
A Task Details

Task Variation Type # of Variations Avg. Keyframes Language Template

open drawer placement 3 3.0 “open the drawer”
slide block color 4 4.7 “slide the block to target”
sweep to dustpan size 2 4.6 “sweep dirt to the dustpan”
meat off grill category 2 5.0 “take the off the grill”
turn tap placement 2 2.0 “turn tap”
put in drawer placement 3 12.0 “put the item in the drawer”
close jar color 20 6.0 “close the jar”
drag stick color 20 6.0 “use the stick to drag the cube onto the target”
stack blocks color, count 60 14.6 “stack blocks”
screw bulb color 20 7.0 “screw in the light bulb”
put in safe placement 3 5.0 “put the money away in the safe on the shelf”
place wine placement 3 5.0 “stack the wine bottle to the of the rack”
put in cupboard category 9 5.0 “put the in the cupboard”
sort shape shape 5 5.0 “put the in the shape sorter”
push buttons color 50 3.8 “push the button, [then the button]”
insert peg color 20 5.0 “put the ring on the spoke”
stack cups color 20 10.0 “stack the other cups on top of the cup”
place cups count 3 11.5 “place cups on the cup holder”

Table 3. Language-Conditioned Tasks in RLBench [15].

Setup. Our simulated experiments are set in RLBench [15]. We select 18 out of 100 tasks that
involve at least two or more variations to evaluate the multi-task capabilities of agents. While PER-
ACT could be easily applied to more RLBench tasks, in our experiments, we were specifically
interested grounding diverse language instructions, rather than learning one-off policies for single-
variation tasks like “[always] take off the saucepan lid”. Some tasks were modified to include
additional variations. See Table 3 for an overview. We report average keyframes extracted from the
method described in Section 3.2.

Variations. Task variations include randomly sampled colors, sizes, shapes, counts, placements, and
categories of objects. The set of colors include 20 instances: colors = {red, maroon, lime, green,
blue, navy, yellow, cyan, magenta, silver, gray, orange, olive, purple, teal, azure,
violet, rose, black, white}. The set of sizes include 2 instances: sizes = {short, tall}. The
set of shapes include 5 instances: shapes = {cube, cylinder, triangle, star, moon}. The set of
counts include 3 instances: counts = {1, 2, 3}. The placements and object categories are specific
to each task. For instance, open drawer has 3 placement locations: top, middle, and bottom,
and put in cupboard includes 9 YCB objects. In addition to these semantic variations, objects
are placed on the tabletop at random poses. Some large objects like drawers have constrained pose
variations [15] to ensure that manipulating them is kinematically feasible with the Franka arm.

In the following sections, we describe each of 18 tasks in detail. We highlight tasks that were
modified from the original RLBench [15] codebase4 and describe what exactly was modified.

A.1 Open Drawer

Filename: open drawer.py

Task: Open one of the three drawers: top, middle, or bottom.

Modified: No.

Objects: 1 drawer.

Success Metric: The prismatic joint of the specified drawer is fully extended.

A.2 Slide Block

Filename: slide block to color target.py

Task: Slide the block on to one of the colored square targets. The target colors are limited to red,
blue, pink, and yellow.

4https://github.com/stepjam/RLBench
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Modified: Yes. The original slide block to target.py task contained only one target. Three
other targets were added to make a total of 4 variations.

Objects: 1 block and 4 colored target squares.

Success Metric: Some part of the block is inside the specified target area.

A.3 Sweep to Dustpan

Filename: sweep to dustpan of size.py

Task: Sweep the dirt particles to either the short or tall dustpan.

Modified: Yes. The original sweep to dustpan.py task contained only one dustpan. One other
dustpan was added to make a total of 2 variations.

Objects: 5 dirt particles and 2 dustpans.

Success Metric: All 5 dirt particles are inside the specified dustpan.

A.4 Meat Off Grill

Filename: meat off grill.py

Task: Take either the chicken or steak off the grill and put it on the side.

Modified: No.

Objects: 1 piece of chicken, 1 piece of steak, and 1 grill.

Success Metric: The specified meat is on the side, away from the grill.

A.5 Turn Tap

Filename: turn tap.py

Task: Turn either the left or right handle of the tap. Left and right are defined with respect to the
faucet orientation.

Modified: No.

Objects: 1 faucet with 2 handles.

