusion
processes, making them suitable as inputs of the LLM encoder, as
observed in our feasibility study. Considering the rationale behind
it, the utilization of the LLM encoder for inter-concept refinement
can enhance the model’s overall comprehension of both foreground
concepts (e.g., persons, faces) and background concepts. This is cru-
cial in preventing themodel from beingmisled by visually dominant
foreground concepts. This becomes particularly significant when
these concepts are dispersed across consecutive frames, and their
combined semantics cannot be identified without proper modeling

of inter-frame relations. However, to adapt to the input dimension
of the LLM encoder, we need to include a linear layer before and
after the LLM encoder. The integration is then written by replacing
Eq. (5) as

{v∗𝑗 } = 𝐿2𝜃𝐿2

[
LLM

(
𝐿1𝜃𝐿1

[
𝐹𝜃𝐹 ({q𝑖 }, {v𝑗 })

] )]
, (8)

where the 𝐿1 and 𝐿2 are the two linear adapter layers with parame-
ters 𝜃𝐿1 and 𝜃𝐿2, respectively. In order to improve computational
efficiency, we can select a subset of layers from the LLM to serve
as the refiner.

4.3 Integration of Pseudo-Event Regulation
The motivation for this regulation arises from the recognition that
valid moments should remain within the boundaries of events in-
stead of crossing them. By guiding the predicted moments to align
with the content distribution indicated by the event boundaries,
we can effectively eliminate distractions from adjacent irrelevant
moments. To this end, we utilize event detectors such as the recur-
sive TSM parsing mechanism in UBoCo [24] to generate pseudo
events for a given video. These pseudo events serve as a prior for
the distribution of event boundaries. This prior can be used to
guide the predicted moments into positions between event bound-
aries by penalizing those that extend beyond the boundaries. Let
us denote the position and with of a predicted moment m𝑘 as a
vector p𝑘 = [𝑝𝑜𝑠𝑘 ,𝑤𝑖𝑑𝑘 ] and the detected pseudo events as a set
e = [𝑝𝑜𝑠𝑒 ,𝑤𝑖𝑑𝑒 ]. This can be implemented by introducing a pseudo-
event regulated loss as

L𝑒𝑣𝑡 =
∑︁

e∈{e}

(
𝜆𝐿1



e −m𝑘




1 + 𝜆𝐼𝑜𝑈L𝐼𝑜𝑈

(
e,m𝑘

) )
, (9)

where L𝐼𝑜𝑈 is the widely adopted Generalized Intersection Over
Union (GIoU) loss [59], 𝜆𝐿1 and 𝜆𝐼𝑜𝑈 are the weights for the L1
norm and GIoU loss, respectively.

The aforementioned regulation is designed to occur after the
prediction process, as a post-validation step. We have also devised
a pre-reinforcement-based regulation technique to further enhance
the alignment between predicted moments and events. The concept
behind this technique involves adjusting the position embeddings of
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frames by reinforcing the notion that frames within the same event
should possess similar position embeddings. By doing so, the pre-
diction process is encouraged to select frames from the same event
for moment composition, rather than across different events. We set
the target position embeddings as those of the fused embeddings
after 𝐹𝜃𝐹 (·). For an event e, we denote the position embeddings of
its member frames as a matrix P𝑒 , wherein the position embedding
of the center frame is p𝑒 . The position regulation is then written as

L𝑝𝑜𝑠 =
∑︁

e∈{e}
exp

[
1
𝑁
1⊤abs

(
P𝑒 − p𝑒 · 1⊤

)
1
]
, (10)

where 1 is a vector of ones. The L𝑝𝑜𝑠 encourages the position
embeddings of the member frames to that of the center embedding
within an event.

By incorporating both semantic refinement and pseudo-event
regulation, the loss function is expanded as

L = L𝑚𝑛𝑡 + 𝜆𝑒L𝑒𝑣𝑡 + 𝜆𝑝L𝑝𝑜𝑠 , (11)

where 𝜆𝑒 and 𝜆𝑝 are hydrometers to balance the learning. The ex-
tended set of parameters to be tuned is denoted as𝜃 = {𝜃𝐹 , 𝜃𝐷 , 𝜃𝐿1, 𝜃𝐿2}.

