
Prompt-based Visual Alignment for Zero-shot Policy Transfer

Haihan Gao 1 2 Rui Zhang 2 Qi Yi 1 Hantao Yao 3 Haochen Li 4 5 Jiaming Guo 2 Shaohui Peng 4

Yunkai Gao 1 2 QiCheng Wang 2 5 Xing Hu 2 6 Yuanbo Wen 2 Zihao Zhang 2 Zidong Du 2 6 Ling Li 4 5

Qi Guo 2 Yunji Chen 2 5

Abstract

Overfitting in RL has become one of the main
obstacles to applications in reinforcement learn-
ing(RL). Existing methods do not provide ex-
plicit semantic constrain for the feature extrac-
tor, hindering the agent from learning a unified
cross-domain representation and resulting in per-
formance degradation on unseen domains. Be-
sides, abundant data from multiple domains are
needed. To address these issues, in this work, we
propose prompt-based visual alignment (PVA),
a robust framework to mitigate the detrimental
domain bias in the image for zero-shot policy
transfer. Inspired that Visual-Language Model
(VLM) can serve as a bridge to connect both text
space and image space, we leverage the semantic
information contained in a text sequence as an ex-
plicit constraint to train a visual aligner. Thus, the
visual aligner can map images from multiple do-
mains to a unified domain and achieve good gener-
alization performance. To better depict semantic
information, prompt tuning is applied to learn a
sequence of learnable tokens. With explicit con-
straints of semantic information, PVA can learn
unified cross-domain representation under lim-
ited access to cross-domain data and achieves
great zero-shot generalization ability in unseen
domains. We verify PVA on a vision-based au-
tonomous driving task with CARLA simulator.
Experiments show that the agent generalizes well
on unseen domains under limited access to multi-
domain data.
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1. Introduction

ClearNoon HardRainNoon ClearSunset WetCloudySunset SoftRainSunset

(a) LUSR (b) PVA

Figure 1: Input embedding distributions for the policy be-
fore (a) and after (b) domain alignment. Different colors rep-
resent different domains, where ClearNoon and HardRain-
Noon are applied in the training set. (a) Latent features
generated by LUSR demonstrate severe out-of-distribution
phenomena between seen and unseen domains (such as
ClearSunset). (b) our approach mitigates the domain bias
across various domains and well aligns the latent distribu-
tions between training and testing domains.

Reinforcement Learning(RL) has enabled remarkable suc-
cess in many control tasks, such as robot manipulation,
video games, and autonomous driving. However, overfitting
in the training environment has become a prominent prob-
lem, where RL agents can not tolerate slight shifts between
train and test domains. Aside from this, interaction with test
environments can be costly. Both challenges make it essen-
tial to investigate a strategy to zero-shot transfer a policy
without access to data from test domains.

Many methods have been proposed to transfer a policy un-
der shifts in observations. LUSR(Xing et al., 2021) and
DARLA(Higgins et al., 2017) train a transferable policy via
learning a generalizable representation from different states,
where variation-auto-encoder(Kingma & Welling, 2013) is
applied to map states from different domains into aligned
representations. Image-to-image translation model serves as
a map from one domain to another domain(Gamrian & Gold-
berg, 2019; Pan et al., 2017). Instead of transforming the
original observation space to another unified space, domain
randomization(Tobin et al., 2017) and data augmentation
technique(Kostrikov et al., 2020; Laskin et al., 2020b) are
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applied to improve the generalization ability of RL agents
by promoting data diversity via image augmentations during
the training stage.

Although these works have demonstrated compelling adap-
tation performance over different domains, there are still
two problems existing in these methods, namely, the lack
of explicit semantic constraints and the requirements of suf-
ficient multi-domain data, which hinder the generalization
in complex scenarios. During extracting aligned features
among different training domains with a feature extractor,
these methods do not constrain the feature extractor explic-
itly on semantic information, which hinders the agent from
learning a unified cross-domain representation. The rep-
resentation learned by these works might contain domain
bias of the training domains and will cause performance
degradation on unseen domains. As shown in Figure 1(a),
the representation distribution of the testing domains does
not match that of the training domains. Besides, all of these
methods require abundant data from multiple domains to
adapt to a new domain, which can be expensive and even
unavailable sometimes.

To alleviate these issues, we propose a framework called
Prompt-based Visual Alignment (PVA) for zero-shot policy
transfer. The key point of PVA is to leverage the seman-
tic information contained in a text sequence as an explicit
constraint to train a visual aligner, aiming to obtain high
generalization and remove domain bias. The visual aligner
can achieve cross-domain alignment by mapping the im-
ages of different domains to a unified domain. Inspired by
the remark generalization ability of the pretrained Visual-
Language Model(VLM), we use VLM to bridge textual and
visual modalities. Considering the semantic information is
contained in a sequence of text, we can use VLM as the
explicit constraint of retaining semantic information during
the alignment of mapping images. To better depict seman-
tic information, prompt tuning can be applied to learn a
sequence of learnable tokens instead of the fixed template.

