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Abstract

Recent works (Shah et al., 2020; Chen et al., 2021) have demonstrated that neural1

networks exhibit extreme simplicity bias (SB). That is, they learn only the simplest2

features to solve a task at hand, even in the presence of other, more robust but more3

complex features. Due to the lack of a general and rigorous definition of features,4

these works showcase SB on semi-synthetic datasets such as Color-MNIST, MNIST-5

CIFAR where defining features is relatively easier.6

In this work, we rigorously define as well as thoroughly establish SB for one hidden7

layer neural networks. More concretely, (i) we define SB as the network essentially8

being a function of a low dimensional projection of the inputs (ii) theoretically,9

in the infinite width regime, we show that when the data is linearly separable, the10

network primarily depends on only the linearly separable (1-dimensional) subspace11

even in the presence of an arbitrarily large number of other, more complex features12

which could have led to a significantly more robust classifier, (iii) empirically,13

we show that models trained on real datasets such as Imagenet and Waterbirds-14

Landbirds indeed depend on a low dimensional projection of the inputs, thereby15

demonstrating SB on these datasets, iv) finally, we present a natural ensemble16

approach that encourages diversity in models by training successive models on17

features not used by earlier models, and demonstrate that it yields models that are18

significantly more robust to Gaussian noise.19

1 Introduction20

It is well known that neural networks (NNs) are vulnerable to distribution shifts as well as to21

adversarial examples (Szegedy et al., 2014; Hendrycks et al., 2021). A recent line of work (Geirhos22

et al., 2018; Shah et al., 2020; Geirhos et al., 2020) proposes that Simplicity Bias (SB) (or shortcut23

learning) i.e., the tendency of neural networks (NNs) to learn only the simplest features over other24

useful but more complex features, is a key reason behind non-robustness of the trained networks.25

The argument is roughly as follows: for example, in the classification of swans vs bears, as illustrated26

in Figure 1, there are many features such as background, color of the animal, shape of the animal etc.27

that can be used for classification. However using only one or few of them can lead to models that are28

not robust to specific distribution shifts, while using all the features can lead to more robust models.29

Several recent works have demonstrated SB on a variety of semi-real constructed datasets (Geirhos30

et al., 2018; Shah et al., 2020; Chen et al., 2021), and have hypothesized SB to be the key reason31

for NN’s brittleness to distribution shifts (Shah et al., 2020). However, such observations are still32

only for specific semi-real datasets, and a general method that can identify SB on a given dataset and33

a given model is still missing in literature. Such a method would be useful not only to estimate the34

robustness of a model but could also help in designing more robust models.35

1Image source: Wikipedia swa, bea.
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Figure 1: Classification of swans vs bears. There
are several features such as background, color of
the animal, shape of the animal etc., each of which
is sufficient for classification but using all of them
will lead to a more robust model. 1

A key challenge in designing such a general36

method to identify (and potentially fix) SB is37

that the notion of feature itself is vague and lacks38

a rigorous definition. Existing works Geirhos39

et al. (2018); Shah et al. (2020); Chen et al.40

(2021) avoid this challenge of vague feature defi-41

nition by using carefully designed datasets (e.g.,42

concatenation of MNIST images and CIFAR43

images), where certain high level features (e.g.,44

MNIST features and CIFAR features, shape and45

texture features) are already baked in the dataset46

definition, and arguing about their simplicity is47

intuitively easy.48

Contributions: Our first contribution is to pro-49

vide a precise definition of a particular simplicity bias – LD-SB– referring to low dimensional input50

dependence of the model.51

Definition 1.1 (LD-SB). A model f : Rd → Rc with inputs x ∈ Rd and outputs f(x) ∈ Rc (e.g.,52

logits for c classes), trained on a distribution (x, y) ∼ D satisfies LD-SB if there exists a projection53

matrix P ∈ Rd×d satisfying:54

• rank (P ) = k ≪ d,55

• P[pred(f(Px(1) +P⊥x
(2))) = pred(f(x(1)))] ≥ 1− ϵ1 for (x(1), y(1)), (x(2), y(2)) ∼ D, where56

pred(f(x)) represents the predicted label for x,57

• An independent model g trained on (P⊥x, y) where (x, y) ∼ D satisfies |Acc(g)−Acc(f)| ≤ ϵ2,58

for some small ϵ1 and ϵ2. Here P⊥ is the projection matrix onto the subspace orthogonal to P , and59

Acc(f) represents the accuracy of f .60

In words, LD-SB says that there exists a small k-dimensional subspace (given by the projection61

matrix P ) in the input space Rd, which is the only thing that the model f considers in labeling any62

input point x. In particular, if we mix two data points x1 and x2 by using the projection of x1 onto63

P and the projection of x2 onto the orthogonal subspace P⊥, the output of f on this mixed point64

Px1 + P⊥x2 is the same as that on x1. This would have been fine if the subspace P⊥ does not65

contain any feature useful for classification. However, the third bullet point says that P⊥ indeed66

contains features that are useful for classification since an independent model g trained on (P⊥x, y)67

achieves high accuracy.68

Theoretically, we demonstrate LD-SB of 1-hidden layer NNs in the infinite width limit for a fairly69

general class of distributions called independent features model (IFM), where the features (i.e.,70

coordinates) are distributed independently conditioned on the label. IFM has a long history and is71

widely studied, especially in the context of naive-Bayes classifiers Lewis (1998). For IFM, we show72

that as long as there is even a single feature in which the data is linearly separable, NNs trained using73

SGD will learn models that rely almost exclusively on this linearly separable feature, even when74

there are an arbitrarily large number of features in which the data is separable but with a non-linear75

boundary. Empirically, we demonstrate LD-SB on three real world datasets: binary and multiclass76

version of Imagenette (FastAI, 2021), waterbirds-landbirds (Sagawa et al., 2020a) as well as the77

ImageNet (Deng et al., 2009) dataset. Compared to the results in Shah et al. (2020), our results (i)78

theoretically show LD-SB in a fairly general setting and (ii) empirically show LD-SB on real datasets.79

Finally, building upon these insights, we propose a simple ensemble method – OrthoP – that80

sequentially constructs NNs by projecting out the input data directions that are used by previous81

NNs. We demonstrate that this method can lead to significantly more robust ensembles for real-world82

datasets in presence of simple distribution shifts like Gaussian noise.83

Why study 1-hidden layer networks in the infinite width regime?84

1. From a practical standpoint, the dominant paradigm in machine learning right now is to pretrain85

large models on large amounts of data and then finetune on small target datasets. Given the large86

and diverse pretraining data seen by these models, it has been observed that they do learn rich87

features (Rosenfeld et al., 2022; Nasery et al., 2022). However, finetuning on target datasets might88
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not utilize all the features in the pretrained model. Consequently, approaches that can train robust89

finetuning heads (such as a 1-hidden layer network on top) can be quite effective.90

2. From a theoretical standpoint, there have been several works that analyze training dynamics of91

finite width networks (Ding et al., 2022), and show convergence to global minima on the training92

data. However, these results do not identify which among the many global minima, the training93

dynamics converge to, which is crucial in determining the nature of SB of the converged model.94

Such a precise characterization of the final convergence point is known only for infinite width95