Success Metric: The revolute joint of the specified handle is at least 90� off from the starting
position.

A.6 Put in Drawer

Filename: put item in drawer.py

Task: Put the block in one of the three drawers: top, middle, or bottom.

Modified: No.

Objects: 1 block and 1 drawer.

Success Metric: The block is inside the specified drawer.

A.7 Close Jar

Filename: close jar.py

Task: Put the lid on the jar with the specified color and screw the lid in. The jar colors are sampled
from the full set of 20 color instances.

Modified: No.

Objects: 1 block and 2 colored jars.

Success Metric: The lid is on top of the specified jar and the Franka gripper is not grasping anything.
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A.8 Drag Stick

Filename: reach and drag.py

Task: Grab the stick and use it to drag the cube on to the specified colored target square. The target
colors are sampled from the full set of 20 color instances.

Modified: Yes. The original reach and drag.py task contained only one target. Three other
targets were added with randomized colors.

Objects: 1 block, 1 stick, and 4 colored target squares.

Success Metric: Some part of the block is inside the specified target area.

A.9 Stack Blocks

Filename: stack blocks.py

Task: Stack N blocks of the specified color on the green platform. There are always 4 blocks of the
specified color, and 4 distractor blocks of another color. The block colors are sampled from the full
set of 20 color instances.

Modified: No.

Objects: 8 color blocks (4 are distractors), and 1 green platform.

Success Metric: N blocks are inside the area of the green platform.

A.10 Screw Bulb

Filename: light bulb in.py

Task: Pick up the light bulb from the specified holder, and screw it into the lamp stand. The colors
of holder are sampled from the full set of 20 color instances. There are always two holders in the
scene – one specified and one distractor holder.

Modified: No.

Objects: 2 light bulbs, 2 holders, and 1 lamp stand.

Success Metric: The bulb from the specified holder is inside the lamp stand dock.

A.11 Put in Safe

Filename: put money in safe.py

Task: Pick up the stack of money and put it inside the safe on the specified shelf. The shelf has
three placement locations: top, middle, bottom.

Modified: No.

Objects: 1 stack of money, and 1 safe.

Success Metric: The stack of money is on the specified shelf inside the safe.

A.12 Place Wine

Filename: place wine at rack location.py

Task: Grab the wine bottle and put it on the wooden rack at one of the three specified locations:
left, middle, right. The locations are defined with respect to the orientation of the wooden rack.

Modified: Yes. The original stack wine.py task had only one placement location. Two other
locations were added to make a total of 3 variations.

Objects: 1 wine bottle, and 1 wooden rack.

Success Metric: The wine bottle is at the specified placement location on the wooden rack.
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A.13 Put in Cupboard

Filename: put groceries in cupboard.py

Task: Grab the specified object and put it in the cupboard above. The scene always contains 9 YCB
objects that are randomly placed on the tabletop.

Modified: No.

Objects: 9 YCB objects, and 1 cupboard (that hovers in the air like magic).

Success Metric: The specified object is inside the cupboard.

A.14 Sort Shape

Filename: place shape in shape sorter.py

Task: Pick up the specified shape and place it inside the correct hole in the sorter. There are always
4 distractor shapes, and 1 correct shape in the scene.

Modified: Yes. The sizes of the shapes and sorter were enlarged so that they are distinguishable in
the RGB-D input.

Objects: 5 shapes, and 1 sorter.

Success Metric: The specified shape is inside the sorter.

A.15 Push Buttons

Filename: push buttons.py

Task: Push the colored buttons in the specified sequence. The button colors are sampled from the
full set of 20 color instances. There are always three buttons in scene.

Modified: No.

Objects: 3 buttons.

Success Metric: All the specified buttons were pressed.

A.16 Insert Peg

Filename: insert onto square peg.py

Task: Pick up the square and put it on the specified color spoke. The spoke colors are sampled from
the full set of 20 color instances.

Modified: No.

Objects: 1 square, and 1 spoke platform with three color spokes.

Success Metric: The square is on the specified spoke.

A.17 Stack Cups

Filename: stack cups.py

Task: Stack all cups on top of the specified color cup. The cup colors are sampled from the full set
of 20 color instances. The scene always contains three cups.

Modified: No.

Objects: 3 tall cups.

Success Metric: All other cups are inside the specified cup.