5 EXPERIMENTS
5.1 Dataset and Evaluation Metrics
To evaluate the performance of our proposed method, we con-
duct extensive experiments across multiple tasks, organized into
three panels: 1) Joint moment retrieval and highlight detection on
QVHighlights [29], which includes more than 10,000 videos with
high-quality text queries. For moment retrieval, we report Recall@1
with IoU thresholds of 0.5 and 0.7, mean Advance Precision (mAP)
with IoU thresholds of 0.5 and 0.75, and mean mAP across a range
of IoU thresholds [0.5:0.05:0.95]. For highlight detection, we report
mAP and HIT@1, which consider a segment as truly “positive”
when its predicted saliency score is rated as “very good”. 2) Individ-
ual moment retrieval on Charades-STA [17] and TACoS [58]. The
metrics involve Recall@1 and Recall@5 with IoU thresholds of 0.5
and 0.7. 3) Highlight detection on TVSum [67] and Youtube-HL [68],
where Top-5 mAP and mAP are employed as performance mea-
sures, respectively. All metrics are aligned with previous studies
[29, 43, 50].

5.2 Implementation Details
We utilize the SlowFast [16] and CLIP [56] models to extract video
features on QVHighlights dataset every 2 seconds. We adopt Slow-
fast+Clip and VGG [64] on Charades-STA and TACoS datasets,
where video features are extracted every 1 second and 2 seconds,
respectively. For YouTube-HL and TVSum datasets, we extract clip-
level features by a pre-trained I3D [7]. Following previous methods
[43], each feature vector captures 32 consecutive frames and is
considered as a clip when the overlap exceeds 50% with each other.

We utilize the 14th to 17th encoding layers of LLaMA (7B) across
all configurations. The feature fusion encoder 𝐹 and decoder 𝐷
are implemented using 6-layer Transformer. The loss balancing
hydrometers 𝜆𝑒 and 𝜆𝑝 are set to 0.1 and 0.001, respectively. We use
AdamW [44] with a weight decay of 1e-5 and apply an additional
pre-discard rate of 0.5 to the visual inputs. We train our model
across five datasets with specific settings for each: 1) QVHighlights:

Table 1: Results of joint moment retrieval and highlight de-
tection (HD) on QVHighlights test split [28].

Moment Retrieval HD

Method R1 mAP ≥ Very Good

@ 0.5 @ 0.7 @ 0.5 @ 0.75 Avg. mAP HIT@1
BeautyThumb [66] - - - - - 14.36 20.88
DVSE [42] - - - - - 18.75 21.79
MCN [20] 11.41 2.72 24.94 8.22 10.67 - -
CAL [15]¸ 25.49 11.54 23.40 7.65 9.89 - -
CLIP [56] 16.88 5.19 18.11 7.0 7.67 31.30 61.04
XML [30] 41.83 30.35 44.63 31.73 32.14 34.49 55.25
XML+ [30] 46.69 33.46 47.89 34.67 34.90 35.38 55.06
Moment-DETR [29] 52.89 33.02 54.82 29.40 30.73 35.69 55.60
UMT [43] 56.23 41.18 53.83 37.01 36.12 38.18 59.99
UniVTG [36] 58.86 40.86 57.60 35.59 35.47 38.20 60.96
QD-DETR [49] 62.40 44.98 62.52 39.88 39.86 38.94 62.40
CG-DETR [50] 65.43 48.38 64.51 42.77 42.86 40.33 66.21
Ours 66.73 49.94 65.76 43.91 44.05 40.33 65.69

Learning rate of 1e-4, batch size of 32, for 200 epochs. 2) Charades-
STA: Learning rate of 2e-4, batch size of 32, for 200 epochs. 3)
TACoS: Learning rate of 2e-4, batch size of 16, for 200 epochs. 4)
YouTube-HL: Learning rate of 1e-4, batch size of 4, for 2,000 epochs.
5) TVSum: Learning rate of 1e-4, batch size of 1, for 2,000 epochs.