1-hidden layer networks (Chizat et al., 2019; Chizat & Bach, 2020).96

3. While our theoretical analysis works in the setting of infinite width networks, our extensive97

experiments on several large scale datasets suggest that the results continue to hold even for finite98

width networks. Furthermore, Anonymous (2023) show that the behavior of neural networks99

remains consistent with width in the feature learning regime.100

To summarize, this paper characterizes the nature of SB in 1-hidden layer networks, and also proposes101

a novel ensemble training approach, called OrthoP, which leads to more robust ensembles. While the102

theoretical results are in the infinite width regime, empirical results on several real world datasets103

show that these results continue to hold even for finite width networks.104

Paper organization: This paper is organized as follows. Section 2 presents related work. Section 3105

presents preliminaries. Our main results on LD-SB are presented in Section 4. Section 5 presents106

results on training diverse classifiers. We conclude in Section 6.107

2 Related Work108

Simplicity Bias: Subsequent to Shah et al. (2020), there have been several papers investigating the109

presence/absence of SB in various networks as well as reasons behind SB (Scimeca et al., 2021).110

Of these, Huh et al. (2021) is the most closely related work to ours. Huh et al. (2021) empirically111

observe that on certain synthetic datasets, the embeddings of NNs both at initialization as well as112

after training have a low rank structure. In contrast, we prove LD-SB theoretically on the IFM model113

as well as empirically validate this on real datasets. Furthermore, our results show that while the114

network weights exhibit low rank structure in the rich regime (see Section 3.2 for definition), the115

manifestation of LD-SB is far more subtle in lazy regime. Moreover, we also show how to use LD-SB116

to train a second diverse model and combine it to obtain a robust ensemble. Galanti & Poggio (2022)117

provide a theoretical intuition behind the relation between various hyperparameters (such as learning118

rate, batch size etc.) and rank of learnt weight matrices, and demonstrate it empirically. Pezeshki119

et al. (2021) propose that gradient starvation at the beginning of training is a potential reason for SB120

in the lazy/NTK regime but the conditions are hard to interpret. In contrast, our results are shown121

for any dataset in the IFM model in the rich regime of training. Finally, Lyu et al. (2021) consider122

anti-symmetric datasets and show that single hidden layer input homogeneous networks (i.e., without123

bias parameters) converge to linear classifiers. However, our results hold for general datasets and do124

not require input homogeneity.125

Learning diverse classifiers: There have been several works that attempt to learn diverse classifiers.126

Most works try to learn such models by ensuring that the input gradients of these models do not127

align (Ross & Doshi-Velez, 2018; Teney et al., 2022). Xu et al. (2022) propose a way to learn128

diverse/orthogonal classifiers under the assumption that a complete classifier, that uses all features is129

available, and demonstrates its utility for various downstream tasks such as style transfer. Lee et al.130

(2022) learn diverse classifiers by enforcing diversity on unlabeled target data.131

Spurious correlations: There has been a large body of work which identifies reasons for spurious132

correlations in NNs (Sagawa et al., 2020b) as well as proposing algorithmic fixes in different settings133

(Liu et al., 2021; Chen et al., 2020b). Simplicity bias seems to be one of the primary reasons behind134

learning spurious correlations within NNs (Shah et al., 2020).135

Implicit bias of gradient descent: There is also a large body of work understanding the implicit bias136

of gradient descent dynamics. Most of these works are for standard linear (Ji & Telgarsky, 2019) or137

deep linear networks (Soudry et al., 2018; Gunasekar et al., 2018). For nonlinear neural networks,138

one of the well-known results is for the case of 1-hidden layer neural networks with homogeneous139

activation functions (Chizat & Bach, 2020), which we crucially use in our proofs.140
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3 Preliminaries141

In this section, we provide the notation and background on infinite width max-margin classifiers that142

is required to interpret the results of this paper.143

3.1 Basic notions144

1-hidden layer neural networks and loss function. Consider instances x ∈ Rd and labels y ∈ {±1}145

jointly distributed as D. A 1-hidden layer neural network model (or fully connected network146

(FCN)) for predicting the label for a given instance x, is defined by parameters (w̄ ∈ Rm×d, b̄ ∈147

Rm, ā ∈ Rm). For a fixed activation function ϕ, given input instance x, the model is given as148

f((w̄, b̄, ā), x) := ⟨ā, ϕ(w̄x+ b̄)⟩, where ϕ(·) is applied elementwise. The cross entropy loss L for a149

given model f , input x and label y is given as L (f(x), y)
def
= log(1 + exp(−yf((w̄, b̄, ā), x))).150

Margin. For data distribution D, the margin of a model f(x) is given as min(x,y)∼D yf(x).151

Notation. Here is some useful notation that we will use repeatedly. For a matrix A, A(i, .) denotes152

the ith row of A. For any k ∈ N, Sk−1 denotes the surface of the unit norm Euclidean sphere in153

dimension k.154

3.2 Initializations155

The gradient descent dynamics of the network depends strongly on the scale of initialization. In this156

work, we primarily consider rich regime initialization.157

Rich regime. In rich regime initialization, for any i ∈ [m], the parameters (w̄(i, .), b̄(i)) of the first158

layer are sampled from a uniform distribution on Sd. Each ā(i) is sampled from Unif{−1, 1}, and159

the output of the network is scaled down by 1
m (Chizat & Bach, 2020). This is roughly equivalent in160

scale to Xavier initialization Glorot & Bengio (2010), where the weight parameters in both the layers161

are initialized approximately as N (0, 2
m ) when m ≫ d.162

In addition, we also present some results for the lazy regime initialization described below.163

Lazy regime. In the lazy regime, the weight parameters in the first layer are initialized with N (0, 1
d ),164

those of second layer are initialized with N (0, 1
m ) and the biases are initialized to 0 (Bietti & Mairal,165

2019; Lee et al., 2019). This is approximately equivalent in scale to Kaiming initialization (He et al.,166

2015).167

3.3 Infinite Width Case168

For 1-hidden layer neural networks with ReLU activation in the infinite width limit i.e., as m → ∞,169

Jacot et al. (2018); Chizat et al. (2019); Chizat & Bach (2020) gave interesting characterizations of170

the trained model. As mentioned above, the training process of these models falls into one of two171

regimes depending on the scale of initialization (Chizat et al., 2019):172

Rich regime. In the infinite width limit, the neural network parameters can be thought of as a173

distribution ν over triples (w, b, a) ∈ Sd+1 where w ∈ Rd, b, a ∈ R. Under the rich regime174

initialization, the function f computed by the model can be expressed as175

f(ν, x) = E(w,b,a)∼ν [a(ϕ(⟨w, x⟩+ b)] . (1)

Chizat & Bach (2020) showed that the training process with rich initialization can be thought of as176

gradient flow on the Wasserstein-2 space and gave the following characterization 2 of the trained177

model under the cross entropy loss E(x,y)∼D[L(ν, (x, y))].178

Theorem 3.1. (Informal)(Chizat & Bach, 2020) Under rich initialization in the infinite width limit179

with cross entropy loss, if gradient flow on 1-hidden layer NN with ReLU activation converges, it180

converges to a maximum margin classifier ν∗ given as181

ν∗ = argmax
ν∈P(Sd+1)

min
(x,y)∼D

yf(ν, x) , (2)