A.18 Place Cups

Filename: place cups.py
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Task: Place N cups on the cup holder. This is a very high precision task where the handle of the
cup has to be exactly aligned with the spoke of the cup holder for the placement to succeed.

Modified: No.

Objects: 3 cups with handles, and 1 cup holder with three spokes.

Success Metric: N cups are on the cup holder, each on a separate spoke.

B PERACT Details

In this section, we provide implementation details for PERACT. See this Colab tutorial for a PyTorch
implementation.

Input Observation. Following James et al. [14], our input voxel observation is a 1003 voxel grid
with 10 channels: R100⇥100⇥100⇥10. The grid is constructed by fusing calibrated pointclouds with
PyTorch’s scatter function5. The 10 channels are composed of: 3 RGB, 3 point, 1 occupancy,
and 3 position index values. The RGB values are normalized to a zero-mean distribution. The point
values are Cartesian coordinates in the robot’s coordinate frame. The occupancy value indicates if
a voxel is occupied or empty. The position index values represent the 3D location of the voxel with
respect to the 1003 grid. In addition to the voxel observation, the input also includes proprioception
data with 4 scalar values: gripper open, left finger joint position, right finger joint position, and
timestep (of the action sequence).

Input Language. The language goals are encoded with CLIP’s language encoder [76]. We use
CLIP’s tokenizer to preprocess the sentence, which always results in an input sequence of 77 tokens
(with zero-padding). These tokens are encoded with the language encoder to produce a sequence of
dimensions R77⇥512.

Preprocessing. The voxel grid is encoded with a 3D convolution layer with a 1 ⇥ 1 kernel to
upsample the channel dimension from 10 to 64. Similarly, the proprioception data is encoded with
a linear layer to upsample the input dimension from 4 to 64. The encoded voxel grid is split into
53 patches through a 3D convolution layer with a kernel-size and stride of 5, which results in a
patch tensor of dimensions R20⇥20⇥20⇥64. The proprioception features are tiled in 3D to match the
dimensions of the patch tensor, and concattenated along the channel to form a tensor of dimensions
R20⇥20⇥20⇥128. This tensor is flattened into a sequence of dimensions R8000⇥128. The language
features are downsampled with a linear layer from 512 to 128 dimensions, and then appended to the
tensor to form the final input sequence to the Perceiver Transformer, which of dimensions R8077⇥128.
We also add learned positional embeddings to the input sequence. These embeddings are represented
with trainable nn.Parameter(s) in PyTorch.

cross attn

cross attn

self attn

self attn

PerceiverIO Transformer

K

Input Output

Latents

K V

Q Q Q

Q

K

V

V

K V

...

Figure 6. Perceiver Transformer Architecture. Perceiver is a latent-space trans-
former. Q, K, V represent queries, keys, and values, respectively. We use 6 self-
attention layers in our implementation.

Perceiver Transformer is a latent-
space Transformer [1] that uses a
small set of latent vectors to encode
extremely long input sequences. See
Figure 6 for an illustration of this pro-
cess. Perceiver first computes cross-
attention between the input sequence
and the set of latent vectors of di-
mensions R2048⇥512. These latents
are randomly initialized and trained
end-to-end. The latents are encoded
with 6 self-attention layers, and then
cross-attended with the input to out-
put a sequence that matches the input-dimensions. This output is upsampled with a 3D convolution
layer and tri-linear upsampling to form a voxel feature grid with 64 channels: R100⇥100⇥100⇥64.
This feature grid is concatenated with the initial 64-dimensional feature grid from the processing
stage as a skip connection to the encoding layers. Finally, a 3D convolution layer with a 1⇥1 kernel

5https://pytorch.org/docs/stable/generated/torch.Tensor.scatter_.html
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downsamples the channels from 128 back to 64 dimensions. Our implementation of Perceiver is
based on an existing open-source repository6.

Decoding. For translation, the voxel feature grid is decoded with a 3D convolution layer with a 1⇥1
kernel to downsample the channel dimension from 64 to 1. This tensor is the translation Q-function
of dimensions R100⇥100⇥100⇥1. For rotation, gripper open, and collision avoidance actions, the
voxel feature grid is max-pooled along the 3D dimensions to form a vector of dimensions R1⇥64.
This vector is decoded with three independent linear layers to form the respective Q-functions for
rotation, gripper open, and collision avoidance. The rotation linear layer outputs logits of dimensions
R216 (72 bins of 5 degree increments for each of the three axes). The gripper open and collide linear
layers output logits of dimensions R2.

