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Abstract

We study the effect of width on the dynamics of feature-learning neural networks1

across a variety of architectures and datasets. Early in training, wide neural net-2

works trained on online data have not only identical loss curves but also agree3

in their point-wise test predictions throughout training. For simple tasks such as4

CIFAR-5m this holds throughout training for networks of realistic widths. We also5

show that structural properties of the models, including internal representations, pre-6

activation distributions, edge of stability phenomena, and large learning rate effects7

are consistent across large widths. This motivates the hypothesis that phenomena8

seen in realistic models can be captured by infinite-width, feature-learning limits.9

For harder tasks (such as ImageNet and language modeling), and later training10

times, finite-width deviations grow systematically. Two distinct effects cause these11

deviations across widths. First, the network output has initialization-dependent12

variance scaling inversely with width, which can be removed by ensembling net-13

works. We observe, however, that ensembles of narrower networks perform worse14

than a single wide network. We call this the bias of narrower width. We conclude15

with a spectral perspective on the origin of this finite-width bias.16

1 Introduction17

Studies of large-scale language and vision models have shown that models with a larger number18

of parameters achieve better performance [1, 2]. Motivated by the success of large-scale models,19

several theories of deep learning have been developed, including large-width limits. One infinite20

width limit considered in [3, 4] gives rise to a initialization-independent and constant neural tangent21

kernel (NTK). However, modern large-scale networks adapt their features to structure in the data22

even at very large widths. In practice, they are not well-described by NTK theory [5, 6].23

Recently, several works have identified an alternative parameterization of neural networks that24

preserves feature-learning even at infinite width [7–11]. In particular, the maximal update param-25

eterization (µP) of [10] gives an infinite-width limit of a given finite-width network in standard26

parameterization (SP) with similar feature learning capability. These limits are attractive in that they27

allow for feature learning while also rendering several network properties (output logits, feature28

kernels, ...) deterministic rather than dependent on the precise initialization of the network. In29

addition, [12] found that wider networks perform better with all other architectural details held fixed.30

Finally, in this limit, neurons take on a simple interpretation as i.i.d. draws from a width-independent31

distribution throughout training, enabling theoretical analysis of feature learning [11]. The existence32

of infinite-width feature-learning limits motivates us to ask:33

Question: Can realistic-width neural networks be accurately described by their infinite-width34

feature-learning limits?35
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(a) CIFAR-5m (b) C4 (c) ImageNet (d) Wikitext-103

Figure 1: Consistency of large width behavior across tasks, architectures, observables. a) Loss curves
for Resnets on Cifar-5M in µP are nearly to identical at large widths (see also Figure 2). b) For
GPT-2 on the C4 dataset [13] the loss curves agree at early times and deviate at late times, but wider
networks agree for longer (see also Figure 2 and appendices for Wikitext-103) c) The values that
ResNets put on the correct logit for ImageNet appear to converge as the width grows (see also Figure
3). d) The attention matrices for transformers on Wikitext-103 become nearly identical as width
increases (for quantitative metrics see Figure 4.)

We attempt to answer this question by training networks of varying widths on vision and language36

tasks for realistic datasets and architectures. We put all of our networks in µ-parameterization,37

adopting the package [14] introduced in [12]. We give an affirmative answer to the above question in38

the online setting. Concretely, we focus on on the online setting, where data is not repeated during39

SGD, and track the following quantities across widths:40

• the losses throughout training;41

• the predictions of the networks on individual points throughout training;42

• the learned representations, summarized by the feature kernels; preactivation distributions; and,43

for transformers, attention matrices;44

• and dynamical phenomena such as the edge of stability governing the top Hessian eigenvalues, as45

well as large learning rate and small batch size effects on the loss.46

On each of these metrics, we show that sufficiently wide neural networks converge to consistent47

behavior across widths. In Figure 1, we show loss curves, logit predictions, and attention matrices ap-48

proach consistent behavior as width is increased across several architectures and datasets. We further49

observe that the widths which achieve this consistent behavior are within the range of those used in50

practice. We use large-width consistency as a proxy for achieving the limiting infinite-width behavior.51