2Theorem 3.1 is an informal version of Chizat & Bach 2020, Theorem 5. For exact result, refer Theorem E.1
in Appendix E
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Figure 2: Illustration of an IFM dataset. Given a class ±1 represented by blue and red respectively,
each coordinate value is drawn independently from the corresponding distribution. Shown above are
the supports of distributions on three different coordinates for an illustrative IFM dataset, for positive
and negative labels.

where P(Sd+1) denotes the space of distributions over Sd+1.182

This training regime is known as the ‘rich’ regime since it learns data dependent features ⟨w, ·⟩.183

Lazy regime. Jacot et al. (2018) showed that in the infinite width limit, the neural network behaves like184

a kernel machine. This kernel is popularly known as the Neural Tangent Kernel(NTK), and is given185

by K(x, x′) =
〈

∂f(x)
∂W , ∂f(x′)

∂W

〉
, where W denotes the set of all trainable weight parameters. This186

initialization regime is called ’lazy’ regime since the weights do not change much from initialization,187

and the NTK remains almost constant, i.e, the network does not learn data dependent features. We188

will use the following characterization of the NTK for 1-hidden layer neural networks.189

Theorem 3.2. Bietti & Mairal (2019) Under lazy regime initialization in the infinite width limit, the190

NTK for 1-hidden layer neural networks with ReLU activation i.e., ϕ(u) = max(u, 0), is given as191

K(x, x′) = ∥x∥∥x′∥κ
(

⟨x, x′⟩
∥x∥∥x′∥

)
,where κ(u) =

1

π
(2u(π − cos−1(u)) +

√
1− u2) .

Lazy regime for binary classification. Soudry et al. (2018) showed that for linearly separable datasets,192

gradient descent for linear predictors on logistic loss converges to the max-margin support vector193

machine (SVM) classifier. This implies that, any sufficiently wide neural network, when trained for a194

finite time in the lazy regime on a dataset that is separable by the finite-width induced NTK, will tend195

towards the L2 max-margin-classifier given by196

argmin
f∈H

∥f∥H s.t. yf(x) ≥ 1 ∀ (x, y) ∼ D , (3)

where H represents the Reproducing Kernel Hilbert Space (RKHS) associated with the finite width197

kernel (Chizat, 2020). With increasing width, this kernel tends towards the infinite-width NTK (which198

is universal (Ji et al., 2020)). Therefore, in lazy regime, we will focus on the L2 max-margin-classifier199

induced by the infinite-width NTK.200

4 Characterization of SB in 1-hidden layer neural networks201

In this section, we first theoretically characterize the SB exhibited by gradient descent on linearly202

separable datasets in the independent features model (IFM). The main result, stated in Theorem 4.1,203

is that for binary classification of inputs in Rd, even if there is a single coordinate in which the data is204

linearly separable, gradient descent dynamics will learn a model that relies solely on this coordinate,205

even when there are an arbitrarily large number d− 1 of coordinates in which the data is separable,206

but by a non-linear classifier. In other words, the simplicity bias of these networks is characterized by207

low dimensional input dependence, which we denote by LD-SB. We then experimentally verify that208

NNs trained on some real datasets do indeed satisfy LD-SB.209

4.1 Dataset210

We consider datasets in the independent features model (IFM), where the joint distribution over (x, y)211

satisfies p(x, y) = r(y)
∏d

i=1 qi(xi|y), i.e, the features are distributed independently conditioned on212

the label y Here r(y) is a distribution over {−1,+1} and qi(xi|y) denotes the conditional distribution213

of ith-coordinate xi given y. IFM is widely studied in literature, particularly in the context of naive-214

Bayes classifiers Lewis (1998). We make the following assumptions which posit that there are at least215

two features of differing complexity for classification: one with a linear boundary and at least one216

other with a non-linear boundary. See Figure 2 for an illustrative example.217
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• One of the coordinates (say, the 1st coordinate WLOG) is separable by a linear decision boundary218
3 with margin γ (see Figure 2), i.e, ∃γ > 0, such that γ ∈ Supp(q1(x1|y = +1)) ⊆ [γ,∞) and219

−γ ∈ Supp(q1(x1|y = −1)) ⊆ (−∞,−γ], where Supp(·) denotes the support of a distribution.220

• None of the other coordinates is linearly separable. More precisely, for all the other coordinates221

i ∈ [d] \ {1}, 0 ∈ Supp(qi(xi|y = −1)) and {−1,+1} ⊆ Supp(qi(xi|y = +1)).222

• The dataset can be perfectly classified even without using the linear coordinate. This means,223

∃i ̸= 1, such that qi(xi|y) has disjoint support for y = +1 and y = −1.224

Though we assume axis aligned features, our results also hold for any rotation of the dataset. While225

our results hold in the general IFM setting, in comparison, current results for SB e.g., Shah et al.226

(2020), are obtained for very specialized datasets within IFM, and do not apply to IFM in general.227

4.2 Main result228

Our main result states that, for rich initialization (Section 3.2), NNs demonstrate LD-SB for any IFM229

dataset satisfying the above conditions. Its proof appears in Appendix A.1.230

Theorem 4.1. For any dataset in the IFM model with bounded density and bounded support, satisfying231

the above conditions and γ ≥ 1, and for 1-hidden layer networks with ReLU activation in the infinite232

width limit (i.e., Eqn. (1)), there is a unique max margin classifier ν∗ (i.e., satisfying Eqn. (2)). This233

ν∗ is given by: ν∗ = 0.5δθ1 + 0.5δθ2 on Sd+1, where θ1 = ( γ√
2(1+γ2)

e1,
1√

2(1+γ2)
, 1/

√
2), θ2 =234

(− γ√
2(1+γ2)

e1,
1√

2(1+γ2)
,−1/

√
2) and e1

def
= [1, 0, · · · , 0] denotes first standard basis vector. This235

implies f(ν∗, Px(1) + P⊥x
(2)) = f(ν∗, x(1)) ∀ (x(1), y(1)), (x(2), y(2)) ∼ D, where P represents236

the (rank-1) projection matrix on first coordinate.237

Together with Theorem 3.1, this implies that if gradient flow converges, it converges to ν∗ given238

above. Since P is a rank-1 matrix and f(ν∗, Px(1) + P⊥x
(2)) = f(ν∗, x(1)), ν∗ satisfies the first239

two conditions of LD-SB (Definition 1.1) with k = 1 and ϵ1 = 0. Moreover, since at least one of the240

coordinates {2, . . . , d} has disjoint support for qi(xi|y = +1) and qi(xi|y = −1), P⊥(x) can still241

perfectly classify the given dataset, thereby implying the third condition of LD-SB with ϵ2 = 0.242

It is well known that the rich regime is more relevant for the practical performance of NNs since it243

allows for feature learning, while lazy regime does not (Chizat et al., 2019). Nevertheless, in the next244

section, we present theoretical evidence that LD-SB holds even in the lazy regime, by considering a245

much more specialized dataset within IFM.246

4.3 Lazy regime247

In this regime, we will work with the following dataset within the IFM family:248