Our codebase is built on the ARM repository7 by James et al. [14].

C Evaluation Workflow

C.1 Simulation

Simulated experiments in Section 4.2 follow a four-phase workflow: (1) generate a dataset with
train, validation, and test sets, each containing 100, 25, and 25 demonstrations, respectively. (2)
Train an agent on the train set and save checkpoints at intervals of 10K iterations. (3) Evaluate all
saved checkpoints on the validation set, and mark the best performing checkpoint. (4) Evaluate the
best performing checkpoint on the test set. While this workflow follows a standard train-val-test
paradigm from supervised learning, it is not the most feasible workflow for real-robot settings. With
real-robots, collecting a validation set and evaluating all checkpoints could be very expensive.

C.2 Real-Robot

For real-robot experiments in Section 4.4, we simply pick the last checkpoint from training. We
check if the agent has been sufficiently trained by visualizing Q-predictions on training examples
with swapped or modified language goals. While evaluating a trained agent, the agent keeps acting
until a human user stops the execution. We also visualize the Q-predictions live to ensure that the
agent’s upcoming action is safe to execute.

6https://github.com/lucidrains/perceiver-pytorch
7https://github.com/stepjam/ARM
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D Robot Setup

D.1 Simulation

front

right 
shoulder

left
shoulder

wrist

Figure 7. Simulated Setup. The four camera setup: front, left shoulder,
right shoulder, and on the wrist.

All simulated experiments use the four cam-
era setup illustrated in Figure 7. The front,
left shoulder, and right shoulder cameras, are
static, but the wrist camera moves with the end-
effector. We did not modify the default cam-
era poses from RLBench [15]. These poses
maximize coverage of the tabletop, while min-
imizing occlusions caused by the moving arm.
The wrist camera in particular is able to pro-
vide high-resolution observations of small ob-
jects like handles.

D.2 Real-Robot

Hardware Setup. The real-robot experiments use a Franka Panda manipulator with a parallel-
gripper. For perception, we use a Kinect-2 RGB-D camera mounted on a tripod, at an angle, pointing
towards the tabletop. See Figure D for reference. We tried setting-up multiple Kinects for multi-
view observations, but we could not fix the interference issue caused by multiple Time-of-Flight
sensors. The Kinect-2 provides RGB-D images of resolution 512 ⇥ 424 at 30Hz. The extrinsics
between the camera and robot base-frame are calibrated with the easy handeye package8. We use
an ARUCO9 AR marker mounted on the gripper to aid the calibration process.

Franka Emika Panda

Kinect2 RGB-D Camera

AR Marker
for hand-eye

Figure 8. Real-Robot Setup with Kinect-2 and Franka Panda.

Data Collection. We collect demonstrations
with an HTC Vive controller. The controller is a
6-DoF tracker that provides accurate poses with
respect to a static base-station. These poses are
displayed as a marker on RViz10 along with the
real-time RGB-D pointcloud from the Kinect-
2. A user specifies target poses by using the
marker and pointcloud as reference. These tar-
get poses are executed with a motion-planner.
We use Franka ROS and MoveIt11, which by
default uses an RRT-Connect planner.

Training and Execution. We train a PER-
ACT agent from scratch with 53 demonstra-
tions. The training samples are augmented with
±0.125m translation perturbations and ±45�

yaw rotation perturbations. We train on 8
NVIDIA P100 GPUs for 2 days. During evalu-
ation, we simply chose the last checkpoint from
training (since we did not collect a validation
set for optimization). Inference is done on a
single Titan X GPU.

8https://github.com/IFL-CAMP/easy_handeye
9https://github.com/pal-robotics/aruco_ros

10http://wiki.ros.org/rviz
11http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/
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E Data Augmentation

PERACT’s voxel-based formulation naturally allows for data augmentation with SE(3) transforma-
tions. During training, samples of voxelized observations v and their corresponding keyframe ac-
tions k are perturbed with random translations and rotations. Translation perturbations have a range
of [±0.125m,±0.125m,±0.125m]. Rotation perturbations are limited to the yaw axis and have a
range of [0�, 0�,±45�]. The 45� limit ensures that the perturbed rotations do not go beyond what is
kinematically reachable for the Franka arm. We did experiment with pitch and roll perturbations, but
they substantially lengthened the training time. Any perturbation that pushed the discretized action
outside the observation voxel grid was discarded. See the bottom row of Figure 10 for examples of
data augmentation.

