
A Regularizing Optimal Transport with f -Divergences

Name f(v) f⇤(v) f⇤0 Dom(f⇤(v))

Kullback-Leibler v log(v) exp(v � 1) exp(v � 1) v 2 R
Reverse KL � log(v) log(� 1

v
)� 1 � 1

v
v < 0

Pearson �2 (v � 1)2 v
2

4 + v v

2 + 1 v 2 R
Squared Hellinger (

p
v � 1)2 v

1�v
(1� v)�2 v < 1

Jensen-Shannon �(v + 1) log( 1+v

2 ) + v log v e
x

2�ex
2x

ex�2 + x� log(2� ex) v < log(2)

GAN v log(v)� (v + 1) log(v + 1) �v � log(e�v � 1) (e�y � 1)�1 v < 0

Table 3: A list of f -Divergences, their Fenchel-Legendre conjugates, and the derivative of their
conjugates. These functions determine the corresponding dual regularizers H⇤

f
(v) and compatibility

functions Mf (v). We take definitions of each divergence from [21]. Note that there are many
equivalent formulations as each f(v) is defined only up to additive c(t� 1), c 2 R, and the resulting
optimization problems are defined only up to shifting and scaling the objective.

Here are some general properties of f -Divergences which are also used in Section B. We provide
examples of f -Divergences in Table 3. The specific forms of H⇤

f
(v) and Mf (v) are determined

by f(v), f⇤(v), and f⇤0(v), which can in turn be used to formulate Algorithms 1 and 2 for each
divergence.
Definition A.1 (f -Divergences). Let f : R ! R be convex with f(1) = 0 and let p, q be probability
measures such that p is absolutely continuous with respect to q. The corresponding f -Divergence is
defined Df (p||q) = Eq[f(

dp(x)
dq(x) )] where dp(x)

dq(x) is the Radon-Nikodym derivative of p w.r.t. q.

Proposition A.2 (Strong Convexity of Df ). Let X be a countable compact metric space. Fix
q 2 M+(X ) and let Pq(X ) be the set of probability measures on X that are absolutely continuous
with respect to q and which have bounded density over X . Let f : R ! R be ↵-strongly convex
with corresponding f -Divergence Df (p||q). Then, the function Hf (p) := Df (p||q) defined over
p 2 Pq(X ) is ↵-strongly convex in 1-norm: for p0, p1 2 Pq(X ),

Hf (p1) � Hf (p0) + hrpHf (p0), p1 � p0i+
↵

2
|p1 � p0|21. (2)

Proof. Define the measure pt = tp1+(1�t)p0. Then Hf satisfies the following convexity inequality
(Melbourne [20], Proposition 2).

Hf (pt)  tHf (p1) + (1� t)Hf (p0)� ↵
�
t|p1 � pt|2TV + (1� t)|p0 � pt|2TV

�

By assumption that X is countable, |p� q|TV = 1
2 |p� q|1. It follows that,

Hf (p1) � Hf (p0) +
Hf (p0 + t(p1 � p0))�Hf (p0)

t
+
↵

2

�
|p1 � pt|21 + (t�1 � 1)|p0 � pt|21

�

� Hf (p0) +
Hf (p0 + t(p1 � p0))�Hf (p0)

t
+
↵

2
|p1 � pt|21

and, taking the limit t ! 0, the inequality (2) follows.

For the purposes of solving empirical regularized optimal transport, the technical conditions of
Proposition A.2 hold. Additionally, note that ↵-strong convexity of f is sufficient but not necessary
for strong convexity of Hf . For example, entropy regularization uses fKL(v) = v log(v) which is
not strongly convex over its domain, R+, but which yields a regularizer HKL(p) = KL(p||q) that is
1-strongly convex in l1 norm when q is uniform. This follows from Pinksker’s inequality as shown
in [22]. Also, if f is ↵-strongly convex over a subinterval [a, b] of its domain, then Proposition A.2
holds under the additional assumption that a  dp(x)

dq(x) (x)  b uniformly over x 2 X .
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B Proofs

For convenience, we repeat the main assumptions and statements of theorems alongside their proofs.
First, we prove the following properties about f -divergences.
Proposition, 2.4 – Regularization with f -Divergences. Consider the empirical setting of Definition
2.1. Let f(v) : R ! R be a differentiable ↵-strongly convex function with convex conjugate f⇤(v).
Set f⇤0(v) = @vf⇤(v). Define the violation function V (x, y;', ) = '(x) +  (y)� c(x, y). Then,

1. The Df regularized primal problem K�(⇡) is �↵-strongly convex in l1 norm. With respect
to dual variables ' 2 R|X | and  2 R|Y|, the dual problem J�(', ) is concave, uncon-
strained, and 1

�↵
-strongly smooth in l1 norm. Strong duality holds: K�(⇡) � J�(', ) for

all ⇡, ',  , with equality for some triple ⇡⇤,'⇤, ⇤.