For y ∈ {±1} we generate (x, y) ∈ D as249

x1 = γy, ∀i ∈ 2, .., d,xi =

{
±1 for y = 1
0 for y = −1

Although the dataset above is a point mass dataset, it still exhibits an important characteristic in250

common with the rich regime dataset – only one of the coordinates is linearly separable while others251

are not. For this dataset, we provide the characterization of max-margin NTK (as in Eqn. (3)):252

Theorem 4.2. There exists δ0 > 0 such that for every δ < δ0, there exists an absolute constant N253

such that for all d > N and γ ∈ [7, δ
√
d), the L2 max-margin classifier for joint training of both the254

layers of 1-hidden layer FCN with ReLU activation in the NTK regime on the dataset D, i.e., any f255

satisfying Eqn. (3) satisfies:256

pred(f(Px(1) + P⊥x
(2))) = pred(f(x(1))) ∀ (x(1), y(1)), (x(2), y(2)) ∈ D

where P represents the projection matrix on the first coordinate and pred(f(x)) represents the257

predicted label by the model f on x.258

3Using linear probe for classifying pretrained representations is a standard practice in self-supervised learning
(Chen et al., 2020a; Grill et al., 2020).
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Table 1: Demonstration of LD-SB in the rich regime: This table presents P⊥ and P logit as well
as prediction changes on the five datasets. These results confirm that projection of input x onto the
subspace spanned by P essentially determines the model’s prediction on x. ↑ (resp. ↓) indicates that
LD-SB implies a large (resp. small) value.

Dataset rank (P ) P⊥-LC (↓) P -LC (↑) P⊥-pC (↓) P -pC (↑)
b-Imagenette 1 28.57± 0.26 92.13± 0.24 6.35± 0.06 47.02±0.24
Imagenette 10 33.64± 1.21 106.29± 0.53 12.04±0.29 89.88±0.08
Waterbirds 3 25.24± 1.03 102.35± 0.19 6.78± 0.15 35.96±0.02

MNIST-CIFAR 1 38.97± 0.76 101.98± 0.31 5.41± 0.55 45.15±0.44
Imagenet 150 15.78± 0.05 132.05± 0.06 13.05±0.03 99.76±0.01

The proof of this theorem is presented in Appendix A.2. The above theorem shows that the prediction259

on a mixed example Px(1) + P⊥x
(2) is the same as that on x(1) (i.e., ϵ1 = 0 in Definition 1.1).260

Furthermore, since there exists at least one coordinate i ̸= 1 which can be used to perfectly classify261

the dataset, we have that Definition 1.1 is satisfied with ϵ2 = 0, thus establishing LD-SB.262

4.4 Empirical verification263

In this section, we will present empirical results demonstrating LD-SB on 4 real datasets: Imagenette264

(FastAI, 2021), a binary version of Imagenette (b-Imagenette), waterbirds-landbirds (Sagawa et al.,265

2020a) and Imagenet (Deng et al., 2009) as well as one designed dataset MNIST-CIFAR (Shah et al.,266

2020). More details about the datasets can be found in Appendix B.1.267

4.4.1 Experimental setup268

We take Imagenet pretrained Resnet-50 models, with 2048 features, for feature extraction and train a269

1-hidden layer fully connected network, with ReLU nonlinearity. During finetuning, we freeze the270

backbone Resnet-50 model and train only the 1-hidden layer head (details in Appendix B.1) .271

Demonstrating LD-SB: Given a model f(·), we establish its low dimensional SB by identifying a272

small dimensional subspace, identified by its projection matrix P , such that if we mix inputs x1 and273

x2 as Px1 + P⊥x2, the model’s output on the mixed input x̃ def
= Px1 + P⊥x2, f(x̃) is always close274

to the model’s output on x1 i.e., f(x1). We measure closeness in four metrics: (1) P⊥ logit change275

(P⊥-LC): relative change of logits wrt x1 i.e., ∥f(x̃)− f(x1)∥ / ∥f(x1)∥, (2)P logit change (P -LC):276

relative change wrt logits of x2 i.e., ∥f(x̃)− f(x2)∥ / ∥f(x2)∥, (3) P⊥-prediction change (P⊥-pC):277

P[pred(f(x̃)) ̸= pred(f(x1))], and (4) P -prediction change (P -pC): P[pred(f(x̃)) ̸= pred(f(x2))].278

The quantities rank (P ) and P⊥-pC correspond to k and ϵ1 in Definition 1.1 respectively. To279

demonstrate that the subspace P⊥ has features that are useful for prediction, we also train a new280

model fproj as follows. Given the initial model f and the corresponding projection matrix P , we then281

train another model fproj by projecting the input through P⊥ i.e., instead of using dataset (x(i), y(i))282

for training, we use (P⊥x
(i), y(i)) for training the second model (denoted by fproj). We refer to283

this training procedure as OrthoP for orthogonal projection. The quantity |Acc(f)− Acc(fproj)|284

corresponds to ϵ2 in Definition 1.1. We now describe how we identify P in rich and lazy regimes.285

4.4.2 Rich regime286

Theorem 4.1 suggests that asymptotically, the first layer weight matrix will be low rank. However,287

since we train only for a finite amount of time, the weight matrix will only be approximately low288

rank. To quantify this, we use the notion of effective rank Roy & Vetterli (2007).289

Definition 4.3. Given a matrix M , its effective rank is defined as e−
∑

i σi(M)2 log σi(M)2 where290

σi(M) denotes the ith singular value of M and σi(M)2
def
= σi(M)2∑

i σi(M)2 .291

One way to interpret the effective rank is that it is the exponential of von-Neumann entropy Petz292

(2001) of the matrix MM⊤

Tr(MM⊤)
, where Tr (·) denotes the trace of a matrix. For illustration, the effective293

rank of a projection matrix onto k dimensions equals k.294
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Table 2: Demonstration of LD-SB in lazy regime: This table presents P⊥ and P logit as well as
prediction changes on the five datasets. These results confirm that the projection of input x onto the
subspace spanned by P essentially determines the model’s prediction on x.

Dataset rank (P ) P⊥-LC (↓) P -LC (↑) P⊥-pC (↓) P -pC (↑)
b-Imagenette 1 36.94±1.01 138.41±1.62 5.5± 1.13 47.7± 1.55

Imagenette 15 55.99±3.86 133.86±5.42 11.25±0.36 89.75±0.15

Waterbirds 6 36.89±5.18 105.41±7.06 20.74±0.64 45.96±0.69

MNIST-CIFAR 2 24.9± 0.61 141.12±1.86 0.53± 0.24 49.83±0.78

Imagenet 200 32.74±0.02 132.47±0.04 18.2± 0.16 99.74±0.01

Table 3: Accuracy of fproj in rich regime

Dataset Acc(f ) Acc(fproj)

b-Imagenette 93.35 91.35± 0.32
Imagenette 79.67 71.93± 0.12
Waterbirds 90.29 89.92± 0.08

MNIST-CIFAR 99.69 98.95± 0.02
Imagenet 72.02 69.63± 0.08

Table 4: Accuracy of fproj in lazy regime

Dataset Acc(f ) Acc(fproj)

b-Imagenette 93.09 91.77± 0.34
Imagenette 80.31 77.34± 0.21
Waterbirds 90.4 89.5± 0.18

MNIST-CIFAR 99.74 98.54± 0.00
Imagenet 72.6 72.07± 0.08
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Figure 3: Evolution of effective rank of first layer
weight matrices in rich and lazy regimes.