F Demo Augmentation

k1

k2

Figure 9. Keyframes and Demo Aug-
mentation.

Following James et al. [15], we cast every datapoint in a demonstra-
tion as a “predict the next (best) keyframe action” task. See Figure 9
for an illustration of this process. In this illustration, k1 and k2 are
two keyframes that were extracted from the method described in
Section 3.2. The orange circles indicate datapoints whose RGB-D
observations are paired with the next keyframe action.

G Sensitivity Analysis

In Table 4, we investigate three factors that affect PERACT’s performance: rotation data augmen-
tation, number of Perceiver latents, and voxelization resolution. All multi-task agents were trained
with 100 demonstrations per task and evaluated on 25 episodes per task. To briefly summarize these
results: (1) 45� yaw perturbations improve performance on tasks with lots of rotation variations like
stack blocks, but also worsen performance on tasks with constrained rotations like place wine.
(2) PERACT with just 512 latents is competitive with (and sometimes even better than) the default
agent with 2048 latents, which showcases the compression capability of the Perceiver architecture.
(3) Coarse grids like 323 are sufficient for some tasks, but high-precision tasks like sort shape

Table 4. Sensitivity Analysis. Success rates (mean %) of various PERACT agents trained with 100 demonstrations per task. We
investigate three factors that affect PERACT’s performance: rotation augmentation, number of Perceiver latents, and voxel resolution.

open
drawer

slide
block

sweep to
dustpan

meat off
grill

turn
tap

put in
drawer

close
jar

drag
stick

stack
blocks

PERACT 80 72 56 84 80 68 60 68 36

PERACT w/o Rot Aug 92 72 56 92 96 60 56 100 8

PERACT 4096 latents 84 88 44 68 84 48 48 84 12
PERACT 1024 latents 84 48 52 84 84 52 32 92 12
PERACT 512 latents 92 84 48 100 92 32 32 100 20

PERACT 643 voxels 88 72 80 60 84 36 40 84 32
PERACT 323 voxels 28 44 100 60 72 24 0 24 0

PERACT 73 patches 72 48 96 92 76 76 36 96 32
PERACT 93 patches 68 64 56 52 96 56 36 92 20

screw
bulb

put in
safe

place
wine

put in
cupboard

sort
shape

push
buttons

insert
peg

stack
cups

place
cups

PERACT 24 44 12 16 20 48 0 0 0

PERACT w/o Rot Aug 20 32 48 8 8 56 8 4 0

PERACT 4096 latents 32 44 52 8 12 72 4 4 0
PERACT 1024 latents 24 32 36 8 20 40 8 4 0
PERACT 512 latents 48 40 36 24 16 32 12 0 4

PERACT 643 voxels 24 48 44 12 4 32 0 4 0
PERACT 323 voxels 12 20 52 0 0 60 0 0 0

PERACT 73 patches 8 48 76 0 12 16 0 0 0
PERACT 93 patches 12 36 72 12 0 20 0 0 0
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need higher resolution voxelization. (4) Large patch-sizes reduce memory usage, but they might
affect tasks that need sub-patch precision.

H High-Precision Tasks
Multi Single

place cups 0 24
stack cups 0 32
insert peg 0 16

Table 5. Success rates (mean %) of
multi-task and single-task PERACT agents
trained with 100 demos and evaluated on
25 episodes.

In Table 1, PERACT achieves zero performance on three high-
precision tasks: place cups, stack cups, and insert peg. To
investigate if multi-task optimization is itself one of the factors af-
fecting performance, we train 3 separate single-task agents for each
task. We find that single-task agents are able to achieve non-zero
performance, indicating that better multi-task optimization methods
might improve performance on certain tasks.

I Additional Related Work

In this section, we briefly discuss additional works that were not mentioned in Section 2.

Concurrent Work. Recently, Mandi et al. [83] found that pre-training and fine-tuning on new tasks
is competitive, or even better, than meta-learning approaches for RLBench tasks in multi-task (but
single-variation) settings. This pre-training and fine-tuning paradigm might be directly applicable
to PERACT, where a pre-trained PERACT agent could be quickly adapted to new tasks without the
explicit use of meta-learning algorithms.