We say that a network property is consistent if beyond some width, its values all lie within some52

small interval with high probability. We measure consistency by showing that a quantity’s deviations53

between successive widths decrease as the widths are increased, and that its value for narrower54

networks systematically approaches its value for the largest trained network.55

Our results show the following:56

• For simple vision tasks such as CIFAR-5m [15], ResNets with practical widths achieve near57

consistent loss curves across widths.58

• Beyond the loss curves, the individual predictions of the networks agree pointwise. That is,59

the logits agree on test points throughout the training process. We further show that internal60

representations as measured by distributions of neuron preactivations and feature kernels in61

various layers are consistent across widths.62

• For harder tasks such as ImageNet and language modeling, loss curves are consistent across63

widths early in training. As training progresses, loss curves for narrow networks deviate smoothly64

from the loss curves of wider networks. The effective width required to reach infinite-width65

behavior thus increases with training time. Conversely, as network size grows we approximate66

the infinite width network for a larger number of training steps.67

• Finite-width neural networks have variance in the learned function due to initialization seed.68

This variance depends inversely on the width. We study ensembles of networks over different69

initializations to remove this noise. Further, by analyzing ensembles of networks, we can do a70
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bias-variance decomposition of the effects of finite width. We find that finite-width bias plays an71

important role. Equivalently, ensembling narrow networks does not yield infinite-width behavior.72

• In the setting of offline learning, at late times one can over-fit the training set. We observe that73

this leads to larger gaps in network behavior across widths, and can break the trend that wider74

networks perform better.75

• We develop a spectral perspective on the origin of the finite-width bias by analyzing it in a simple76

setting of a lazy network learning a simple task. We then apply this perspective to a CNN trained77

on CIFAR-5m.78

The consistency across large widths strongly suggests that the dynamics and predictions of realistic-79

scale networks can be effectively captured by their infinite-width feature learning limits. For realistic80

tasks, as the width is increased, a larger interval of training can be characterized by this infinite-width81

limit.82

Our results have implications for interpretability, as the agreement of internal representations suggest83

that many other phenomena, such as transfer learning with linear probes or fine-tuning, in-context84

learning [16, 17], the emergence of outliers [18], and the emergence of induction heads [19] may be85

understood from the perspective of infinite-width feature learning networks.86

1.1 Related Works87

Empirically, the scaling of relevant quantities with width in the standard or neural-tangent parameter-88

izations was thoroughly studied in [20]. In the latter parameterization, sufficiently wide networks89

give a kernel method with the infinite-width NTK. Several papers have shown that in practice the90

NTK limit insufficiently characterizes realistic deep neural networks [5, 21, 6]. Attempts to capture91

feature learning and predictor variance from perturbative series around infinite-width dynamics show92

that finite-width variance and kernel adaptation scale as 1/N [22–24] for width N . A 1/N scaling93

of generalization error with width was empirically verified on many tasks [25, 26]. The effect of94

width on generalization in the feature-learning regime was empirically studied in [27] in the relatively95

limited setting of multi-layer perceptrons (MLPs) on polynomial tasks. There, the variance of the96

finite-width NTK at the end of training adversely affected generalization.97

The authors of [28] identified that altering the output scale ↵ of any network could increase or98

decrease feature learning in a neural network. Large values of ↵ correspond to the “lazy limit”99

where the network’s features don’t evolve. A follow up study noticed that rescaling the output100

by ↵ = ↵0/
p
N for width N networks gave consistent behavior of feature learning and losses in101

small scale experiments [8]. Several works have studied this regime of training in the two-layer102

limit, known as “mean field” parameterization, where features are still learned even at infinite width103

[29, 7, 30, 31]. Extensions of this model to deeper networks were studied in [32–35, 10, 11]. A104

theory of finite-width corrections to networks in this parameterization was studied in [36]. A very105

general set of parameterization principles, termed µP, was introduced to give a well defined feature106

learning limit for a wide range of architectures including RNNs, CNNs, MLPs and transformers [10].107

[12] demonstrated that this parameterization nearly fixes optimal hyperparameters across network108

widths, allowing for hyperparameter transfer from small to large widths. This work also empirically109

noted that wider networks always outperformed narrower networks in this parameterization.110

Our paper focuses on networks in µP and attempts to study the consistency of many relevant network111

properties across widths. We perform a fine-grained analyses of more realistic models throughout the112

dynamics of training. To the best of our knowledge, this is the first such paper to study the consistency113

of network outputs, internal representations, and dynamics across widths.114

2 Consistency of large-width behavior in online learning115

We focus on studying the effect of width in the setting of neural networks learning a task in the online116

setting. Online learning is representative of many modern settings of deep learning, and as will be117

shown in Section 3, obviates consideration of memorization and over-fitting in offline learning that118

can lead to large differences in networks across widths.119

In what follows, the variable N will denote the width of a given network. For vision tasks, this120

will correspond to the number of channels in each layer. For transformers, in the notation of [37],121
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(a) CIFAR-5m (b) Imagenet (c) Wikitext-103