Based on the above analysis, the proposed PVA consists of
three stages: Prompt Tuning, Visual Alignment, and Robust
Policy Optimization. In the Prompt Tuning stage, we lever-
age the sequence of learnable tokens to obtain an accurate
description of semantic information in the input image by
aligning the text embedding with the visual embedding. In
Visual Alignment stage, a visual aligner is trained to map
the images of multiple training domains to a unified domain.
We provide an explicit constraint of retaining the semantic
information by aligning the mapping image with prompts
generated in the first phase. In Robust Policy Optimization
stage, we apply the visual aligner from the second stage
to train a robust RL agent. As shown in Figure 1(b), with
explicit constraints of relating semantic information from
VLM, PVA can learn unified cross-domain representation

from various domains and achieves great zero-shot gener-
alization ability in unseen domains. Moreover, the visual
aligner of PVA can be learned under limited amount of data
from various domains.

We verify the proposed PVA with CARLA simula-
tor(Dosovitskiy et al., 2017). Each domain refers to a spe-
cific type of weather, which differs in illumination condi-
tions and precipitation. Experiments have shown that PVA
has a good zero-shot transfer ability over unseen domains
with limited data.

2. Related Work
Domain Adaptation(DA) in RL: Domain Adaptation in
Reinforcement Learning aims to train an agent to generalize
in different environments. Most current approaches focus on
how to deal with the shift in observation space, especially in
a visual-based task. Current methods improve the adaptation
ability of RL agents from three aspects: Domain random-
ization with diverse data, representation learning to learn
domain-agnostic representation across different domains,
and image-to-image translation.

Domain randomization involves multiple domains during
training to improve the robustness of agents(Tobin et al.,
2017; James et al., 2019; Peng et al., 2018). However, since
access to multiple domains is not always available, data
augmentation approaches are proposed to increase domain
diversity manually. Data-augmentation-based methods, in-
cluding RAD(Laskin et al., 2020a) and DrQ(Kostrikov et al.,
2020), are proposed to increase data diversity based on im-
age transformations. RAD indicates that simple augmenta-
tion methods such as random cropping or gray scaling will
improve the generalization ability of agents.DrQ provides
a plug-and-play data augmentation method for various RL
algorithms. Arbrarlity selected augmented method might
break semantic information in the observation, which will
mislead the agent to do the appropriate action.

Aside from domain generalization, some researchers focus
on utilizing representation learning techniques to promote
the robustness of RL agents, such as CURL(Laskin et al.,
2020b), LUSR(Xing et al., 2021), OPA(Yi et al., 2023)
and DARLA(Higgins et al., 2017). CURL aims to learn
invariant representation via augmented data. DARLA and
LUSR apply β-VAE(Burgess et al., 2018) to learn domain-
agnostic representations from several domains. However,
these methods require plenty of data from various domains
as well as neglecting the semantic information of different
parts in the observations, which will hinder the encoder
from extracting domain-agnostic representation in complex
scenarios.

Some other approaches try to construct the map between
two domains by image-to-image translation(Rao et al., 2020;
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Figure 2: Overview of Prompt-based Visual Aligner(PVA).There are two key components in our methods. Prompt Learner
fPL to obtain a learnable prompt from the input image. The visual aligner gθ will transfer the image from one domain to
another domain via the semantic information contained in the learnable prompt. Then the agent applies the transferred

image to train a robust policy. In the illustration, we use to indicate the network is frozen and represents the network
will be updated during training.

Gamrian & Goldberg, 2019; Pan et al., 2017; Lee et al.,
2022). These approaches utilize GAN(Goodfellow et al.,
2014) to generate the observation from one domain to an-
other domain. However, there exists instability in the train-
ing of GAN. It also requires data from the source domain,
which violates the zero-shot condition.

Our approach builds a generalizable image-to-image map-
ping from a small set of data collected in different domains.
Traditional image-to-image methods fail in our setting be-
cause of overfitting in such a small dataset and fail to gener-
alize on unseen domains.

Visual Language Model(VLM): VLM demonstrates great
multimodal data encoding capabilities, as its encoding re-
sult has demonstrated exceptional performance across var-
ious downstream tasks. CLIP(Radford et al., 2021) and
BLIP(Li et al., 2022) align visual embedding with text em-
bedding. Two achievements in deep learning contribute to
VLM greatly: attention-based transformer and unsupervised
contrastive learning. To obtain enough amount of data to
pretrain the VLM, a web-scale dataset containing plenty
of image-text pairs is applied. By aligning text and visual
embeddings, VLM endows the visual embedding semantic
information.

VLM consists of two parts, the text encoder ET and the
visual encoder EV , which map the texts and visual images to

latent representation respectively. The better text describing
the image, the higher cosine similarity between text and
visual embedding will be obtained.