Multi-Task Learning. In the context of RLBench, Auto-� [73] presents a multi-task optimization
framework that goes beyond uniform task weighting from Section 3.4. The method dynamically
tunes task weights based on the validation loss. Future works with PERACT could replace uniform
task weighting with Auto-� for better multi-task performance. In the context of Meta-World [53],
Sodhani et al. [84] found that language-conditioning leads to performance gains for multi-task RL
on 50 task variations.

Language-based Planning. In this paper, we only investigated single-goal settings where the lan-
guage instruction does not change throughout the episode. However, language-conditioning natu-
ral allows for composing several instructions in a sequential manner [69]. As such, several prior
works [85, 13, 86, 87] have used language as medium for planning high-level actions, which can
then be executed with pre-trained low-level skills. Future works could incorporate language-based
planning for grounding more abstract goals like “make dinner”.

Task and Motion Planning. In the sub-field of Task and Motion Planning (TAMP) [88, 89],
Konidaris et al. [90] present an action-centric approach to symbolic planning. Given a set of prede-
fined action-skills, an agent interacts with its environment to construct a set of symbols, which can
then be used for planning.

Voxel Representations. Voxel-based representations have been used in several domains that specif-
ically benefit from 3D understanding. Like in object detection [91, 92], object search [93], and
vision-language grounding [94, 95], voxel maps have been used to build persistent scene represen-
tations [96]. In Neural Radiance Fields (NeRFs), voxel feature grids have dramatically reduced
training and rendering times [97, 98]. Similarly, other works in robotics have used voxelized repre-
sentations to embed viewpoint-invariance for driving [99] and manipulation [100]. The use of latent
vectors in Perceiver [1] is broadly related to voxel hashing [101] from computer graphics. Instead
of using a location-based hashing function to map voxels to fixed size memory, PerceiverIO uses
cross attention to map the input to fixed size latent vectors, which are trained end-to-end. Another
major difference is the treatment of unoccupied space. In graphics, unoccupied space does not af-
fect rendering, but in PERACT, unoccupied space is where a lot of “action detections” happen. Thus
the relationship between unoccupied and occupied space, i.e., scene, objects, robot, is crucial for
learning action representations.

Long-Context and Latent-Space Transformers. Several approaches have been proposed for ex-
tending Transformers to longer context lengths [102]. Latent-space Transformers that use fixed-size
latents instead of the full context, are one such approach [1, 103]. There is no clear winner in terms of
trade-offs between speed, memory, and performance. However, latent-space methods have achieved
compelling results in object detection [104] and slot-attention based object discovery [105].
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J Additional Q-Prediction Examples

Figure 10 showcases additional Q-prediction examples from trained PERACT agents. Traditional
object-centric representations like poses and instance-segmentations struggle to represent piles of
beans or tomato vines with high-precision. Whereas action-centric agents like PERACT focus on
learning perceptual representations of actions, which elevates the need for practitioners to define
what should be an object (which is a harder problem and often specific to tasks and embodiments).

“put the sugar
in the cupboard”

“put the item
in the middle drawer”

“use the stick to drag the cube  
onto the blue target”

“place 3 mugs 
on the cup holder”

“turn right tap”

“sweep the beans 
into the gray dustpan”

“place the glue stick
in the top drawer”

“put the green whiteboard 
marker in the mug”

“put the tomatoes
in the top bin”

“stack 2 olive blocks”“close the gray jar”

“put the money away in the safe
on the top shelf”

Q-Prediction Expert Action

t=9

t=1

t=4 t=12 t=1 t=1

t=4 t=4 t=3

t=4 t=3 t=3

Figure 10. Additional Q-Prediction Examples. Translation Q-Prediction examples from PERACT. The top two rows are from simulated
tasks without any data augmentation perturbations, and the bottom row is from real-world tasks with translation and yaw-rotation perturbations.
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K Things that did not work
In this section, we describe things we tried, but did not work or caused issues in practice.

Real-world multi-camera setup. We tried setting up multiple Kinect-2s for real-world multi-view
observations, but we could not solve interference issues with multiple Time-of-Flight sensors. Par-
ticularly, the depth frames became very noisy and had lots of holes. Future works could try turning
the cameras on-and-off in a rapid sequence, or use better Time-of-Flight cameras with minimal
interference.