Figure 3a shows the evolution of the effective295

rank through training on the four datasets. We296

observe that the effective rank of the weight297

matrix decreases drastically towards the end of298

training. In this case, we set P to be the sub-299

space spanned by the top singular directions of300

the first layer weight matrix. Table 1 presents301

the results for P⊥ and P -LC as well as pC, while302

Table 3 presents Acc(f) and Acc(fproj). These303

results establish LD-SB in the rich regime.304

4.4.3 Lazy regime305

For the lazy regime, it turns out that the rank of first layer weight matrix remains high throughout306

training, as shown in Figure 3b. However, we are able to find a low dimensional projection matrix P307

satisfying the conditions of LD-SB (as stated in Def 1.1) as the solution to an optimization problem.308

More concretely, given a pretrained model f and a rank r, we obtain a projection matrix P solving:309

min
P

1

n

n∑
i=1

(
L
(
f(Px(i)), y(i)

)
+ λL

(
f(P⊥x(i)),U [L]

))
where U [L] represents a uniform distribution over all the L labels, (x(1), y(1)), · · · , (x(n), y(n)) are310

training examples and L (·, ·) is the cross entropy loss. We reiterate that the optimization is only over311

P , while the model parameters f are unchanged. In words, the above function ensures that the neural312

network produces correct predictions along P and uninformative predictions along P⊥. Table 2313

presents the results for P⊥ and P -LC as well as pC, while Table 4 presents Acc(f) and Acc(fproj).314

These results again establish LD-SB in the lazy regime.315

5 Training diverse classifiers using OrthoP316

Our results above motivate a natural strategy to construct diverse ensembles i.e., use f and fproj317

instead of two independently trained models. In this section, we provide two natural diversity metrics318

and empirically demonstrate that OrthoP leads to diverse models in practice. We also demonstrate319

that an ensemble of f and fproj has higher robustness to Gaussian noise compared to an ensemble of320

independently trained models.321
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Table 5: Mistake diversity and class conditioned logit correlation of models trained independently
(Mist-Div (f, find) and CC-LogitCorr (f, find) resp.) vs trained sequentially after projecting out
important features of the first model (Mist-Div (f, fproj) and CC-LogitCorr (f, fproj) resp.). The
results demonstrate that f and fproj are more diverse compared to f and find.

Dataset Mist-Div
(f, find) (↑)

Mist-Div
(f, fproj) (↑)

CC-LogitCorr
(f, find) (↓)

CC-LogitCorr
(f, fproj) (↓)

B-Imagenette 3.87± 1.54 21.15± 1.57 99.88± 0.01 90.86± 1.08
Imagenette 6.6± 0.46 11.44± 0.65 99.31± 0.12 91± 0.59
Waterbirds 2.9± 0.52 14.53± 0.48 99.66± 0.04 93.81± 0.48

MNIST-CIFAR 0.0± 0.0 5.56± 7.89 99.76± 0.17 78.74± 2.28
Imagenet 6.97± 0.06 12.31± 0.16 99.5± 0.0 92.52± 0.01
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Figure 4: Variation of test accuracy vs standard deviation of Gaussian noise added to the pretrained
representations of the dataset. Here model1, ensemble-ind and ensemble-proj refer to the original
model f , ensemble of f and independently trained model find and ensemble of f and fproj trained
using OrthoP respectively.

Diversity Metrics: Given any two models f and f̃ , we empirically evaluate their diversity using two322

metrics. The first is mistake diversity: Mist-Div
(
f, f̃

)
def
= 1− |{i:f(x(i)) ̸=y(i) & f̃(x(i)) ̸=y(i)}|

min(|{i:f(x(i) )̸=y(i)}|,|{i:f̃(x(i)) ̸=y(i)}| ,323

where we abuse notation by using f(xi) (resp. f̃(xi)) to denote the class predicted by f (resp324

f̃ ) on xi. Higher Mist-Div
(
f, f̃

)
means that there is very little overlap in the mistakes of f and325

f̃ . The second is class conditioned logit correlation i.e., correlation between outputs of f and f̃ ,326

conditioned on the class. More concretely, CC-LogitCorr
(
f, f̃

)
=

∑
y∈Y Corr([f(xi)],[f̃(xi)]:yi=y)

|Y| ,327

where corr([f(xi)], [f̃(xi)] : yi = y) represents the empirical correlation between the logits of f and328

f̃ on the data points where the true label is y. Table 5 compares the diversity of two independently329

trained models (f and find) with that of two sequentially trained models (f and fproj). The results330

demonstrate that f and fproj are more diverse compared to f and find.331

Ensembling: Figure 4 shows the variation of test accuracy with the strength of gaussian noise added332

to the pretrained representations of the dataset. Here, an ensemble is obtained by weighted averaging333

of the logits of multiple models, trained either independently (find) or using OrthoP (fproj). We can334

see that, an ensemble of f and fproj is much more robust as compared to an ensemble of f and find.335

6 Conclusion: Summary, Limitations and Future Directions336

In this work, we propose a rigorous definition of simplicity bias, which is believed to be a key337

reason for their brittleness (Shah et al., 2020). In particular, we prove that 1-hidden layer networks338

suffer from low dimensional input dependence (LD-SB), and empirically verify this phenomenon on339

several real world datasets. We also propose a novel approach – OrthoP– to train diverse models, and340

demonstrate that an ensemble consisting of such diverse models is more robust to Gaussian noise.341

Extending these inisights to deeper models or in the finite width setting are interesting directions for342

future work.343
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A Proofs for rich and lazy regime520

A.1 Rich regime521

We restate Theorem 4.1 below and prove it.522

Theorem A.1. For any dataset in IFM model satisfying the conditions in Section 4.1, γ ≥ 1523

and f(ν, x) as in Eqn. (1), the distribution ν∗ = 0.5δθ1 + 0.5δθ2 on Sd+1 is the unique524

max-margin classifier satisfying Eqn. (2), where θ1 = ( γ√
2(1+γ2)

e1,
1√

2(1+γ2)
, 1/

√
2), θ2 =525

(− γ√
2(1+γ2)

e1,
1√

2(1+γ2)
,−1/

√
2) and e1

def
= [1, 0, · · · , 0] denotes first standard basis vector. In526

particular, this implies that if gradient flow for 1-hidden layer FCN with ReLU activation under527

rich initialization in the infinite width limit with cross entropy loss converges, and satisfies the528

technical conditions in Theorem E.1, then it converges to ν∗ satisfying f(ν∗, Px1 + P⊥x2) =529

f(ν∗, x1)∀(x1, y1), (x2, y2) ∈ D, where P represents the (rank-1) projection matrix on the first530

coordinate.531

Proof of Theorem A.1: The proof relies on showing that ν∗ is a max-margin classifier as in Theorem532

3.1. To this end, we employ a primal-dual characterization of max-margin classifiers and construct533

a dual certificate that proves the optimality of margin of ν∗. Chizat & Bach (2020) showed the534

following primal-dual characterization of maximum margin classifiers in eqn. (2):535

Lemma A.2. (Chizat & Bach, 2020) ν∗ satisfies eqn. (2) if there exists a data distribution p∗ such536

that the following two complementary slackness conditions hold:537

Supp(ν∗) ⊆ argmax
(w,b,a)∈Sd+1

E(x,y)∼p∗y[a(ϕ(⟨w, x⟩+ b))] and (4)