2. J�(', ) takes the form

J�(', ) = Eµ['(x)] + E�[ (y)]� Eµ⇥�[H
⇤
f
(V (x, y;', ))]

where H⇤
f
(v) = �f⇤(��1v).

3. The optimal solutions (⇡⇤,'⇤, ⇤) satisfy

⇡⇤(x, y) = Mf (V (x, y;', ))µ(x)�(y)

where Mf (x, y) = f⇤0(��1v).

Proof. By assumption that f is differentiable, K�(⇡) is continuous and differentiable with respect to
⇡ 2 M+(X ⇥ Y). By Proposition A.2, it is �↵-strongly convex in l1 norm. By the Fenchel-Moreau
theorem, K�(⇡) therefore has a unique minimizer ⇡⇤ satisfying strong duality, and by [10, Theorem
6], the dual problem is 1

�↵
-strongly smooth in l1 norm.

The primal and dual are related by the Lagrangian L(⇡,', ),

L(', ,⇡) = E⇡[c(x, y)] + �Hf (⇡) + Eµ['(x)]� E⇡['(x)] + E�['(y)]� E⇡[ (y)] (3)

which has K�(⇡) = max', L(', ,⇡) and J�(', ) = min⇡ L(', ,⇡). In the empirical setting,
⇡, µ, � may be written as finite dimensional vectors with coordinates ⇡x,y , µx, �y for x, y 2 X ⇥ Y .
Minimizing the ⇡ terms of J�,

min
⇡2M(X⇥Y)

⇢
E⇡[c(x, y)� '(x)�  (y)] + �Eµ⇥�


f

✓
d⇡(x, y)

dµ(x)d�(y)

◆��

=
X

x,y2X⇥Y
� max
⇡x,y�0

⇢
⇡x,y · ('(x) +  (y)� c(x, y))� �µx�yf

✓
⇡x,y
µx�y

◆�

=
X

x,y2X⇥Y
�h⇤

x,y
('(x) +  (y)� c(x, y))

where h⇤
x,y

is the convex conjugate of (�µx�y) · f(p/(µx�y)) w.r.t. the argument p. For general
convex f(p), it is true that [�f(p)]⇤(v) = �f⇤(��1v) [3, Chapter 3]. Applying twice,

[(�µx�y) · f(p/(µx�y))]
⇤(v) = �[(µx�y)f(p/(µx�y))]

⇤(��1v) = (�µx�y) · f⇤(v/�)

so that

min
⇡2M+(X⇥Y)

E⇡[c(x, y)� '(x)�  (y)] + �Eµ⇥�


f

✓
d⇡(x, y)

dµ(x)d�(y)

◆�

=
X

x,y2X⇥Y
µx�y�f

⇤(��1v)

=� Eµ⇥�[H
⇤
f
(V (x, y;', ))]

for H⇤
f
(v) = �f⇤(��1v). The claimed form of J�(', ) follows.
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Additionally, for general convex f(p), it is true that @vf⇤(v) = argmaxp {hv, pi � f(p)}, [3,
Chapter 3]. For '⇤,  ⇤ maximizing J�(', ), it follows by strong duality that

⇡⇤
x,y

= argmin
⇡2M+(X⇥Y)

L('⇤, ⇤,⇡)

= rV Eµ⇥�[H
⇤
f
(V (x, y;'⇤, ⇤))] = Mf (V (x, y;'⇤, ⇤))µx�y.

as claimed.