Fourier features for positional embeddings. Instead of the learned positional embeddings, we
also experimented with concatenating Fourier features to the input sequence like in some Perceiver
models [1]. The Fourier features led to substantially worse performance.

Pre-trained vision features. Following CLIPort [16], we tried using pre-trained vision features
from CLIP [76], instead of raw RGB values, to bootstrap learning and also to improve generalization
to unseen objects. We ran CLIP’s ResNet50 on each of the 4 RGB frames, and upsampled features
with shared decoder layers in a UNet fashion. But we found this to be extremely slow, especially
since the ResNet50 and decoder layers need to be run on 4 independent RGB frames. With this
additional overhead, training multi-task agents would have taken substantially longer than 16 days.
Future works could experiment with methods for pre-training the decoder layers on auxiliary tasks,
and pre-extracting features for faster training.

Upsampling at multiple self-attention layers. Inspired by Dense Prediction Transformers
(DPT) [106], we tried upsampling features at multiple self-attention layers in the Perceiver Trans-
former. But this did not work at all; perhaps the latent-space self-attention layers of Perceiver are
substantially different to the full-input self-attention layers of ViT [4] and DPT [106].

Extreme rotation augmentation. In addition to yaw rotation perturbations, we also tried perturbing
the pitch and roll. While PERACT was still able to learn policies, it took substantially longer to train.
It is also unclear if the default latent size of R2048⇥512 is appropriate for learning 6-DoF polices with
such extreme rotation perturbations.

Using Adam instead of LAMB. We tried training PERACT with the Adam [107] optimizer instead
of LAMB [78], but this led to worse performance in both simulated and real-world experiments.

L Limitations and Risks

While PERACT is quite capable, it is not without limitations. In the following sections, we discuss
some of these limitations and potential risks for real-world deployment.

Sampling-Based Motion Planner. PERACT relies on a sampling-based motion planner to execute
discretized actions. This puts PERACT at the mercy of randomized planner to reach poses. While
this issue did not cause any major problems with the tasks in our experiments, a lot of other tasks
are sensitive to the paths taken to reach poses. For instance, pouring water into a cup would require
a smooth path for tilting the water container appropriately. This could be addressed in future works
by using a combination of learned and sampled motion paths [108].

Dynamic Manipulation. Another issue with discrete-time discretized actions is that they are not
easily applicable to dynamic tasks that require real-time closed-loop maneuvering. This could be
addressed with a separate visuo-servoing mechanism that can reach target poses with closed-loop
control. Alternatively, instead of predicting just one action, PERACT could be extended to predict
a sequence of discretized actions. Here, the Transformer-based architecture could be particularly
advantageous. Also, instead of just predicting poses, the agent could also be trained to predict other
physical parameters like target velocities [109].

Dexterous Manipulation. Using discretized actions with N-DoF robots like multi-fingered hands is
also non-trivial. Specifically for multi-fingered hands, PERACT could be modified to predict finger-
tip poses that can be reached with an IK (Inverse Kinematics) solver. But it is unclear how feasible
or robust such an approach would be with under-actuated systems like multi-fingered hands.

Generlization to Novel Instances and Objects. In Figure 11, we report results from small-scale
perturbation experiments on the open drawer task. We observe that changing the shape of the
handles does not affect performance. However, handles with randomized textures and colors confuse
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Figure 11. Perturbation Tests. Results from a multi-task PERACT agent trained on a single drawer and evaluated on several instances
perturbed drawers. Each perturbation consists of 25 evaluation episodes, and reported successes are relative to the training drawer.

the agent since it has only seen one type of drawer color and texture during training. Going beyond
this one-shot setting, and training on several instances of drawers might improve generalization
performance. Although we did not explicitly study generalization to unseen objects, it might be
feasible to train PERACT’s action-detector on a broad range of objects and evaluate its ability to
handle novel objects, akin to how language-conditioned instance-segmentors and object-detectors
are used [110]. Alternatively, pre-trained vision features from multi-modal encoders like CLIP [76]
or R3M [38] could be used to boostrap learning.

Scope of Language Grounding. Like with prior work [16], PERACT’s understanding of verb-noun
phrases is closely grounded in demonstrations and tasks. For example, “cleaning” in “clean the

beans on the table with a dustpan” is specifically associated with the action sequence of pushing
beans on to a dustpan, and not “cleaning” in general, which could be applied to other tasks like
cleaning the table with a cloth.