Figure 2: In the online learning setting, train loss improves as width grows. For sufficiently wide
networks, the training lost is consistent across widths. For Cifar-5m this consistency is observed over
all of training. For harder tasks like Imagenet and Wikitext-103, networks of different widths agree
up until a width-dependent time-step where narrower networks begin performing worse.

(a) CIFAR-5m (b) Imagenet (c) Wikitext-103

(d) CIFAR-5m (e) Imagenet (f) Wikitext-103

Figure 3: The output logits on a fixed test point diplays stable behavior at large enough widths. a)
Value of network on correct class logit over time as width is varied for CIFAR-5m. b) Same plot for
Imagenet for a fixed image in the test set c) Same plot for Wikitext-103 for a fixed masked token.
Across the board the widest networks behave similarly. Next, we use the widest network as a proxy
for the infinite-width limit, and compare the logit predictions of narrower networks against that. d)
For CIFAR-5m, the relative root-mean-squared error over the test set of the distance to the value that
the widest network puts on the correct logit. e) The same for Imagenet. f) The same for Wikitext-103.
We see a striking regularity of networks converging to the widest one as the width grows. In Appendix
B, we also compare networks of successive widths and show the the difference shrinks.

N = dmodel = hdk = hdv and dffn = 4N . Here, h is the number of heads, which we will keep122

fixed. dmodel is the embedding dimension of the tokens as well as the dimension of the residual stream.123

dk is the dimension over which the dot products in the attention are calculated and dv is the dimension124

of the values in the attention layers. dffn is the hidden width of the feedforward networks (FFN).125

Convergence of loss curves We begin by showing (Fig. 2) that the loss curves for sufficiently126

wide networks on a given task achieve consistent behavior across widths. Throughout the paper we127

measure train loss in terms of crossentropy. For all tasks, at early times large widths agree, but for128

more complicated tasks such as ImageNet or Wikitext-103, learning curves of narrower network129

deviate from those of wider ones.130
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(a) Preactivations CIFAR-5M (b) Last Layer Kernels (c) Convergence of Kernels

(d) FFN Preactivations Wikitext (e) Attention Matrices (f) Convergence of Attention

Figure 4: Learned features are consistent across a large range of widths in realistic tasks. (a) The
distribution (over neurons) of preactivation values h in the final block of the ResNet18 trained on
CIFAR-5M. At initialization, the densities are all well approximated by the Gaussian with matching
mean and variance (dashed black). After feature learning, the density has shifted and become non-
Gaussian (poor match with dashed black), yet is still strikingly consistent across widths. (b) Feature
kernels are also consistent across widths. (c) The centered kernel alignment CKA [41, 42] of kernels
increases towards 1.0 as N ! 1. The 1/

p
N and 1/N trends are plotted for reference. d) The

preactivation histogram for a transformer on Wikitext-103. At initialization the Gaussian of best fit is
the standard normal. After training the histograms are still quite Gaussian, with different moments.
e) A variant of Figure 1 d) at a smaller sequence length. Attention matrices are consistent at large
widths. f) Both FFN kernels and attention matrices converge as width grows. The 1/N and 1/

p
N

trends are plotted for reference.

The width beyond which networks emulate infinite-width behavior depends on the complexity of131

the task. For more difficult tasks, larger widths are required for the loss curves to converge. For132

simple tasks such as CIFAR-5m we find that widths as narrow as 128 are essentially consistent with133

infinite width-behavior for an entire pass through the 5 million image dataset. For ImageNet, widths134

near 512 are close to consistent for four passes through the dataset with heavy data augmentation.135

These widths are well within the range of those practically for images [38, 39]. For transformers136

going through a single full pass of Wikitext-103, widths on the order of 4000 are required. Early137

transformer models certainly had hidden widths of order 4k [40], and more recent models such as138

GPT-3 have widths going up to 12288 [16], so this is also within the regime of realistic width.139