5.3 Comparison with State-of-the-arts
Joint Moment Retrieval and Highlight Detection. Our evaluation
is detailed in Tab. 1, specifically focusing on the QVHighlights
test split. It is obvious that the proposed approach reaches the
highest scores across almost all evaluation metrics. Specifically,
we achieve an average mAP of 44.05 on moment retrieval and
a HIT@1 of 65.69 on highlight detection, significantly surpassing
traditional methods. When compared to contemporary models such
as CG-DETR, our method still exhibits clear advantages, achieving
superior mAP performance in terms of 2.78% on moment retrieval.
This demonstrates the effectiveness of our approach in handling
complex video analysis tasks.

Moment Retrieval. As shown in Tab. 2, we report the results
of moment retrieval on two additional benchmarks, TACoS and
Charades-STA. Notably, our approach outperforms all SOTA meth-
ods even without pre-training. Specifically, we exceed other meth-
ods by margins of 0.19% to 34.28% on TACoS and 0.6% to 21.82% on
Charades-STA in terms of mIoU. The consistent outperformance
across various benchmarks and comparison with a wide range of
SOTA methods suggest the effectiveness of incorporating prior
knowledge from large language models.

Highlight Detection. We conduct more experiments on highlight
detection. Tab. 3 displays the Top-5 mAP on the TV-Sum dataset,
while Tab. 4 details the mAP performance on YouTube-HL. From
an overall perspective, our method demonstrates significant im-
provements, achieving an mAP of 88.1% on TV-Sum and 75.3% on
YouTube-HL.
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Table 2: Moment retrieval results tested on TACoS and
Charades-STA datasets. Video features are extracted using
Slowfast and CLIP.

TACoS Charades-STA

Method R@0.3 R@0.7 mIoU R@0.3 R@0.7 mIoU
2D-TAN 40.01 12.92 27.22 58.76 27.50 41.25
VSLNet 35.54 13.15 24.99 60.30 24.14 41.58
Moment-DETR 37.97 11.97 25.49 65.83 30.59 45.54
QD-DETR - - - - 32.55 -
LLaViLo - - - - 33.43 -
UniVTG 51.44 17.35 33.60 70.81 35.65 50.10
CG-DETR 52.23 22.23 36.48 70.43 36.34 50.13
Ours 52.73 22.78 36.55 70.91 36.49 50.25

Table 3: Highlight detection results on TV-Sum, † denotes
the methods that utilize the audio modality.

Method VT VU GA MS PK PR FM BK BT DS Avg.
sLSTM [88] 41.1 46.2 46.3 47.7 44.8 46.1 45.2 40.6 47.1 45.5 45.1
SG [48] 42.3 47.2 47.5 48.9 45.6 47.3 46.4 41.7 48.3 46.6 46.2
LIM-S [78] 55.9 42.9 61.2 54.0 60.3 47.5 43.2 66.3 69.1 62.6 56.3
Trailer [73] 61.3 54.6 65.7 60.8 59.1 70.1 58.2 64.7 65.6 68.1 62.8
SL-Module [81] 86.5 68.7 74.9 86.2 79.0 63.2 58.9 72.6 78.9 64.0 73.3
QD-DETR [50] 88.2 87.4 85.6 85.0 85.8 86.9 76.4 91.3 89.2 73.7 85.0
UniVTG [36] 83.9 85.1 89.0 80.1 84.6 81.4 70.9 91.7 73.5 69.3 81.0
MINI-Net† [22] 80.6 68.3 78.2 81.8 78.1 65.8 57.8 75.0 80.2 65.5 73.2
TCG† [84] 85.0 71.4 81.9 78.6 80.2 75.5 71.6 77.3 78.6 68.1 76.8
Joint-VA† [2] 83.7 57.3 78.5 86.1 80.1 69.2 70.0 73.0 97.4 67.5 76.3
UMT† [43] 87.5 81.5 88.2 78.8 81.4 87.0 76.0 86.9 84.4 79.6 83.1
Ours 90.8 91.9 94.2 88.7 85.8 90.4 78.6 93.4 88.3 78.7 88.1

Table 4: Performance of mAP for highlight detection on
YouTube-HL. † denotes using audio modality.