Prompt Tuning: Prompt tuning is proposed to improve the
downstream task performance of VLM. It will be costly to
fine-tune or train a VLM from scratch. Prompt tuning, such
as CoOp(Zhou et al., 2022b), CoCoOp(Zhou et al., 2022a),
and KgCoOp(Yao et al., 2023a; Li et al., 2024; Yao et al.,
2023b), exhibits obvious improvement on various visual
downstream tasks without changing the parameters of VLM.
CoOp is the first work to treat the prompt as an optimizable
sequence of parameters. CoCoO adds the instance prompts
to enhance the generalization ability of prompts over unseen
classes. CoCoOp is proposed to improve the generalization
ability of prompts via instance prompts. Motivated by CoOp
and CoCoOp, we leverage the global and domain-specific
prompts to obtain a more accurate description of all images
in the domain and their shared attribute. Instance prompt is
added to generalize to unseen domains better as well.

3. Preliminary
Reinforcement Learning aims to learn to take actions to
maximize the cumulative rewards. The environment is for-
mulated as a Markov Decision Process (MDP) (S,A, T,R)
where S is the state space, A is the action space. T is the
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dynamic transition function and R is the reward function.

To formulate the policy transfer scenarios in reinforcement
learning, we define K training domains D1, D2, · · · , DK .
Each domain Di corresponds to an MDP (Si, Ai, Ti, Ri).
Different domains share the same action space A1 = A2 =
· · · = A but have different observation spaces.

In our approach, we sampled two datasets from the MDPs.
The first dataset Dsemantic is sampled over K training do-
mains with M images per domain to train a map from mul-
tiple domains to one unified domain which will reduce the
domain bias. The second dataset Dpolicy is generated by
sampling N images from one of the K training domains and
is used for the downstream control task. Dsemantic samples
mini-batch from multiple domains and the agent is trained
solely with one domain, which will reduce the sampling
cost.

4. Prompt-based Visual Aligner
In this work, we propose a Prompt-based Visual Aligner
(PVA) framework to train a visual aligner for zero-shot pol-
icy transfer. The visual aligner serves as an image-to-image
mapping from an arbitrary domain to a unified domain to
reduce domain bias. PVA consists of three stages. 1) Prompt
tuning: Train the prompt learner to obtain a fine-grained
description of every image, which is illustrated in Figure
2(a). The prompt learner takes an image I and outputs K
learnable prompts {P k

I , k = 1, 2, · · · ,K}. 2) Visual align-
ing: Train the visual aligner gθ which is an image-to-image
map with parameter θ to align different domains, illustrated
in Figure 2(b). gθ is optimized by aligning the visual and
prompt semantic information contained in the learnable
prompts {P k

I }. 3)Robust policy training: Train the agent
by applying transferred images converted by gθ to obtain a
robust policy against observation shifts illustrated in Figure
2(c).

In the first two stages, only a relatively small dataset contain-
ing hundreds of images from several domains is engaged.
We use CLIP as the bridge between text descriptions and
image inputs.

4.1. Prompt Tuning

Visual aligner gθ is optimized by matching the visual embed-
ding generated by VLM’s visual encoder EV and the text
embedding generated by VLM’s text encoder ET , which
will be beneficial from a precise text description. We ap-
ply prompt tuning to generate a disentangled and precise
description for each image. To fulfill this target, we sepa-
rate the prompt into different parts to depict domain-shared,
domain-specific, and instance-conditional level information
respectively. In this part, we will detail the composition of
prompts as well as how to learn each part.

4.1.1. PROMPT DESIGN

Inspired by prompt tuning techniques (Zhou et al., 2022a;b),
we utilize a sequence of learnable tokens to describe se-
mantic information in the image. The design of prompts
needs to satisfy several requirements to obtain accurate and
generalizable descriptions. 1) The prompt has to contain
the global semantic information shared across different do-
mains, which depicts the attribute of the task. 2) The prompt
has to contain domain-specific information to distinguish
various domains. It describes the discrepancy between do-
mains that we want to neglect during training the agent. 3)
The prompt should be able to distinguish instances within
the same domain, which describe essential information for
the downstream control and should be kept by gθ.

Corresponding to these requirements, we design an effec-
tive domain-adaptive instance-conditional prompt, which
contains different sections to fulfill these objects:

P k
I = [P 1

F ][PC ][P
k
S ][PG][P

2
F ], (1)

k = 1, 2, · · · ,K, where P k
I implies the k-th prompt gener-

ated by Image I , and P 1
F , P

2
F are fixed templates such as

”Driving the car on” and ”the day.”.