We proceed to proofs of the theorems stated in Section 4.
Assumption, 4.1 – Approximate Linearity. Let f✓(x) be a neural network and set K✓(x) =
[Jf

✓
(x)][Jf

✓
(x)]T where Jf

✓
(x) is the Jacobian of f✓(x) with respect to ✓. Let ⇥ be a set of fea-

sible weights, for example those reachable by gradient descent. Then f✓(x) must satisfy,

1. There exists R � 0 so that ⇥ ✓ B(0, R), where B(0, R) is the Euclidean ball of radius R.

2. There exist ⇢M > ⇢m > 0 such that for ✓ 2 ⇥ and for all data points {Xi}Ni=1,
⇢M � �max(K✓(Xi)) � �min(K✓(Xi)) � ⇢m > 0.

3. For ✓ 2 ⇥ and for all data points {Xi}Ni=1, the Hessian matrix D2
✓
f✓(xi) is bounded in

spectral norm:

kD2
✓
f✓(xi)k  ⇢M

Ch

where Ch � 0 depends only on R, N , and the regularization �.

The constant Ch may depend on the dataset size N , the upper bound of ⇢M for eigenvalues of the
NTK, the regularization parameter �, and it may also depend indirectly on the bound R.
Theorem, 4.2 – Optimizing Neural Nets. Suppose J�(', ) is 1

s
-strongly smooth in l1 norm. Let

'✓,  ✓ be neural networks satisfying Assumption 4.1 for the dataset {(xi, yi)}Ni=1, N = |X | · |Y|.

Then gradient descent of J�('✓, ✓) with respect to ✓ at learning rate ⌘ = �

2⇢M
converges to an

✏-approximate global maximizer of J� in at most
⇣

2R2

s

⌘
✏�1 iterations, where  = ⇢M

⇢m
.

Proof. For indices i, let S✓i = ('✓i , ✓i) so that Assumption 4.1 applies with S✓ in place of f✓.
Lemma B.1 (Smoothness). J�(S✓) is 2⇢M

s
-strongly smooth in l2 norm with respect to ✓:

J�(S✓2)  J�(S✓1) + hr✓J�(S✓1), S✓2 � S✓1i+
⇢M
�

k✓2 � ✓1k22.

Proof. It is assumed that J�(S) is ( 1
s
, l1)-strongly smooth and that K�(⇡) is (s, l1)-strongly convex.

Note that ( 1
s
, l2)-strong smoothness is weakest in the sense that it is implied via norm equivalence by

( 1
s
, lq)-strong smoothness for 2  q  1.

J�(S2)  J�(S1) + hrSJ�(S1), S2 � S1i+
1

2s
| S2 � S1 |2

q

=) J�(S2)  J�(S1) + hrSJ�(S1), S2 � S1i+
1

2s
kS2 � S1k22

A symmetric property holds for (s, l2)-strong convexity of K�(⇡) which is implied by (s, lp)-strong
convexity, 1  p  2. By Assumption 4.1,

J�(S✓2)� J�(S✓1)� hrSJ�(S✓1), S✓2 � S✓1i 
1

2s
kS✓2 � S✓1k22  ⇢M

2s
k✓2 � ✓1k22. (4)

To establish smoothness, it remains to bound hrSJ�(S✓1), S✓2 � S✓1i. Set v = rSJ�(S✓1) 2 Rn

and consider the first-order Taylor expansion in ✓ of hv, S✓i evaluated at ✓ = ✓2. Applying Lagrange’s
form of the remainder, there exists 0 < c < 1 such that

hv, S✓2i = hv, S✓1i+ hv, JS

✓
(S✓2 � S✓1)i

+
1

2

nX

i=1

vi(✓2 � ✓1)
T [D2

✓
(S✓1(xi) + c(S✓2(xi)� S✓1(xi)))](✓2 � ✓1)
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and so by Cauchy-Schwartz,

hv, S✓2 � S✓1i  hv, JS

✓
(S✓2 � S✓1)i+

kD2
✓
k

2

p
Nkvk2k✓2 � ✓1k22  ⇢M

2s
k✓2 � ✓1k22.

The final inequality follows by taking Ch � �
p
N supv kvk2. This supremum is bounded by

assumption that ⇥ ✓ B(0, R). Plugging in v = rSJ�(S✓1), we have

hrSJ�(S✓1), S✓2 � S✓1i  hrSJ�(S✓1), J
S

✓
(S✓2 � S✓1)i+

⇢M
2s

k✓2 � ✓1k22

= hr✓J�(S✓1), ✓2 � ✓1i+
⇢M
2s

k✓2 � ✓1k22.