Supp(p∗) ⊆ argmin
(x,y)∼D

yE(w,b,a)∼ν∗ [a(ϕ(⟨w, x⟩+ b))] . (5)

The plan is to construct a distribution p∗ that satisfies the conditions of the above Lemma.538

Uniqueness. Note further that for a fixed p∗, E(x,y)∼p∗yf(ν, x) is an upper bound for the margin539

min(x,y)∼D yf(ν, x) of any classifier ν. Hence, for uniqueness, it suffices to show that δθ1 , δθ2 are540

the unique maximizers of the objective on the RHS of eqn. (4) and that the unique maximum margin541

convex combination of δθ1 , δθ2 over D is ν∗.542

We first describe the support D of p∗. For y ∈ {±1} we generate (x, y) ∈ D as543

x1 = γy
544

∀i ∈ 2, .., d,xi =

{
±1 for y = 1
0 for y = −1

Now for (x, y) ∈ D, define545

p∗(x, y) =

{
0.5 for y = 1
0.5d for y = −1

(6)

Note that p∗ is supported on 2d−1 positive instances and one negative instance. We begin by showing546

eqn. (5).547

Claim A.3. p∗ as in eqn. (6) satisfies eqn. (5). Further, the unique maximum margin convex548

combination of δθ1 , δθ2 is ν∗.549

Proof. Let us find the minimizers (x, y) ∼ D of yf(ν, x) = yE(w,b,a)∼ν∗ [a(ϕ(⟨w, x⟩+ b))] for any550

ν = λδθ1 + (1− λ)δθ2 , 0 ≤ λ ≤ 1.551

yf(ν, x) for (x, y) with y = −1 (denoting x1 by −α1, where α1 ≥ γ) is552

yf(ν, x) = −1
[
λ ∗ ϕ

(
γ√

2(1 + γ2)
e⊤1 (−α1e1) +

1√
2(1 + γ2)

)
∗ 1√

2

+ (1− λ) ∗ ϕ

(
− γ√

2(1 + γ2)
e⊤1 (−α1e1) +

1√
2(1 + γ2)

)
∗ −1√

2

]
,
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and for (x, y) with y = 1 (denoting x1 by α2, where α2 ≥ γ) is553

yf(ν, x) = 1
[
λ ∗ ϕ

(
γ√

2(1 + γ2)
e⊤1 (α2e1) +

1√
2(1 + γ2)

)
∗ 1√

2

+ (1− λ) ∗ ϕ

(
− γ√

2(1 + γ2)
e⊤1 (α2e1) +

1√
2(1 + γ2)

)
∗ −1√

2

]
.

As γ ≥ 1, the expressions above equal λ
√
γα1+1
2 and (1 − λ)

√
γα2+1
2 respectively, and hence are554

minimized at α1 = α2 = γ. Hence, the margin of ν is min(λ, 1 − λ)

√
1+γ2

2 which is uniquely555

maximized at λ = 1/2. Further for λ = 1/2, all points in D have the same value of yf(ν, x).556

In the rest of the proof we show eqn. (4), Let us denote by g(w, b, a) := E(x,y)∼p∗y[a(ϕ(⟨w, x⟩+b))].557

We show that δθ1 , δθ2 are the only maximizers of g(w, b, a) over Sd+1.558

We first find g(θ1), g(θ2).559

g(θ1) = Pr(y = 1) · 1 · 1√
2
· ϕ

(
γ√

2(1 + γ2)
eT1 (γe1) +

1√
2(1 + γ2)

)

+ Pr(y = −1) · −1 · 1√
2
· ϕ

(
γ√

2(1 + γ2)
eT1 (−γe1) +

1√
2(1 + γ2)

)
=

√
γ2 + 1

4
,

where the first term is because w2, w3, . . . , wd are zero for θ1. Similarly, g(θ2) =
√

γ2+1

4 . We now560

show that g(w, a, b) <
√

γ2+1

4 for (w, a, b) /∈ {θ1, θ2}.561

We begin by showing the following simple but useful claim.562

Claim A.4. All maximizers of g(w, b, a) over Sd+1 satisfy |a| = 1/
√
2.563

Proof. The proof essentially follows from the 1−homogeneity of the ReLU function ϕ and sepa-564

rability of g(w, b, a). Note that g(w, b, a) =
√

∥w∥2 + b2a · g(w′, b′, 1) where ∥w′∥2 + b2 = 1.565

Maximizing g(w, b, a) is equivalent to maximizing g(w′, b′, 1) over Sd and a
√
∥w∥2 + b2 over Sd+1566

respectively. The second of these has its unique maximum at |a| = 1/
√
2, completing the proof.567

Now express g(w, b, a) as568

g (w, b, a) = a
(
Pr(y = 1)E[ϕ(wTx+ b)|y = 1]− Pr(y = −1)E[ϕ(wTx+ b)|y = −1]

)
=

a

2

(
Eσ

[
ϕ(γw1 + b+

d∑
i=2

σiwi)
]
− ϕ(b− γw1)

)
, (7)

where σi are independent Rademacher random variables. We have two cases on a:569

Case 1: a = 1/
√
2. By eqn. (7) we have570

g(w, b, 1/
√
2) ≤ 1

2
√
2
Eσ

[
ϕ(γw1 + b+

d∑
i=2

σiwi)
]
.

To simplify the above, define the random variable X =
∑d

i=2 σiwi and denote γw1 + b by α. Note571

that |α| = |γw1 + b| ≤
√

γ2+1
2 which follows from ∥w∥2 + b2 = 1/2. The expectation in the last572

expression above becomes573

E[ϕ(X + α)] = E[(X + α)1{X + α ≥ 0}] = E[X1{X ≥ −α}] + αPr(X ≥ −α)

= E[X1{X ≥ α}] + α(1− Pr(X ≥ α)) ≤ E[X1{X ≥ α}] + α ,
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where the last equality follows from symmetry of X . Note that Var(X) =
∑d

i=2 w
2
i which is at most574

1
2 − α2

1+γ2 (using γw1 + b = α and ∥w∥2 + b2 = 1/2). Using A.5 to upper bound E[X1{X ≥ α}]575

we have576

E[ϕ(X + α)] ≤ α+

√√√√1

2
min

(
1

2
,

1
2 − α2

1+γ2

2α2

)(
1

2
− α2

1 + γ2

)
.

We can check that the RHS of the above has its unique maximizer at α =
√

1+γ2

2 for |α| ≤
√

1+γ2

2 .577

Hence g(w, b, a) ≤
√

1+γ2

4 in this case. We are now done since any (w1, b) satisfying γw1 + b =578 √
1+γ2

2 and w2
1 + b2 ≤ 1/2 has b = 1√

2(1+γ2)
.579

Case 2: a = −1/
√
2. Using eqn. (7) we have g(w, b,−1/

√
2) ≤ ϕ(b − γw1)/2

√
2 which for580

b2 + w2
1 ≤ 1/2 attains its unique maximum

√
γ2+1

4 at b = 1√
2(1+γ2)

.581

Finally, note that the weights of the trained network (w, b, a) are sampled from ν∗. Hence, the final582

claim in the theorem about f(ν∗, Px1 +P⊥x2) follows since the distribution of w only has a support583

on e1 and −e1.584

585

A.1.1 Auxiliary lemmas for rich regime586

Lemma A.5. For any symmetric discrete random variable X with bounded variance, for α > 0,587

E[XI(X ≥ α)] ≤

√
1

2
min

(
1

2
,
V ar(X)

2α2

)
V ar(X) .