Three learnable components are involved in P k
I . The global

prompt PG = [v1g ][v
2
g ] · · · [vLG

g ] is shared across different
domains, which represents knowledge of the whole task.
The domain-specific prompt P k

S = [vk,1s ][vk,2s ] · · · [vk,LS
s ]

represents specific knowledge of each domain. K
domain-specific prompts correspond to K training do-
mains contained in Dsemantic. To distinguish differ-
ent images within the same domain, we use a neu-
ral network hϕ to learn instance-conditional prompt
PC = hϕ(I) = [v1C ][v

2
C ] · · · [v

LC

C ], where ϕ is the param-
eter of the neural network. PG ∈ RLG×d, PS ∈ RK×LS×d

are optimizable parameters while PC is extracted by the
neural network hϕ. For K prompts P 1

I , P
2
I , · · · , PK

I gener-
ated by Image I , they share the same global prompts as well
as the instance conditional prompts and differ in domain-
specific prompts.

4.1.2. TUNING THE LEARNABLE PARTS OF PROMPT

The prompts are optimized separately: 1) Tune the
domain-specific and global prompts. 2) Tune the instance-
conditional prompts. Both parts are learned by contrastive
loss.

Tune the global and domain-specific prompts: Given image
I of domain c, we aim to match the corresponding prompt
P c
I with image I contrasting to prompt P i

I , i ̸= c of other
domains. Specifically, we calculate the matching by cosine
similarity between visual embedding from visual encoder
EV and text embedding from textual encoder ET , which
will map images and prompts into the unified embedding
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space. The domain-specific and global prompts are opti-
mized by Ldomain, which is formulated in Eq (2)

Ldomain(I, c) = − log
exp (cos(EV (I),ET (P c

I ))/τd)∑K
i=1 exp (cos (EV (I),ET (P i

I )/τd)
, (2)

where τd is the temperature parameter.

Tune the instance prompts: We tune the instance-conditional
prompt by comparing the prompts generated by the images
in the same domain. Given B images I1, I2, · · · , IB in the
c-th domain from Dsemantic, their corresponding prompts
are denoted as P c

I1
, P c

I2
, · · · , P c

IB
. Matching the Ik with cor-

responding P c
Ik

will make the instance-conditional prompt
distinguish between different images within the same do-
main. The instance-conditional loss Lins is formulated in
Eq (3)

Lins(Ik) = − log
exp (cos(EV (Ik),ET (P c

Ik
))/τins)∑B

i=1 exp (cos (EV (Ii),ET (P c
Ii
)/τins)

, (3)

where τins is the temperature parameter. In Lins the B
prompts {P c

Ii
, i = 1, · · · , B} are generated by B images

while in Ldomain the K prompts {P j
I , j = 1, · · · ,K} are

generated by a single image, which is different. The dif-
ference of P c

I1
, P c

I2
, · · · , P c

IB
lies in their instance-specific

prompts.

Two loss functions are optimized independently. When opti-
mizing Ldomain, the instance prompt learner hθ is frozen.
When optimizing Lins, we do not change the parameters
PS and PG as well. This will prevent specific parts of the
prompt from containing semantic information that the other
parts are intended to represent.

4.2. Visual Alignment

With the tuned prompts obtained in the first stage, we train a
prompt-based visual aligner gθ to align the domain-specific
information, where θ is the parameter. gθ takes an image I
as the input and maps it to a pre-selected domain u, which
is denoted as

I ′ = gθ(I). (4)

Although lacking paired images to train the image-to-image
map, we can obtain the prompt descriptions Pu

I of the de-
sired output image I ′.

Pu
I = [P 1

F ][PC ][P
u
S ][PG][P

2
F ]. (5)

Pu
I consists of the domain-specific prompt of domain u and

maintain the instance-conditional and global description
of I . Thus, gθ can be optimized by matching the visual
embedding of I ′ and prompt description given by EV and
ET .

Aside from matching the global visual semantic information
with the prompt Pu

I , we also want the local features of
the output image to match the text description. Moreover,

VGG context is applied to keep semantic information stable
through the alignment as well. Thus, the total loss of the
visual aligner consists of global match loss, patch match
loss and feature loss.

Global match loss: Given the input image I and its K
prompts generated by the prompt learner, we aim to match
gθ(I) and Pu

I . The global loss Lglobal(I) is formulated in
Eq (6)

Lglobal(I) = 1− ET (P
u
I )) · EV (I

′)

∥ ET (Pu
I ) ∥ · ∥ EV (I ′) ∥

, (6)

where gθ is the visual aligner network with the parameter θ.

Patch match loss: We utilize the random crop in I ′ to
divide the image into patches and rotate them with a random
angle. Then we calculate the cosine-similarity loss in M
small patches I ′i, i = 1, 2, · · · ,M to match the prompt Pu

I .

Lpatch(I
′) =

M∑
i=1

Li
patch(I

′)

=

M∑
i=1

1− ET (P
u
I )) · EV (I

′
i)

∥ ET (Pu
I ) ∥ · ∥ EV (I ′i) ∥

.

(7)

M is the number of patches.