Pointwise convergence of predictions Beyond the convergence of the training loss curves, we ob-140

serve that the logits of a network on a fixed test point become consistent as width grows. This test point141

can be an image in the test set or a masked token in the validation set. In plots a), b), and c) of Figure142

3, we show that for a specific held-out test point, the value of the network on the correct logit becomes143

consistent as the width grows. In d), e), and f) we plot the root mean squared distance to the widest net-144

works logits over the test set. We further study the difference between successive widths in Figure 11.145

Convergence of representations In addition to loss and prediction dynamics, we also examine146

whether learned representations in these models are consistent across widths. Mean field theories147

of neural network dynamics predict that sufficiently wide networks should have identical kernels148

(and attention matrices for transformers) and that all neurons in a layer behave as independent draws149

from an initialization-independent single-site distribution [7, 10, 11, 43, 44]. To test whether realistic150

finite-width feature learning networks are accurately captured by this limit, in Figure 4, we analyze151

the feature kernels and preactivation distributions before and after training as well as the attention152

matrices in transformer models trained on Wikitext-103. We see qualitative consistency in the plots153

of kernels and attention matrices in b) and c) which can be made quantitatively precise by plotting154

the distance to the widest networks and showing systematic convergence in c) and f).155
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(a) Edge of Stability (b) Small Batch size effects

Figure 5: Convergence of dynamical phenomena across width for CIFAR-5m

Convergence of dynamical phenomena In Figure 5a, we show that the sharpness, defined as the156

top eigenvalue of the loss Hessian, grows steadily to a final value that it then fluctuates around. This157

is a small-batch analogue of the the edge-of-stability phenomenon identified in [45]. We also show in158

Figure 5b that on CIFAR-5m task, at early times, the individual variations due to batch noise and159

large learning rate effects can be consistently captured across widths for µP networks. In Appendix160

D, we further demonstrate sharp agreement of large learning rate and small batch size phenomena for161

MLPs learning a simple task. There, we show that while µP leads to strikingly consistent loss curves,162

SP does not.163

3 Deviations from large-width behavior164

The consistency observed in Section 2 may break later during training in either the online or offline165

settings. In the online setting, deviations owing to narrow width compound over time and lead to two166

sources of error relative to the infinite width limit which we describe in 3.1. In the offline setting,167

where data is recycled several times, networks over-fit the training data, which can lead to larger gaps168

between widths and can break the trend that wider networks perform better.169

Finite-width effects introduce an initialization dependence to the network, leading to additional170

variance in the learned function and hindering generalization [25–27]. This initialization-dependent171

variance can be mitigated by averaging the output logits of a sufficiently large ensemble of networks172

[46]. Using the bias-variance decomposition terminology, we refer to the discrepancy in performance173

between an ensembled network and the expected performance of a single network the variance, and174

the gap between an ensembled network and the behavior of infinite-width network as the bias of175

narrower width. By definition, the expected difference in loss between a single finite-width network176

and an infinite-width network is the sum of the bias and the variance. Below, we investigate the177

behavior of bias and variance in networks across various vision and language tasks.178

3.1 Online training179

(a) CIFAR-5m (b) Imagenet (c) Wikitext-103

Figure 6: Loss curves and their ensembles in the online setting. Ensembling reduces the training loss,
but a large ensemble of narrow networks do not achieve the performance of a single wider network.

6



Figure 6 shows that at large widths, both single networks and ensembles of networks achieve180

comparable error. In this regime, all the networks are consistent and increasing the width has a very181

marginal effect, as does ensembling. At narrower widths, variance is nontrivial (i.e. ensembling182

helps) but bias is much larger than variance. Single wide networks outperform ensembles of narrower183

networks. By comparing a) with b) and c) of Figure 6, we see that harder tasks induce larger bias184

gaps. Prior theoretical work [26, 27] has focused mostly on studying the variance term. In Section 4185

we study the bias from a theoretical perspective.186

3.2 Offline Training187

(a) CIFAR-200k, offline vs. online (b) CIFAR-200k, offline ensembled (c) Noisy CIFAR-50k train error

(d) CIFAR-200k, offline vs. online. (e) CIFAR-200k, offline ensembled (f) Noisy CIFAR-50k test error

Figure 7: Top Row: Effects of offline training on train metrics. In (a) and (b) we do multi-epoch
training on CIFAR-200k. We see that both bias and variance for train error are magnified by offline
training and do not tend to 0 for the largest widths we could try. (c) we do multi-epoch training on
noisy CIFAR-50k and again observe large bias and variance terms at large widths. Bottom Row:
Effects of offline training on test metrics. In (d) and (e) we do multi-epoch training on CIFAR-200k.
We see that both bias and variance for test error are near 0 at large widths. (f) We train on noisy
CIFAR-50k and observe that “wider is better” is violated for ensembled networks.