Proof.

E[XI(X ≥ α)] =
∑
x≥α

xp(x) =
∑
x≥α

√
p(x)

√
p(x)x ≤

√
p(X ≥ α)

∑
x≥α

x2p(x) , (8)

where the last inequality is by Cauchy-Schwartz. Also by Chebyshev’s inequality, p(|X| ≥ α) ≤588

V ar(X)/2α2. Combining this with eqn. (8) and using symmetry of X and non-negativity of α gives589

the required lemma.590

A.1.2 OrthoP method on IFM591

Here, we theoretically establish that f and fproj obtained via OrthoP rely on different features for592

any dataset within IFM. Consequently, by the definition of IFM, f and fproj have independent logits593

conditioned on the class.594

Proposition A.6. Consider any IFM dataset as described in Section 4.1. Let f be the model described595

in Theorem 3.1 and fproj be the second model obtained by OrthoP . Then, the outputs f and fproj on596

x i.e., f(x) and fproj(x) depend only on x1 and {x2, · · · , xd} respectively. Let the model obtained in597

Theorem 3.1 be denoted by f . Consider the projection matrix P along the top singular vector of the598

first layer weight matrix of f . Then, the dataset obtained by projecting the input through P⊥ is not599

separable along the linear coordinate.600

Proof. As shown in Theorem 3.1, the final distribution of the weights is given by ν∗ = 0.5δθ1+0.5δθ2 ,601

where θ1 = ( γ√
2(1+γ2)

e1,
1√

2(1+γ2)
, 1/

√
2), θ2 = (− γ√

2(1+γ2)
e1,

1√
2(1+γ2)

,−1/
√
2) and e1

def
=602

[1, 0, · · · , 0] denotes first standard basis vector.603

As the first layer weight matrix only has support along the e1 direction, therefore its top singular604

vector also points along the e1 direction. Hence, P = e1e
⊤
1 and P⊥ = I − e1e

⊤
1 , where I denotes605

the identity matrix. Thus, the dataset obtained by projecting the input through P⊥ has value 0 for the606

linear coordinate, for both y = +1 and y = −1. Hence, it is not separable along the linear coordinate.607

Thus, the second model fproj relies on other coordinates for classification.608
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A.2 Lazy regime609

Theorem 4.2 is a corollary of the following more general theorem.610

Theorem A.7. Consider a point x ∈ D. For sufficiently small ϵ > 0, there exist an absolute constant611

N such that for all d > N, γ < ϵ
√
d and γ ≥ 7, for the joint training of both the layers of 1-hidden612

layer FCN with ReLU activation in the NTK regime, the prediction of any point of the form (ζ, x2:d)613

satisfies the following:614

1. For ζ ≥ 0.73, the prediction is positive.615

2. For ζ ≤ −0.95γ, the prediction is negative.616

The above theorem establishes that perturbing x1 by O(γ) changes pred(f(x)) for x ∈ D (whereas a617

classifier exists that achieves a margin of Ω(
√
d) on D, as D has margin 1 for coordinates {2 · · · d}).618

As γ = o(d), this shows that the learned model is adversarially vulnerable.619

Proof of Theorem A.7. The idea of the proof is to obtain an analytical expression for f(x) using KKT620

conditions for the max-margin SVM for the NTK kernel (as in Theorem 3.2).621

We begin with some preliminaries. We will refer to the first coordinate of the instance as the622

’linear’ coordinate, and to the rest as ’non-linear’ coordinates. Also, henceforth we append an extra623

coordinate with value 1 to all our instances (corresponding to bias term) - as is standard for working624

with unbiased SVM without loss of generality.625

Explicit expression for f . Using representer theorem for max margin kernel SVM, we know that f626

can be expressed as627

f(x) =
∑

(x(t),y(t))∈D

λty
(t)K(x, x(t)) ,

for some λt ≥ 0 (that are known as Lagrange multipliers). Further by KKT conditions, a function628

possessing such a representation (that correctly classifies D) has maximum margin if y(t)f(x(t)) = 1629

whenever λt > 0 (training points t satisfying λt > 0 are called support vectors).630

We begin with a useful claim.631

Claim A.8. The max margin kernel SVM for D with the NTK kernel has all points in D as support632

vectors.633

Proof. By the above discussion, it suffices to show that the (unique) solution α ∈ R|D| to Kα = y634

satisfies sign(αi) = y(i) for all i, where K is the |D| × |D| Gram matrix with (i, j)th entry635

K(x(i), x(j)) and yi = y(i) (the Lagrange multipliers λi are then given by yiαi).636

Structure of Gram matrix. Order D so that the positive instances appear first. Then the Gram637

matrix K has a block structure of the form
(

B C
CT R

)
where B ∈ R2d−1×2d−1

and R ∈ R are the638

Gram matrices for the positive and negative instances respectively, and C ∈ R2d−1×1 represents the639

K(x(i), x(|D|)) values for i < |D|.640

Recall that for the NTK kernel, K(x(i), x(j)) has the form ∥x(i)∥∥x(j)∥κ(⟨x(i), x(j)⟩). Note all the641

positive instances have the same norm (denoted by ρ1 =
√
d+ γ2) and the inner product between642

two positive instances depends only on the number i of non-matching non-linear coordinates (denoted643

by βi for 0 ≤ i ≤ d− 1). Hence, the rows of B are permutations of each other, with the entry ρ21βi644

appearing
(
d−1
i

)
times. Similarly, the entries in C are all equal and are denoted by ρ1ρ2βd where βd645

denotes κ(x(t), x|D|) for any t < |D| and ρ2 = ∥x|D|∥ =
√
1 + γ2. The only entry in R is ρ22κ(1).646

In particular,647

βi = κ

(
d− 2i+ γ2

d+ γ2

)
for i ∈ [|D| − 1], and βd = κ

(
1− γ2√

d+ γ2
√

1 + γ2

)
.

Now we are ready to solve Kα = y. By symmetry in the structure of K, α looks like [a, a, ......, b],648

where the first |D| − 1 entries are the same.649
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Expanding Kα = y, we get two equations given by650

aρ21

(
d−1∑
i=0

(
d− 1

i

)
βi

)
+ bρ1ρ2βd = 1 and 2d−1aρ1ρ2βd + ρ22κ(1)b = −1 .

Solving, we get651

a =
ρ2κ(1) + ρ1βd

ρ21ρ2
∑d−1

i=0

((
d−1
i

)
[κ(1)βi − β2

d ]
) and b =

−1− 2d−1aρ1ρ2βd

ρ22κ(1)
.