Threshold rejection: The semantic information is not
evenly distributed in the image. Some patches in the image
are difficult to match with the text embedding because of
the lack of semantic information. To solve this problem, we
refer to the threshold rejection technique(Patashnik et al.,
2021; Kwon & Ye, 2022), which will discard the patches
whose visual embeddings are far from the text embedding.
With a threshold τpatch, the patch loss is formulated as

Li
patch(I

′, τpatch) = max(0, Li
patch − τpatch). (8)

Feature Loss: We leverage the feature extracted by a pre-
trained VGG to calculate the content loss Lfeature by calcu-
lating the mean-square error between features extracted by
the VGG(Simonyan & Zisserman, 2014) pretrained base on
ImageNet(Deng et al., 2009). The Lfeature is formulated
as

Lfeature(I) =∥ V GG(I)− V GG(I ′) ∥ . (9)

Total Loss: Total Loss is the weighted average of
Global match loss,Patch match loss, and Feature Loss

Ltotal = Lglobal+λpatchLpatch+λfeatureLfeature. (10)

4.3. Robust Policy Training

To verify our methods, we design a vision-based con-
trol task, which is trained by Promxial Policy Optimiza-
tion(PPO(Schulman et al., 2017)). To reduce the number
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(a) ClearNoon (b) HardRainNoon

(c) WetCloudySunset (d) SoftRainSunset

Figure 3: Illustration of different domains. ClearNoon and
HardRainNoon are used to tune the prompt and train the
visual aligner. We validate the agent’s performance on Wet-
CloudySunset, ClearSunset, and SoftRainSunset, which do
not appear in the training stage.

of interactions with the environment, we pretrain a feature
extractor to obtain a compressed representation from the
image by adapting the idea of auto-encoder(Wang et al.,
2016). We pretrain a feature extractor based on Dpolicy by
sending the image to visual aligner gθ. A policy head is
trained with PPO with the pretrained feature.

5. Experiment
5.1. Setup

In this section, we will deliver the details of the exper-
iments to validate the agent’s generalization ability in
CARLA(Dosovitskiy et al., 2017). CARLA is an au-
tonomous driving simulation engine that provides several
maps including urban and suburban areas under different
weather conditions and is used to test the adaptation per-
formance of the autonomous driving agent. CARLA also
provides generic sensors such as the RGB camera and Radar
to generate multi-modal sensational input like the point
cloud and BEV image. We use the RGB image captured
by a camera fixed on the top of the vehicle to train an au-
tonomous driving agent and validate its performance under
different weather conditions Various weather conditions are
illustrated in Figure 3.

We build a reinforcement environment based on the CARLA
simulator. The observation space consists of two parts: an
image captured by the RGB camera fixed on the car and
the current velocity of the vehicle. Action space is a three-
dimensional vector, two dimensions control the direction of
the car and the other dimension corresponds with the car’s
acceleration. We have to control the vehicle from the start
point to the destination. The environment will terminate
when encountering one of the following termination condi-
tions 1) The car has arrived at the destination. 2) The car
collapses with other objects. 3) The driving time exceeds
the time limit. 4) The car crosses the lane line. A negative
punishment will be given if events 2), 3), and 4) occur and
a positive reward will be given if the car arrives at the des-
tination before the time limit. We also want the vehicle to
arrive at the destination as quickly as possible. For this rea-
son, a constant negative reward will be given for every step.
Each domain represents a specific type of weather, which
is controlled by a set of parameters, including cloudiness,
precipitation, sun altitude angle, and sun azimuth angle.

5.2. Design of the model and details of training

Design of the Instance Prompt Learner hϕ: Instance
Prompt Learner hθ generates a sequence of learnable tokens
directly from the image. hθ consists of a ResNet19(He
et al., 2016) and LC MLP heads. The heads take the feature
extracted by ResNet as the input and convert it into LC

instance tokens.

Design of the Visual Aliger fθ: We apply
UNet(Ronneberger et al., 2015) as the visual aligner,
UNet is composed of an encoder and a decoder and has a
symmetric structure. The encoder extracts features from the
raw image by a CNN layer with 3× 3 kernel. Pooling and
Skip-connection are also applied in the encoder to reduce
the dimension of features and fuse different layers. The
decoder will recover the resolution from the feature map via
upsampling. We constrain the UNet by aligning the visual
representation of the transferred image with the tuned text
presentation corresponding to a specific domain.

Details of training: With the help of the pretrained CLIP,
A small dataset collected in various domains is applied in
prompt tuning and visual alignment. In the experiment,
we sample only 100 images from 2 different domains to
extract semantic information and build the visual aligner.
The length of global, domain-specific, and instance prompts
are 10, 5, and 10. We also applied different temperatures
and learning rates to align the learnable prompts with the
visual inputs. For general and domain-specific prompts,
the temperature and learning rate are 0.5 and 0.0004. For
instance-specific prompts, the temperature and learning rate
are 0.1 and 0.00005. The prompt tuning took 4 hours and
visual alignment took about 8 hours, both were conducted
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in A8000.