Returning to (4), we have

J�(S✓2)� J�(S✓1)  hr✓J�(S✓1), ✓2 � ✓1i+
⇢M
s

k✓2 � ✓1k22.

from which Lemma B.1 follows.

Lemma B.2 (Gradient Descent). Gradient descent over the parameters ✓ with learning rate ⌘ = s

2⇢M

converges in T iterations to parameters ✓t satisfying J�(S✓t)�J�(S⇤) 
⇣

2R2

s

⌘
1
T

where  = ⇢M

⇢m

is the condition number.

Proof. Fix ✓0 and set ✓t+1 = ✓t � ⌘r✓J�(S✓). The step size ⌘ is chosen so that by Lemma B.1,
J�(St)� J�(St+1) � s

2⇢M
kr✓J�(S✓t)k22.

By convexity, J�(S⇤) � J�(S✓t) + hrSJ�(S✓t), S
⇤ � S✓ti, so that

kr✓J�(S✓t)k22 � ⇢mkrSJ�(S✓t)k22 � (J�(S✓t)� J�(S
⇤))2

✓
⇢m

kS✓t � S⇤k22

◆
.

Setting �t = J�(S✓t) � J�(S⇤), this implies �t � �t+1 +�2
t

⇣
s⇢m

2⇢MkS✓t�S⇤k2
2

⌘
and thus �t 

h
T
⇣

s⇢m

2⇢MkS✓t�S⇤k2
2

⌘i�1
. The claim follows from kS✓t � S⇤k2 < R.

Theorem 4.2 follows immediately from Lemmas B.1 and B.2.

Theorem, 4.3 – Stability of Regularized OT Problem. Suppose K�(⇡) is s-strongly convex in l1
norm and let L(', ,⇡) be the Lagrangian of the regularized optimal transport problem. For '̂,  ̂
which are ✏-approximate maximizers of J�(', ), the pseudo-plan ⇡̂ = Mf (V (x, y; '̂,  ̂))µ(x)�(y)
satisfies

|⇡̂ � ⇡⇤|1 
r

2✏

s
 1

s

���r⇡̂L('̂,  ̂, ⇡̂)
���
1
.

Proof. For indices i, denote by Si the tuple ('i, i,⇡i). The regularized optimal transport problem
has Lagrangian L(', ,⇡) given by

L(', ,⇡) = E⇡[c(x, y)] + �Hf (⇡) + Eµ['(x)]� E⇡['(x)] + E�['(y)]� E⇡[ (y)]
Because L(', ,⇡) is a sum of K�(⇡) and linear terms, the Lagrangian inherits s-strong convexity
w.r.t. the argument ⇡:

L(S2) � L(S1) + hrL(S1), S2 � S1i+
s

2
|⇡2 � ⇡1|21.

Letting S⇤ = ('⇤, ⇤,⇡⇤) be the optimal solution and Ŝ = ('̂,  ̂, ⇡̂) be an ✏-approximation, it
follows that

✏ � L(Ŝ)� L(S⇤) � s

2
|⇡̂ � ⇡⇤|21 =) |⇡̂ � ⇡⇤| 

r
2✏

s
. (5)

Additionally, note that strong convexity implies a Polyak-Łojasiewicz (PL) inequality w.r.t. ⇡̂.

s
⇣
L(Ŝ)� L(S⇤)

⌘
 1

2
|r⇡L(Ŝ)|21. (6)

The second inequality follows from (5) and the PL inequality (6).
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B.1 Statistical Estimation of Sinkhorn Plans

We consider consider estimating an entropy regularized OT plan when Y = X . Let µ̂, �̂ be empirical
distributions generated by drawing n � 1 i.i.d. samples from µ, � respectively. Let ⇡�

n
be the

Sinkhorn plan between µ̂ and �̂ at regularization �, and let D := diam(X ). For simplicity, we also
assume that µ and � are sub-Gaussian. We also assume that n is fixed. Under these assumptions, we
will show that W1(⇡�n,⇡

�) . n�1/2.

The following result follows from Proposition E.4 and E.5 of of Luise et al. [18] and will be useful in
deriving the statistical error between ⇡�

n
and ⇡�. This result characterizes fast statistical convergence

of the Sinkhorn potentials as long as the cost is sufficiently smooth.
Proposition B.3. Suppose that c 2 Cs+1(X ⇥X ). Then, for any µ,� probability measures supported
on X , with probability at least 1� ⌧ ,

kv � vnk1, ku� unk1 . �e3D/� log 1/⌧p
n

,

where (u, v) are the Sinkhorn potentials for µ,� and (un, vn) are the Sinkhorn potentials for µ̂, �̂.