In offline learning, which refers to multi-epoch training, we encounter several unexpected phenomena188

that challenge the width consistency observed in the previous section, even at large widths. To189

compare offline learning with online learning, we utilize CIFAR-200k, a 200k sized random subset190

of CIFAR-5m. Previous studies have demonstrated that label noise contributes to an increase191

in overfitting [47]. In order to investigate how width consistency changes with overfitting and192

double descent, we conduct experiments on a noisy label version of CIFAR-50k (50k sample from193

CIFAR-5m), where 50% of the labels are noisy. Additional ImageNet experiments are presented in194

Appendix F. As offline training achieves near-zero error, we need to compare very small quantities.195

To accomplish this, we will plot and compare all quantities on a logarithmic scale. The following196

phenomena are observed:197

• Single network performance on the training set does not converge with width, even at high widths198

(Figure 7 (a)). In other words, the combined bias and variance does not reach zero, even with199

substantial widths. This is in contrast to the online runs.200

• Ensembling (Figure 7 (b)) reveals that both bias and variance terms individually fail to reach zero,201

even at high widths.202

• Regarding test performance, both bias and variance tend to zero as width increases, demonstrating203

an instance of benign overfitting (Figure 7 (d) and (e)).204
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• When working with the noisy label version of CIFAR-50k, we observe clear overfitting and205

stepwise double descent [47] as training progresses (Figure 7 (f)). Notably, we observe significant206

deviations in width for single network performance, indicating that the benign overfitting observed207

in Figure 7 (d) and (e) is dataset-dependent. Furthermore, variance is found to be much larger208

than in the non-noisy experiments.209

• Surprisingly, we discover (Figure 7 (f)) that some ensembled narrower width networks out-210

perform ensembled wider networks. This presents a counterexample to the “wider is better”211

phenomenon [12] for ensembled networks. We hypothesize that such counterexamples can only212

exist in the context of offline training.213

4 Spectral perspective on the width-dependent bias214

In this last section, we develop a toy model in which the effect of finite-width bias can be clearly seen.215

We analyze it first in the simple setting of an MLP fitting a polynomial in the lazy limit. Here, all the216

dynamics are well-captured by the finite-width empirical neural tangent kernel (eNTK). By studying217

the spectral properties of this kernel across widths, we see that finite-widths lead to an eNTK with218

worse finite-width bias, even after ensembling over initializations.219

Concretely, we see that although the eigenvalue spectrum of the ensembled eNTK is not substantially220

affected by finite width, the decomposition of the task into eNTK eigenvectors changes, with narrower221

widths putting more of the task into smaller eigenmodes that take longer to be learned. We then apply222

this analysis to the after-kernel of the trained ResNets on CIFAR 5m, and find similar behavior. Prior223

literature has demonstrated that many of the properties of the final learned function are captured by224

the after-kernel [48–50].225

We consider a model of online learning where a large batch of data from the population dis-226

tribution p(x) is sampled at each step. This leads to approximate gradient flow dynamics227
d
dt✓ = �

1
2r✓Ex(f(x,✓) � y(x))2 (Appendix E). To analyze this equation, we choose a fixed228

orthonormal basis { k(x)} for the space L
2(RD

, p(x)dx) of square-integrable functions on input229

space. The function f(x), residual error �(x) = y(x) � f(x), and the kernel K(x,x0
, t) can be230

expressed in this basis as f(x, t) =
P

k fk  k(x), �(x, t) =
P

k �k k(x), and K(x,x0
, t) =231 P

k` Kk`(t) k(x) `(x0), respectively. Their training evolution is given by:232

d

dt
f(x, t) = Ex0⇠p(x)K(x,x0

, t)�(x0
, t) = �

X

k`

Kk`(t)�`(t) k(x). (1)

The statistics of the dynamical NTK matrix Kkl(t) summarizes the statistics of the error dynamics233