5.3. Experiment Result

In this part, we evaluate our method from two perspec-
tives. Firstly, we compare it with other state-of-the-art
representation-based methods that utilize the experimen-
tal settings described in the original article. Moreover, we
reduce the training data of these methods to assess the gen-
eralization capability of our approach.

5.3.1. COMPARISON WITH EXISTING METHODS

We compared our method with representation-based meth-
ods, such as LUSR(Xing et al., 2021), CURL(Laskin et al.,
2020b), and DARLA(Higgins et al., 2017). These meth-
ods require data from various domains to pretrain a feature
extractor and obtain a latent domain-shared representation
of the visual inputs. The agent derives corresponding ac-
tions from the pretrained latent features. These methods
aim to extract the domain-agnostic representation across
different domains which can generalize to unseen domains.
There are also several approaches that train an image-to-
image translator, such as CycleGAN-RL(Rao et al., 2020),
AdaIN(Huang & Belongie, 2017), pix2pix(Isola et al.,
2017), and UNIT4RL(Gamrian & Goldberg, 2019). These
approaches transform images from the source domain to the
target domain.

The performance is illustrated in Table 1. Our method ex-
ceeds other approaches on unseen domains. Our method
utilizes fewer images from multiple domains than other ap-
proaches illustrated in Table 1. LUSR separates the latent
representation into domain-agnostic and domain-specific
parts and could generalize well on seen domains. DARLA
utilizes β−VAE to learn a domain-agostic representation by
adapting β. CURL uses data augmentation and contrastive
learning to learn the adaptable representation. We apply
random crop and grayscale to create positive pairs. From
the experiment results, we observe there exists performance
degradation in the unseen domain. For image-translation
approaches, we find it could only handle the adaptation
between two domains. Our approaches achieve higher gen-
eralization performance by alleviating the domain bias with
less requirement for cross-domain images. In the baseline
setting, we sampled 10000 images per domain to learn a
cross-domain invariant representation or the image transla-
tor.

We illustrate the inputs of RL agent, which is a latent rep-
resentation compressed from the raw image. Data aug-
mentation and representation-based methods suffer from
distribution shifts between seen and unseen domains. Our
approach mitigates the domain bias and maps all domains
into a unified distribution.

(a) LUSR (b) CURL

(c) DARLA (d) PVA

ClearNoon HardRainNoon ClearSunset WetCloudySunset SoftRainSunset

Figure 4: Visualization distributions of different domains’
latent embeddings, which serve as the input of the RL agent.
Different colors are used to represent various domains re-
spectively. We observe our approach alleviates the domain
bias between domains, which makes the agent generalize
under detrimental observation differences.

method ClearNoon ClearSunset

CURL 1227.4 199.5
AdaIN 1420.8 313.9

PVA(ours) 2004.6 1825.9

Table 2: Compared with other approaches with the same
quantity of images.

5.3.2. COMPARISION WITH OTHER BASELINES WITH
THE SAME NUMBER OF IMAGES IN TRAINING

This experiment is conducted in order to verify baseline per-
formances under limited access to various domains. Table 2
shows the performance of baselines and our approach under
the same amount of images used in the training stage. We
applied 100 images from ClearNoon and HardRainNoon
for all baselines illustrated in Table 2. For CURL, we apply
contrastive learning to learn a representation from these im-
ages. In AdaIN, the small dataset is used to train an image
translator between two domains. our approach outperforms
both two baselines under this situation, which indicates the
representation-baseline approaches fail to learn the general-
izable latent features and the image-to-image method could
not generalize to the third domain under limited access to
cross-domain data.

5.4. Ablation studies

Ablation study of different components of the prompt:
In this part, we conduct experiments to show the necessity

7
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method seen domains unseen domains

ClearNoon HardRainNoon ClearSunset WetCloudySunset SoftRainSunset

LUSR 1997.4 775.6 2079.0 582.8 533.8
DARLA 1207.2 1257.4 450.3 162.5 1060.3
CURL 1508.1 1308.4 801. 998.5 1046.

UNIT4RL 1636.4 322.7 298.1 239.8 383.5
CycleGAN 1981.9 1528.8 277.0 637.4 657.1

pix2pix 1821.7 520.5 157.5 420.9 662.9
AdaIN 1829.6 285.8 499.9 101.7 245.3

PVA(ours) 2004.6 1825.9 2178.4 1775.65 1789.2

Table 1: Domain Generalization Performance of PVA and other benchmarks in CARLA simulation task. ClearNoon and
HardRainNoon is included in seen domains. The policy is trained in ClearNoon.