Method Dog Gym. Par. Ska. Ski. Sur. Avg.
RRAE [83] 49.0 35.0 50.0 25.0 22.0 49.0 38.3
GIFs [19] 30.8 33.5 54.0 55.4 32.8 54.1 46.4
LSVM [68] 60.0 41.0 61.0 62.0 36.0 61.0 53.6
LIM-S [78] 57.9 41.7 67.0 57.8 48.6 65.1 56.4
SL-Module [81] 70.8 53.2 77.2 72.5 66.1 76.2 69.3
QD-DETR [50] 72.2 77.4 71.0 72.7 72.8 80.6 74.4
UniVTG [36] 71.8 76.5 73.9 73.3 73.2 82.2 75.2
MINI-Net† [22] 58.2 61.7 70.2 72.2 58.7 65.1 64.4
TCG † [84] 55.4 62.7 70.9 69.1 60.1 59.8 63.0
Joint-VA† [2] 64.5 71.9 80.8 62.0 73.2 78.3 71.8
UMT † [43] 65.9 75.2 81.6 71.8 72.3 82.7 74.9
Ours 73.6 74.2 72.5 75.3 73.4 82.5 75.3

5.4 Ablation study
Due to the space limitation, we limit the ablation study on QVHigh-
lights validation split. QD-DETR [50] is temporally used as the
baseline, and later we will conduct a compatibility study to show
that our proposed plug-in components can be used by other 5 dif-
ferent frameworks to improve their performances. The results are
shown in Tab. 5, where a consistent performance gain is observed

QUERY: Two girls traveling in a shuttle to reach an airport

Ground Truth

Moments

w/o Refiner

w/ Refiner

Predicted Moments 

without LLM Refiner

Predicted Moments 

with LLM Refiner

QUERY: Two guys and a girl trying to cross the street

w/o Refiner

w/ Refiner

00:32 01:12

00:10

00:20 01:12

00:42 01:06

01:20

00:44 01:02

01:12

00:00

Figure 5: Illustration of the effectiveness of using the LLM
as a relation refiner. The predictions with the LLM encoder
are better aligned with the ground truth. The model without
the refiner focuses more on the visually dominate concepts
(e.g., girls, guys), while with the refiner, contextual concepts
(e.g., traveling, crossing-street) can be further incorporated.

Table 5: Ablation study on QVHighlights validation split.

Models R1@0.5 R1@0.7 mAP
1 Baseline 63.87 48.71 41.46
2 Baseline + LLM 66.712.8↑ 49.420.7↑ 45.694.2↑
3 Baseline + Levt 65.161.3↑ 50.261.6↑ 45.474.0↑
4 Baseline + Lpos 64.580.7↑ 49.480.8↑ 43.882.4↑
5 Baseline + LLM + Levt 66.002.1↑ 51.552.8↑ 45.784.3↑
6 Baseline + LLM + Levt + Lpos 66.582.7↑ 51.102.4↑ 46.244.8↑

when each component is combined into the framework, resulting
in an improvement ranging from 0.7% to 4.8% in mAP.
Effectiveness of using LLM encoders as relation refiners: It is
evident in Tab. 5 that LLM can bring further improvement gain
due to its ability to refine the inter-frame relation. To grasp more
insights, the predicted moments with and without the LLM refiner
are shown in Fig. 5 on two exemplar video segments. In the example
of the “two girls traveling in a shuttle”, the model without the LLM
refiner focuses more on a moment that the two girls are visually
dominant in the video, while themodel with the LLM refiner focuses
on a moment that the concepts of girls, traveling and, shuttle-to-
airport all appeared with comparably less but equivalent salience
in the video. This is an indication that the LLM refiner can help
model the inter-concept relation in a better way. Similarly, in the
second example, the model without the refiner focuses more on
the concepts of two-guy and girl, and with the LLM refiner, the
presence of the action of cross-street has been further considered.
Effectiveness of the pseudo-event regulation: In Fig. 6, we give
two examples to illustrate the effectiveness. It is evident that the
predicted moments align with the pseudo-event boundaries in a
better way, eliminating the distractions from adjacent moments.
Effectiveness of position embedding regulation: After imple-
menting pseudo-events that identify event boundaries, we can use
these boundaries to refine the distribution of position embeddings.