Predicting Task Completion. For both real-world and simulated evaluations, an oracle indicates
whether the desired goal has been reached. This oracle could be replaced with a success classifier
that can be pre-trained to predict task completion from RGB-D observations.

History and Partial Observability. PERACT relies purely on the current observation to predict the
next action. As such, tasks that require history like counting or ordering are not feasible, unless
accompanied by a task-completion predictor. Similarly, for tasks involving partial observability
e.g., looking through drawers one-by-one for a specific object, PERACT does not keep track of
what was seen before. Future works could include observations from previous timesteps, or append
Perceiver latents, or train a Recurrent Neural Network to encode latents across timesteps.

Data Augmentation with Kinematic Feasibility. The data augmentation method described in Sec-
tion E does not consider the kinematic feasibility of reaching perturbed actions with the Franka arm.
Future works could pre-compute unreachable poses in the discretized action space, and discard any
augmentation perturbations that push actions into unreachable zones.

Balanced Datasets. Since PERACT is trained with just a few demonstrations, it occassionally tends
to exploit biases in the training data. For instance, PERACT might have a tendency to always “place

blue blocks on yellow blocks” if such an example is over-represented in the training data. Such
issues could be potentially fixed by scaling datasets to include more diverse examples of objects and
attributes. Additionally, data visualization methods could be used to identify and fix these biases.
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Multi-Task Optimization. The uniform task sampling strategy presented in Section 3.4 might
sometimes hurt performance. Since all tasks are weighted equally, optimizing for certain tasks
with common elements (e.g., moving blocks), might adversarial affect the performance on other
dissimilar tasks (e.g., turning taps). Future works, could use dynamic task-weighting methods like
Auto-� [73] for better multi-task optimization.

Deployment Risks. PERACT is an end-to-end framework for 6-DoF manipulation. Unlike some
methods in Task-and-Motion-Planning that can sometimes provide theoretical guarantees on task
completion, PERACT is a purely reactive system whose performance can only be evaluated through
empirical means. Also, unlike prior works [16], we do not use internet pre-trained vision encoders
that might contain harmful biases [111, 112]. Even so, it is prudent to thoroughly study and mitigate
any biases before deployment. As such, for real-world applications, keeping humans in the loop both
during training and testing, might help. Usage with unseen objects and observations with people is
not recommended for safety critical systems.

M Emergent Properties

In this section, we present some preliminary findings on the emergent properties of PERACT.

M.1 Object Tracking

Figure 12. Object Tracker. Tracking an unseen hand
sanitizer instance.

Although PERACT was not explicitly trained for 6-DoF
object-tracking, our action detection framework can be
used to localize objects in cluttered scenes. In this video,
we show an agent that was trained with one hand sani-
tizer instance on just 5 “press the handsan” demos, and
then evaluated on tracking an unseen sanitizer instance.
PERACT does not need to build a complete representation
of hand sanitizers, and only has to learn where to press

them. Our implementation runs at an inference speed of
2.23 FPS (or 0.45 seconds per frame), allowing for near
real-time closed-loop behaviors.

M.2 Multi-Modal Actions

“stack 3 yellow blocks”

“place 3 cups on the holder”

Figure 13. Examples of Multi-Modal Predictions.

PERACT’s problem formulation allows for modeling
multi-modal action distributions, i.e., scenarios where
multiple actions are valid given a specific goal. Fig-
ure 13 presents some selected examples of multi-modal
action predictions from PERACT. Since there are sev-
eral “yellow blocks” and “cups” to choose from, the Q-
prediction distributions have several modes. In practice,
we observe that the agent has a tendency to prefer certain
object instances over others (like the front mug in Fig-
ure 13) due to preference biases in the training dataset.
We also note that the cross-entropy based training method
from Section 3.4 is closely related to Energy-Based Mod-
els (EBMs) [113, 114]. In a way, the cross-entropy loss
is pulling up expert 6-DoF actions, while pushing-down

every other action in the discretized action space. At test
time, we simply maximize the learned Q-predictions, in-
stead of minimizing an energy function with optimiza-
tion. Future works could look into EBM [114] training
and inference methods for better generalization and exe-
cution performance.
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https://peract.github.io/media/results/animations/handsan_tracking_v2.mp4
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