prompt seen domains unseen domains

ClearNoon HardRainNoon ClearSunset WetCloudySunset SoftRainSunset

fixed sentence 1559.4 118.63 102.6 1141.6 856.72
[v1s ] · · · [vLS

s ][v1C ] · · · [v
LC

C ] 1157.1 1120.7 716.0 1049.2 592.7
[v1g ] · · · [vLG

g ][v1C ] · · · [v
LC

C ] 1361.3 1425.48 852.6 1330.1 1055.2
[v1g ] · · · [vLG

g ][v1s ] · · · [vLS
s ] 952.6 110.62 305.6 613.0 283.0

[v1g ] · · · [vLG
g ][v1s ] · · · [vLS

s ] [v1C ] · · · [v
LC

C ] 2004.6 1825.9 2178.4 1775.7 1789.2

Table 3: Ablation study of prompt structure. We observe the prompt tuning in stage 1 is effective in improving the
generalization ability of the RL agent by replacing the tuned prompts with a fixed template.

method Lglobal Lpatch Lfeature
seen domains unseen domains

ClearNoon HardRainNoon ClearSunset WetCloudySunset

with all loss function ✓ ✓ ✓ 2004.6 1825.9 2178.4 1775.6
without feature loss ✓ ✓ × 1175.0 147.7 111.4 83.9
without patch loss ✓ × ✓ 1420.8 1455.8 313.9 993.8
without global loss × ✓ ✓ 1533.4 1480.5 993.8 708.1

Table 4: Ablation study of Ltotal. We observe Lfeature is crucial for adapting in HardRainNoon because it provide enough
details during the transfer. Lglobal and Lpatch are important for zero-shot adaptation on unseen domains.

of each component in our methods,. The results are illus-
trated in Table 3. We find that both three components of
prompts are beneficial for the adaptation performance. Ta-
ble 3 illustrates the influence of different prompts, where the
last line corresponds with the default settings. In the table,
we apply green, blue, and red tokens to represent global,
domain-specific, and instance-level prompts. The first line
illustrates the performance without prompt tuning, where a
fixed sentence is directly provided in the second stage. In
the middle three lines, we remove each part separately and
find that the domain-specific prompt has the most influential
impact on the final results.

Ablation study of loss function in Ltotal. In this part,
we discuss the influence of different components in Ltotal

when training the visual aligner fθ. The result is illustrated
in Table 4 . In the last three lines, we find that removal of the
feature loss will influence the generalization performance
dramatically and removals of our two loss functions will

bring detrimental impacts on unseened domains.

6. Conclusion
We propose a visual alignment framework to enhance the
generalization ability of reinforcement learning agents by
training a visual aligner, which aligns the multi-domain im-
ages. With the help of explicit semantic constraints, our
approach achieves an excellent zero-shot domain general-
ization performance. Our method utilizes a sequence of
learnable tokens to represent the semantic information in
observations and tunes them with a pretrained VLM by
aligning the visual and textual representations. Experiments
conducted on a visual autonomous driving task show our ap-
proach has a better generalization performance over unseen
domains with less access to cross-domain data.
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A. Additional Experiment result
We visualize the visual alignment results and compare it with our image translation approaches, such as CycleGAN(Rao
et al., 2020) and adain(Huang & Belongie, 2017). CycleGAN is widely used to translate between two domains, which
utilizes a generator to transfer the source domain image to the target domain. AdaIn utilizes instance normalization to
transfer styles of images.

(a) original input images in dif-
ferent illumination conditions

(b) image trans results of the
adain(Huang & Belongie, 2017)

(c) image trans results of the
unit(Gamrian & Goldberg, 2019)

(d) image transfer results of our
approach

Figure 5: Compare the visual transfer results of our methods with other image-to-image approaches. The images generated
by our method is illustrated in the leftmost sub-figure. You can identify the road line from the transferred images, which is
essential for the control task.

From the visualization result illustrated in Figure 5, we observe our method keeps the details within the image unchanged
and decreases the difference in the original input images. The images generated by AdaIN and CycleGAN contain blurring
and confusion.

B. Effects of prompt length
The learnable parts of the prompt consist of global, domain-specific, and instance parts. We conduct experiments to verify
the influence of each part length. The default setting is LG = 10, LS = 5, LC = 10, which represents the length of global
prompts, domain-specific prompts, and instance-conditional prompts. We illustrate the experiment result in the following
tables. In Table 6, Table 7, and Table 8, we show the influence of instance-conditional, global, and domain-specific prompts
length.

For the instance-conditional prompt PC , experiments indicate that too short instance-conditional prompts will make the
prompts insufficient to describe the semantic information in the image and will cause the RL algorithm to fail in transferred
images.

For the global prompt shared by all domains PG, we also observe similar phenomena. However, this does not mean
the longer the prompt, the better the performance of the agent. From Table 8, we observe that when LS exceeds 5, the
performance actually degrades. The possible reason might result from the difficulty of optimizing overly long prompts.

We illustrate the image transfer results under different settings in prompt lengths in Figure 8, Figure 9, and Figure 10. From
these figures, we find improving the prompt length will mitigate distortion in aligned images.
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C. Details of the environment
In this section, we will discuss the details of the environment, including its observation, action, and reward function. The
observation is a 512×512 size image captured by an RGB camera fixed on the top of the car facing forward. The action
space is a two-dimension vector (acc, steer), where acc ∈ (−3, 3) controls the acceleration of the vehicle moving forward
or backward and steer ∈ (−0.3, 0.3) controls the amplitude of the vehicle’s left and right turning.