Let ⇡�
n
= Mnµn�n and ⇡� = Mµ�, We recall that

M(x, y) =
1

e
exp

✓
1

�
('(x) +  (y)� c(x, y))

◆
,

Mn(x, y) =
1

e
exp

✓
1

�
('n(x) +  n(y)� c(x, y))

◆
,

We note that M and Mn are uniformly bounded by e3D/� [18] and M inherits smoothness properties
from ',  , and c.

We can write (for some optimal, bounded, 1-Lipschitz fn)

W1(⇡
�

n
,⇡�) = |

Z
fn⇡

�

n
�
Z

fn⇡
�|

 |
Z

fn(Hn �H)µn�n|+ |
Z

fnH(µn�n � µ�)|

 |fn|1|Hn �H|1 + |
Z

fnH(µn�n � µ�)|. (7)

If µ and � are �2 subGaussian, then we can bound the second term with high probability:

P

0

@| 1
n2

X

i

X

j

fn(Xi, Yj)H(Xi, Yj)� Eµ⇥�fn(X,Y )H(X,Y )| > t

1

A < e
�n

2 t2

2�2 .

Setting t =
p
2 log(�)�/n in this expression, we get that w.p. at least 1� �,

| 1
n2

X

i

X

j

fn(Xi, Yj)H(Xi, Yj)� Eµ⇥�fn(X,Y )H(X,Y )| <
p
2� log �

n
.

Now to bound the first term in (7), we use the fact that fn is 1-Lipschitz and bounded by D. For
the optimal potentials ' and  in the original Sinkhorn problem for µ and �, we use the result of
Proposition B.3 to yield

|Hn(x, y)�H(x, y)| =
����
1

e
exp

✓
1

�
('n(x) +  n(y)� c(x, y))

◆
� 1

e
exp

✓
1

�
('(x) +  (y)� c(x, y))

◆����

=
1

e

����exp
✓
1

�
('(x) +  (y)� c(x, y))

◆✓
1� exp

✓
'(x)� 'n(x)

�

◆
exp

✓
 (y)�  n(y)

�
)

◆◆����

. e3D/�|1� e
2

�
p

n |

. e3D/�

�
p
n
.
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Thus, putting this all together,

W1(⇡
�

n
,⇡�) . Dp

n
+

1

n
.

Interestingly, the rate of estimation of the Sinkhorn plan breaks the curse of dimensionality. It must
be noted, however, that the exponential dependence of Proposition B.3 on ��1 implies we can only
attain these fast rates in appropriately large regularization regimes.

B.2 Log-concavity of Sinkhorn Factor

The optimal entropy regularized Sinkhorn plan is given by

⇡⇤(x, y) =
1

e
exp

✓
1

�
('⇤(x) +  ⇤(y)� c(x, y))

◆
µ(x)�(y).

This implies that the conditional Sinkhorn density of Y |X is

⇡⇤(y|x) = 1

e
exp

✓
1

�
('⇤(x) +  ⇤(y)� c(x, y))

◆
�(y).

The optimal potentials satisfy fixed point equations. In particular,

 ⇤(y) = �� log
Z

exp


� 1

�
(c(x, y)� '⇤(x))

�
dµ(x).

Using this result, one can prove the following lemma.
Lemma B.4 ([1]). For the cost kx� yk2, the map

h(y) = exp

✓
1

�

�
'⇤(x) +  ⇤(y)� kx� yk2

�◆

is log-concave.