�(x, t) at any level of feature learning. At infinite width, Kk`(t) is deterministic, while at finite234

width, it receives a O(N�1) mean displacement and a O
�
N

�1/2
�

fluctuation around its mean235

[22, 23, 36]. We consider approximating the dynamics of the ensembled predictor by d
dt hfk(t)i✓0 ⇡236 P

` hKk`(t)i h�`(t)i. Here, h·i denotes averages over initializations. This expression neglects the237

contribution from Cov(Kk`,�`). We show that this approximation is accurate in depth-3 MLPs238

trained on Gegenbauer polynomial regression tasks in Figure 8 a). For more details see Appendix A.239

In the lazy limit, the kernel is static and we choose  k to diagonalize hKk`i = �k`�k. This yields240

the loss dynamics L(t) =
P

k hy(x) k(x)i
2
e
�2�kt. We can therefore quantify alignment of eigen-241

functions to task with the cumulative power distribution C(k) =
P

`<k hy(x) `(x)i
2
x /

⌦
y(x)2

↵
x

242

[51]. If C(k) rises rapidly with k then the loss falls faster [51]. In this limit, there are two ingredients243

that could make the bias dynamics across widths distinct. First, the eigenvalues �k which set the244

timescales could be width-dependent. Second, the eigenfunctions  k(x) that diagonalize hKi can245

change with width. In Figures 8 b) and c) we show that the dominant effect is the latter. Finite width246

corrections do not substantially effect the spectrum but spread out target function power into slower247

modes in narrower networks.248

To test whether these findings continue to hold in more realistic experiments, we computed the final249

NTKs (after kernels) of the ResNet-18 models trained on CIFAR-5M (specifically the models from250

Figures 3, 4). We ensemble average to get kernel hKc,c0(x,x0)i for output channels c, c0 and input251

images x,x0. We then compute the kernel gradient flow corresponding to MSE training on the true252

target function for CIFAR-5M d
dt�c(x) = �

P
c0 Ex0 hKc,c0(x,x0)i�c0(x0) from initial condition253
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(a) MLP Online training losses (b) MLP Kernel Spectra (c) MLP Task Power

(d) CIFAR-5M After Kernel (e) After Kernel Spectra (f) After Kernel Task Power

Figure 8: Spectral properties of the NTK can account for bias gaps across widths. (a) Depth 3 MLPs
in the lazy limit (��1

0 = 200) learning a quadratic polynomial from a uniform distribution on the
sphere in D = 5 dimensions online. Wider networks perform better (dots). Even after ensembling
(dashed), wider is better, and the ensembled curves match those of the averaged eNTK (solid). (b)
The spectra of the averaged eNTK across widths do not show substantial variability. (c) However, at
narrower width, more of the power of the task falls into higher spectral modes, consequently leading
to a slowdown in training. These results hold across dimensions, batch sizes, task complexity, and
architectures. Strong feature learning can reduce this effect. See Appendix E (d) We computed
the ensemble averaged after kernels from the CIFAR-5M ResNet-18 models and computed the
theoretical kernel flow on the task. Wider models have a slightly better mean kernel for this task. (e)
The eigenvalues of the final NTKs are very consistent across widths. (f) The eigenfunction-target
alignment of the final kernels noticeably differ across widths, evidenced by the cumulative power
distribution C(k) which accounts for the gap in theoretical loss curves under kernel flow.

given by the one-hot target labels �c(x)|t=0 = yc(x). The convergence rate of this dynamical254

system is again set by the eigenvalues and eigenfunction-task alignment. In Figure 8 (d), we find255

that the after kernels for wider networks give slightly more rapid convergence. Figures 8 (e) and256

(f) show that, similar to the MLP experiment, the spectra are very consistent across widths, but the257

eigenfunction task alignments, measured with C(k) are not. Overall, these experiments suggest that258

an important aspect of the bias of finite width models compared to their infinite width analogs is the259

deformation of their eigenfunctions.260

5 Conclusion261

We have demonstrated a striking consistency across widths for many quantities of interest to deep262

learning practitioners. Our fine-grained studies go beyond simply comparing test losses and have263

demonstrated that learned network functions, internal representations, and dynamical large learning264

rate phenomena agree for sufficiently large widths on a variety of tasks across vision and language. At265

later training times, or after many repetitions of the dataset, we observe systematic deviations brought266

on by finite width, and have chracterized them in terms of the bias and variance of the network over267

initializations. These studies motivate the applicability of infinite-width feature-learning models in268

reasoning about large scale models trained on real-world data.269
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