The reward function is the weighted average of the following items.

• The speed of the vehicle v. We want to arrive at the destination as fast as possible

• A negative reward col will be given when a collision event happens.

• A negative reward out will be given when the vehicle moves outside the lane.

• A negative reward rconst = −0.1 will be given every step

The reward function R is formulated as

R = λv × v + λcol × col + λout × out+ rconst (11)

In the experiments, we select λv = 1, λcol = λout = 100

D. Validation of our approach in other reinforcement learning tasks
We validate the effectiveness of our framework in other visual-based reinforcement learning task, such as mujoco. We alter
the background to change the domain context. We validate our approach in three mujoco tasks(cartpole-balance/cheetah-

(a) bear (b) bike (c) bmx (d) boat

Figure 6: Different Background of the mujoco task.

run/point-mass) and compare it with CURL. The experiment result indicates our framework outperforms other baseline.

Method task name domain name

HardRainNoon ClearSunset WetCloudySunset SoftRainSunset

PVA cartpole-balance 967.8 914.2 919.7 968.8
CURL cartpole-balance 529.8 424.5 429.9 386.6
PVA cheetah-run 212.9 207.7 214.0 216.5

CURL cheetah-run 178.2 166.7 161.2 164.1
PVA point-mass 855.2 849.1 848.7 842.9

CURL point-mass 279.3 157.3 186.2 169.5

Table 5: Performance of our approach in mujoco tasks.
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E. Additional experiment result to prove that different parts within the prompt are related to
various

In this part, we conduct experiments to demonstrate the correlation between different parts of prompts and visual semantic
information. In detail, in order to show the relevance of a given prompt and the corresponding image in the pixel level, we
calculate the CLIP score between the prompt and whole image. Then we back propagate the clip score to the original image
and obtain gradient with the same size of the input image, which reflect the contribution of each pixel for the semantic
matching. In other words, a small disturbance in the patches with high gradient will impact the semantic matching score
dramatically. The visualization results is illustrated in following images.

In the Figure 7, we visualize the gradcam gradient map between domain-agnostic/domain-specific prompts and input
images(as illustrated in 7(b) and 7(c)). Here is an intriguing finding from GradCAM images. According to Figure 7(c),
the hot-spot of GradCAM images locates at sky in domain ClearNoon and ClearNight. However, the case is different in
domain HardRainNoon, where the hot-spot locates at road. By comparing the original image, we find a reflection caused by
standing water on the road in the image, which contains domain-related information(weather). As for the domain-agnostic
information, the hot-spot area locates at the car, which indicates this part is related to the position and pose of the vehicle.

LC
seen domains unseen domains

ClearNoon HardRainNoon ClearSunset WetCloudySunset SoftRainSunset

1 240.4 210.5 24.4 219.5 214.0
3 1829.9 2122.6 1676.0 2104.1 1977.6
7 1929.3 2180.1 1913.1 1524.2 2065.2
10 2004.6 1825.9 2178.4 1775.65 1789.2

Table 6: Fix LG = 10, LS = 5 and change the length of instance-conditional prompts.

LG
seen domains unseen domains

ClearNoon HardRainNoon ClearSunset WetCloudySunset SoftRainSunset

1 1435.4 1887.7 1677.3 1526.5 1556.6
3 733.4 859.8 809.4 78.04 199.63
7 1797.6 1805.0 560.8 1384.84 1418.5
10 2004.6 1825.9 2178.4 1775.65 1789.2

Table 7: Fix LC = 10, LS = 5 and change the length of global prompts.

LS
seen domains unseen domains

ClearNoon HardRainNoon ClearSunset WetCloudySunset SoftRainSunset

1 1224.37 90.6 73.9 91.5 91.4
3 1322.9 1206.2 826.3 1734.0 1386.1
7 1420.8 1533.4 1480.5 1468.8 1654.9
5 2004.6 1825.9 2178.4 1775.65 1789.2

Table 8: Fix LC = 10, LG = 10 and change the length of domain specific prompts.
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(a) original image of different do-
mains(HardRainNoon, ClearNight and
ClearNoon)

(b) gradcam gradient figure between
domain-agnostic prompt and original im-
age

(c) gradcam gradient figure between
domain-aware prompt and original image

Figure 7: GradCAM visualization result.
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(a) The length of instance prompts is 1.

(b) The length of instance prompt is 7.

Figure 8: Visual transfer result of different instance prompt length

(a) The length of domain-specific prompts is 1.

(b) The length of domain-specific prompt is 7.

Figure 9: Visual transfer result of different domain-specific prompt length

(a) The length of global prompts is 1.

(b) The length of global prompt is 10.

Figure 10: Visual transfer result of different global prompt length
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