Proof. The proof comes by differentiating the map. We calculate the gradient,

r log h(y) = �2
y � x

�
+

2

�

R
exp

⇥
� 1
�

�
kx� yk2 � '⇤(x)

�⇤
(y � x)dµ(x)R

exp
⇥
� 1
�
(kx� yk2 � '⇤(x))

⇤
dµ(x)

and the Hessian,

r2 log h(y) = �2
I

�

+
4

�2

R
exp

⇥
� 1
�

�
kx� yk2 � '⇤(x)

�⇤
(y � x)dµ(x)

R
exp

⇥
� 1
�

�
kx� yk2 � '⇤(x)

�⇤
(y � x)>dµ(x)

(
R
exp

⇥
� 1
�
(kx� yk2 � '⇤(x))

⇤
dµ(x))2

� 4

�2

R
exp

⇥
� 1
�

�
kx� yk2 � '⇤(x)

�⇤
(y � x)(y � x)>dµ(x)R

exp
⇥
� 1
�
(kx� yk2 � '⇤(x))

⇤
dµ(x)

+ 2I/�

R
exp

⇥
� 1
�

�
kx� yk2 � '⇤(x)

�⇤
dµ(x)R

exp
⇥
� 1
�
(kx� yk2 � '⇤(x))

⇤
dµ(x)

= � 4

�2

⇣
�

R
exp

⇥
� 1
�

�
kx� yk2 � '⇤(x)

�⇤
(y � x)dµ(x)

R
exp

⇥
� 1
�

�
kx� yk2 � '⇤(x)

�⇤
(y � x)>dµ(x)

(
R
exp

⇥
� 1
�
(kx� yk2 � '⇤(x))

⇤
dµ(x))2

+

R
exp

⇥
� 1
�

�
kx� yk2 � '⇤(x)

�⇤
(y � x)(y � x)>dµ(x)R

exp
⇥
� 1
�
(kx� yk2 � '⇤(x))

⇤
dµ(x)

⌘

In the last term, we recognize that

⇢(x) =
exp

⇥
� 1
�

�
kx� yk2 � '⇤(x)

�⇤
R
exp

⇥
� 1
�
(kx� yk2 � '⇤(x))

⇤
dµ(x)

forms a valid density with respect to µ, and thus

r2 log h(y) = � 4

�2
Cov⇢dµ(X � y)

where we take the covariance matrix of X � y with respect to the density ⇢dµ.

17



Suppose, for sake of argument, that �(y) is ↵ strongly log-concave, and the function h(y) is � strongly
log-concave. Then, ⇡Y |X=x / h(y)�(y), ↵+ � strongly log-concave. In particular, standard results
on the mixing time of the Langevin diffusion implies that the diffusion for ⇡Y |X=x mixes faster
than the diffusion for the marginal � alone. Also, as �! 0, the function h(y) concentrates around
'OT (x) +  OT (y) � kx � yk2, where 'OT and  OT are the optimal transport potentials. In
particular, if there exists an optimal transport map between µ and �, then h(y) concentrates around
the unregularized optimal transport image y = T (x).

C Experimental Details

C.1 Network Architectures

Our method integrates separate neural networks playing the roles of unconditional score estimator,
compatibility function, and barycentric projector. In our experiments each of these networks uses
one of two main architectures: a fully connected network with ReLU activations, and an image-to-
image architecture introduced by Song and Ermon [24] that is inspired by architectures for image
segmentation.

For the first network type, we write “ReLU FCN, Sigmoid output, w0 ! w1 ! . . . ! wk ! wk+1,”
for integers wi � 1, to indicate a k-hidden-layer fully connected network whose internal layers use
ReLU activations and whose output layer uses sigmoid activation. The hidden layers have dimension
w1, w2, . . . , wk and the network has input and output with dimension w0, wk+1 respectively.

For the second network type, we replicate the architectures listed in Song and Ermon [24, Appendix
B.1, Tables 2 and 3] and refer to them by name, for example “NCSN 322 px” or “NCSNv2 322 px.”

Our implementation of these experiments may be found in the supplementary code submission.

C.2 Image Sampling Parameter Sheets

MNIST $ USPS: details for qualitative transportation experiments between MNIST and USPS in
Figure 3 are given in Table 4.

CelebA, Blur-CelebA ! CelebA: we sample 642 px CelebA images. The Blur-CelebA dataset
is composed of CelebA images which are first resized to 322 px and then resized back to 642 px,
creating a blurred effect. The FID computations in Table ?? used a shared set of training parameters
given in Table 5. The sampling parameters for each FID computation are given in Table 6.

Synthetic Data: details for the synthetic data experiment shown in Figure 2 are given in Table 7.
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Problem Aspect Hyperparameters Numbers and details

Source
Dataset USPS [19]
Preprocessing None

Target
Dataset MNIST [13]
Preprocessing Nearest neighbor resize to 162 px.

