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A TRAINING ALGORITHM

Algorithm 1 summarizes the overall training strategy of our proposed framework. We take the
source data {(xs, ys)} and CLIP-based segmenter Gs as the input of our method. After N1 training
iterations for each batch of source data, we obtain the optimized PIN modules. Then we utilize
the them to generate target features. We use them to fine-tune the target segmenter Gt within N2

iterations.

Algorithm 1 Adaptation algorithm
Input: Source data {(xs, ys)}, source segmenter Gs, Target domain description {TrgDesc}
Output: target segmenters {Gt}
1: Feed {TrgDesc} into Etxt to extract {TrgEmb} = Etxt({TrgDesc});
2: Feed {xs} into Eimg to extract fs = Eimg({xs});
3: Transform fs into {fs→t} with PIN modules for each target domain;
4: Generate visual meta-nodes Qv with {µ} and {ω} in PIN modules;
5: Construct hybrid cross-modality graph Gh with Qv and {TrgEmb};
6: Calculate the extreme features Pv on the boundary of visual feature distribution ranges;
7: Mine graph motifs M from Gh;
8: for i = 1 to N1 do
9: Calculate the similarity sim of language-vision edges within each motif;

10: Calculate the motif matching loss Lmatch;
11: Calculate the directional loss Ldis;
12: Calculate the contrastive loss Lcon;
13: Update the PIN modules with overall loss Ltotal;
14: end for
15: for j = 1 to N2 do
16: Feed {xs} into Eimg to extract fs = Eimg({xs});
17: Transform fs into {fs→t} with trained PIN modules for each target domain;
18: Calculate the cross-entropy loss with {fs→t} and source labels {ys};
19: Fine-tune the target segmenters {Gt} for each target domain with {fs→t} and ys
20: end for
21: return target segmenters {Gt}

B MOTIVATION

The motivation for proposing a new graph motif-based adaptation method stems from the challenges
faced in zero-shot domain adaptive semantic segmentation, where the goal is to transfer knowledge
from a source domain to a target segmenter without access to target domain data. Existing meth-
ods that transform source features to the target domain using language-driven approaches tend to
coarsely align language features to global features. This results in the sub-optimal performance of
cross-domain feature alignment.

To overcome these issues, the new method focuses on balancing efficiency and effectiveness in
feature alignment. It introduces a graph motif structure that is based on domain-wise image feature
distributions. By adjusting the angle between language-vision directed edges, the method pulls
visual features toward the language feature center, achieving a more precise cross-modality feature
alignment without excessive computational demands. Additionally, the incorporation of directional
and contrastive losses helps to mitigate the mode-collapse during feature stylization, stabilizing the
learning process and enhancing the robustness of the adaptation.

C LIMITATIONS

Although our work has achieved state-of-the-art performance, it is not without limitations. Firstly,
our method is not end-to-end. The segmented training mode complicates the pipeline, potentially re-
stricting its applicability in real-world applications. Additionally, our approach necessitates training
a distinct target segmenter for each target domain, thereby constraining its domain generalization
capabilities.
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Table 6: Comparison of our proposed method with different loss weights.

ωmatch ωdis ωcon mIoU

0.01 0.01 0.01 41.13
0.05 0.05 0.05 41.52
0.1 0.05 0.05 41.80

0.15 0.05 0.05 41.43
0.05 0.1 0.05 39.73
0.05 0.05 0.1 40.29
0.05 0.1 0.1 38.48

rgb PØDA oursground-truth
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sn
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Figure 4: Qualitative comparison results on the task of Cityscapes→ACDC.

D ABLATION ON THE LOSS WEIGHTS

We evaluate our proposed method with different loss weights ωmatch, ωdis, and ωcon on the adapta-
tion task of Cityscapes→ACDC. The contribution of different optimization objectives to PIN mod-
ules optimization can be balanced by adjusting the loss weights. Notably, relatively large ωdis and
ωcon are harmful to the adaptation performance, so we need to set them carefully. When ωmatch,
ωdis, and ωcon are set to 0.1, 0.05, and 0.05, our method achieves the best performance. We experi-
mentally determined the weights and applied them to all of our experiments.

E QUALITATIVE VISUALIZATION RESULTS

Fig. 4 shows more qualitative comparison results on the adaptation task from source to the subsets
of ACDC. It shows that our method achieves more accurate pixel-level segmentation results. The
segmentation results prove the effectiveness of our method.

16


	Introduction
	Background
	Unsupervised Domain Adaptation
	Vision-language Models

	Preliminary
	Prompt-driven Zero-shot Domain Adaptation (PØDA)
	Graph Motif

	Method
	Overview
	Motif-based feature matching
	Relationship-constraint Adaptation
	Optimization

	Experiments
	Datasets and Evaluation
	Implementation Details
	Comparison with State-Of-The-Arts
	Ablation Studies
	Qualitative Results

	Conclusion
	Training Algorithm
	Motivation
	Limitations
	Ablation on the loss weights
	Qualitative Visualization Results