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

QUERY: A woman in white top is walking down a mountain trail

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

QUERY: A couple get enjoy Elegant Night on a cruise ship

𝑒6𝑒4 𝑒5
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Moments

Predicted Moments 
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with ℒe𝒗𝒕
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Figure 6: Illustration of the effectiveness of the event regu-
lation. The regulation guides predicted moments to reside
inside the event boundaries rather than crossing them, which
eliminates the distractions from adjacent moments.

This adjustment aims for the position embeddings to align more
closely with the event distribution in the video, as illustrated in
Fig. 7. The impact of adopting Lpos is distinctly visible: prior to its
use, the distribution of position embeddings is notably dispersed,
while with the regulated loss Lpos , the position embeddings show
better alignment to the event boundaries.
Study of the compatibility to different frameworks: By in-
serting the proposed integration components into various VMR
frameworks, in Tab. 6, our method demonstrates high adaptability
and compatibility with existing frameworks, indicated by a consis-
tent performance gain over the original settings. The improvements
observed are not merely instances of isolated success but reflect
consistent effectiveness for the proposed integration components.
Qualitative Results: Due the space limitation, we can study only
a few examples in this section. We have included more illustrations
and qualitative analysis in the Appendix.

6 CONCLUSION
In conclusion, our work presents an approach for enhancing video
moment retrieval (VMR) by integrating large language model (LLM)
encoders and pseudo-event regulation. The LLM encoders con-
tribute to refining multimodal embeddings and their inter-concept
relations, successfully applied to various embeddings such as CLIP
and BLIP. We also use pseudo-events as temporal content distri-
bution priors that aid in aligning moment predictions with actual
event boundaries, addressing a previously underexplored aspect of
VMR. The proposed methods serve as plug-in components, com-
patible with existing VMR frameworks, and have been empirically
validated to achieve state-of-the-art performance. This study not
only addresses the challenges posed by the vast and growing video
content but also opens new avenues for the application of LLMs in
fine-grained video analysis tasks.

QUERY: Two guys and a girl trying to cross the street

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

𝑒1 𝑒3 𝑒6𝑒5 𝑒7𝑒2 𝑒4

QUERY: Girl calling her cute dog on coming back at home

Pseudo event (𝑒𝑖) Position embedding 

distribution (0-1)

w/o ℒ𝒑𝒐𝒔

w/ ℒ𝒑𝒐𝒔

w/o ℒ𝒑𝒐𝒔

w/ ℒ𝒑𝒐𝒔

Figure 7: Illustration of the effectiveness of the position em-
bedding regulation. The resulting embeddings align with the
event distribution in a better way.

Table 6: Performance comparison of our integrated method
with existing VMR frameworks (base models). Please note
that the reported results of the base models might slightly
differ from those in the original papers due to variations
in the environment configuration. We have utilized the re-
leased source code, but the exact replication of the original
environment is not feasible.

Method Metric Original Integrated Gain (%)

Moment-DETR [29]
MR-full-R1@0.5 53.90 59.23 +9.89
MR-full-R1@0.7 34.80 38.52 +10.69
MR-full-mAP 32.20 34.36 +6.71

QD-DETR [50]
MR-full-R1@0.5 62.70 62.90 +0.32
MR-full-R1@0.7 46.70 46.45 -0.54
MR-full-mAP 41.20 41.34 +0.34

EaTR [23]
MR-full-R1@0.5 57.42 63.03 +9.77
MR-full-R1@0.7 42.58 46.06 +8.17
MR-full-mAP 38.98 41.05 +5.31

UniVTG [36]
MR-full-R1@0.5 59.74 59.70 -0.07
MR-full-R1@0.7 35.59 38.84 +9.13
MR-full-mAP 36.13 36.36 +0.64

CG-DETR [49]
MR-full-R1@0.5 67.40 70.26 +4.24
MR-full-R1@0.7 52.10 53.61 +2.90
MR-full-mAP 44.90 45.78 +1.96
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