Score Estimator

Architecture NCSN 322 px, applied as-is to 162 px images.
Loss Denoising Score Matching

Optimization
Adam, lr = 10�4, �1 = 0.9, �2 = 0.999.
No EMA of model parameters.

Training
40000 training iterations,
128 samples per minibatch.

Compatibility

Architecture
ReLU network with ReLU output activation,
256 ! 1024 ! 1024 ! 1

Regularization �2 Regularization, � = 0.001.
Optimization Adam, lr = 10�6, �1 = 0.9, �2 = 0.999

Training
5000 training iterations,
1000 samples per minibatch.

Barycentric
Projection

Architecture
ReLU network with sigmoid output activation,
256 ! 1024 ! 1024 ! 256.
Input pixels are scaled to [�1, 1] by x 7! 2x� 1.

Optimization Adam, lr = 10�6, �1 = 0.9, �2 = 0.999

Training
5000 training iterations,
1000 samples per minibatch.

Sampling

Annealing Schedule
7 noise levels decaying geometrically,
�0 = 0.2154, . . . ,�6 = 0.01.

Step size ✏ = 5 · 10�6

Steps per noise level T = 20

Denoising? [9] Yes
�2 SoftPlus threshold ↵ = 1000

Table 4: Data and model details for the USPS ! MNIST qualitative experiment shown in Figure 3.
For MNIST ! USPS, we use the same configuration with source and target datasets swapped.
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Problem Aspect Hyperparameters Numbers and details

Source
Dataset CelebA or Blur-CelebA [17]

Preprocessing

1402 px center crop.
If Blur-CelebA: nearest neighbor resize to 322 px.
Nearest neighbor resize to 642 px.
Horizontal flip with probability 0.5.

Target
Dataset CelebA [17]

Preprocessing
1402 px center crop.
Nearest neighbor resize to 642 px.
Horizontal flip with probability 0.5.

Score Estimator

Architecture NCSNv2 642 px.
Loss Denoising Score Matching

Optimization
Adam, lr = 10�4, �1 = 0.9, �2 = 0.999.
Parameter EMA at rate 0.999.

Training
210000 training iterations,
128 samples per minibatch.

Compatibility

Architecture
ReLU network with ReLU output activation,
3 · 642 ! 2048 ! . . . ! 2048 ! 1 (8 hidden layers).

Regularization
Varies in �2 reg., � 2 {0.1, 0.1, 0.001},
and KL reg., � 2 {0.1, 0.01, 0.005}.

Optimization Adam, lr = 10�6, �1 = 0.9, �2 = 0.999

Training
5000 training iterations,
1000 samples per minibatch.

Barycentric
Projection

Architecture NCSNv2 642 px applied as-is for image generation.
Optimization Adam, lr = 10�7, �1 = 0.9, �2 = 0.999

Training
20000 training iterations,
64 samples per minibatch.

Table 5: Training details for the CelebA, Blur-CelebA ! CelebA FID experiment (Figure 2).

Problem Noise (�1,�k) Step Size Steps Denoising? [9] �2 SoftPlus Param.
�2, � = 0.1 (9, 0.01) 15 · 10�7 k = 500 Yes ↵ = 10

�2, � = 0.01

�2, � = 0.001

KL, � = 0.1 (90, 0.1) 15 · 10�7 k = 500 Yes –
KL, � = 0.01

KL, � = 0.005 (90, 0.1) 1 · 10�7 k = 500 Yes –

Table 6: Sampling details for the CelebA, Blur-CelebA ! CelebA FID experiment (Figure 2).
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Problem Aspect Hyperparameters Numbers and details

Source
Dataset

Gaussian in R784,
Mean and covariance are that of MNIST

Preprocessing None

Target
Dataset Unit gaussian in R784.
Preprocessing None

Score Estimator Architecture None (score is given by closed form)

Compatibility

Architecture
ReLU network with ReLU output activation,
784 ! 2048 ! 2048 ! 2048 ! 2048 ! 1

Regularization KL Regularization, � 2 {1, 0.5, 0.25}.
Optimization Adam, lr = 10�6, �1 = 0.9, �2 = 0.999

Training
5000 training iterations,
1000 samples per minibatch.

Sampling

Annealing Schedule No annealing.
Step size ✏ = 5 · 10�3

Mixing steps T = 1000

Denoising? [9] Not applicable.

Table 7: Sampling and model details for the synthetic experiment shown in Figure 2.
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