We now show that a > 0 and b < 0. Note that for sufficiently large d, βd can be made arbitrarily652

close to κ(0) = 1/π (since κ is smooth around 0). Hence, a > 0 implies b < 0. We in fact give the653

following estimate for a:654

a = 21−d · ρ2κ(1) + ρ1βd

ξρ21ρ2
where

2

π
− 1

π2
+O

(
1

d

)
≤ ξ ≤ 2 +O

(
1

d

)
. (9)

For the lower bound on ξ, write655

d−1∑
i=0

(
d− 1

i

)
[κ(1)βi − β2

d ] = κ(1)

⌊d/2⌋∑
i=0

(
d− 1

i

)
(βi + βd−1)− 2d−1β2

d

≥ κ(1)

⌊d/2⌋∑
i=0

(
d− 1

i

)
2βd/2 − 2d−1β2

d ≥ 2d−1

(
κ(1)κ(0)− κ2(0) +O

(
1

d

))
,

where for the first inequality we used convexity of κ and for the second inequality we used βd/2 =656

κ(0) +O(1/d), βd = κ(0) +O(1/
√
d). For the upper bound on ξ, write657

d−1∑
i=0

(
d− 1

i

)
[κ(1)βi − β2

d ] ≤ κ(1)

d−1∑
i=0

(
d− 1

i

)
κ

(
1− 2i

d+ γ2

)

≤ κ(1)

d−1∑
i=0

(
d− 1

i

)(
2− 2i

d+ γ2

)
= κ(1)2d − κ(1)(d− 1)2d−1

d+ γ2
,

where for the second inequality we used κ(u) ≤ 1 + u (which holds by convexity and κ(−1) =658

0, κ(1) = 2).659

Now we analyze predicted labels for points of the form (ζ, x2:d+1) where x ∈ D. We make two660

cases depending on the label of x.661

Predicted label for point (ζ, x(t)
2:d+1) where x(t) ∈ D has positive label662

Our point (denoted by x) has the form (ζ, ζ1, ζ2, . . . , ζd, 1) where ζi ∈ ±1. The idea of the proof is663

to write f explicitly as a function of ζ and work with its first order Taylor expansion around ζ = γ,664

with some additional work to take care of non-smoothness of f .665

Explicit form for f . Let τi
def
= ⟨x, x′⟩/(∥x∥∥x′∥) for a positive instance x′ ∈ D, where x and x′666

have exactly i non-matching non-linear coordinates (for 0 ≤ i ≤ d− 1). Similarly denote by τd the667

quantity ⟨x, x|D|⟩/(∥x∥∥x|D|∥). In particular,668

τi =

(
d− 2i+ γζ

ρ1∥x∥

)
and τd =

(
1− γζ

ρ2∥x∥

)
.

By the above discussion, we have669

f(x) = a

|D|−1∑
t=1

K(x, x(t))

+ bK(x, x|D|) = aρ1∥x∥

(
d−1∑
i=0

(
d− 1

i

)
κ(τi)

)
+ bρ2∥x∥κ(τd) .
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Substituting b and denoting f(x)/∥x∥ by g(ζ) we get670

g(ζ) = aρ1

[
d−1∑
i=0

(
d− 1

i

)
κ(τi(ζ))−

2d−1βd

κ(1)
κ(τd(ζ))

]
− κ(τd(ζ))

ρ2κ(1)
. (10)

Now try to expand g(ζ) using the Taylor series around ζ = γ (note that g(γ) = 1/ρ1). Note that671

κ′ can however be unbounded around −1 and 1. To get around this, write g = h+ q, where h has672

bounded first and second derivative, and q has lower order than h for ζ of interest. In particular,673

h(ζ) = aρ1

 3d/4∑
i=d/4

(
d− 1

i

)
κ(τi(ζ))−

2d−1βd

κ(1)
κ(τd(ζ))

− κ(τd(ζ))

ρ2κ(1)
and

674

q(ζ) = aρ1

 ∑
i:|d/2−i|>d/4

(
d− 1

i

)
κ(τi(ζ))

 .

Observe that q(ζ) = o(cd) for c < 1 using the estimate eqn. (9) for a and concentration for sums of675

independent Bernoullis. By Taylor’s theorem,676

g(ζ) = h(γ) + h′(γ)(ζ − γ) +
h′′(θ)(ζ − γ)2

2
+ q(ζ) , (11)

for some θ ∈ [γ, ζ], where h(γ) ≈ 1/
√
d. It will turn out that |h′(γ)| = Θ(1/

√
d), |h′′(ζ)| =677

o(1/
√
d). This will allow us to complete the proof using the linear approximation of g(ζ) by678

neglecting the second order term and q(ζ). We now compute h′, h′′, treating ∥x∥ =
√

d+ ζ2 as a679

constant for exposition (the proof works without this approximation or the reader may think of γ as680

o(
√
d)). Using τ ′i(ζ) ≈

γ
ρ1∥x∥ , τ

′
d(ζ) ≈

−γ
ρ2∥x∥ ,681

h′(ζ) ≈ aρ1

[
d−1∑
i=0

(
d− 1

i

)
κ′(τi(ζ))

γ

ρ1∥x∥
+

2d−1βd

κ(1)
κ′(τd(ζ))

γ

ρ2∥x∥

]
+

κ′(τd(ζ))

ρ2κ(1)

γ

ρ2∥x∥

h′′(ζ) ≈ aρ1

[
d−1∑
i=0

(
d− 1

i

)
κ′′(τi(ζ))

γ2

ρ21∥x∥2
− 2d−1βd

κ(1)
κ′′(τd(ζ))

γ2

ρ22∥x∥2

]
− κ′′(τd(ζ))

ρ2κ(1)

γ2

ρ22∥x∥2
.

Plugging ∥x∥ ≈ ρ1 ≈
√
d and substituting a from eqn. (9),682

h′(ζ) =
(1 + β2

d/ξ)κ
′(τd(ζ))γ

ρ22κ(1)
√
d

+ o

(
1√
d

)
and h′′(ζ) = O

(
1

d

)
,

which substituted in eqn. (11) with τd(ζ) ≈ 0, βd ≈ κ(0), κ′(τd(ζ)) ≈ κ′(0) gives683

g(ζ) =
1√
d

(
1 +

(1 + κ2(0)/ξ)κ′(0)γ

κ(1)ρ22
(ζ − γ)

)
+ o

(
1√
d

)
,

Hence, g(ζ) > 0 whenever the coefficient of 1/
√
d above is bounded above zero, and a similar684

condition holds for g(ζ) < 0. Using the estimates of ξ from eqn. (9) and κ′(0) = 1, κ(0) =685

1/π, κ(1) = 2, ρ22 = 1+γ2 in the above gives that g(ζ) > 0 for ζ > −0.68γ−1.68/γ and g(ζ) < 0686

for ζ < −0.905γ − 1.905/γ.687

Predicted label for point (ζ, x(t)
2:d+1) where x(t) ∈ D has negative label688

Following the same plan, write our point (denoted by x) as (ζ, 0, . . . , 0, 1).689

Explicit form for f . Begin by finding690

τi =

(
1 + γζ

ρ1∥x∥

)
and τd =

(
1− γζ

ρ2∥x∥

)
.

eqn. (10) now gives691

g(ζ) = 2d−1aρ1

[
κ(τ0(ζ))−

βdκ(τd(ζ))

κ(1)

]
− κ(τd(ζ))

ρ2κ(1)
.
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Expanding κ(τ0(ζ)) using Taylor series around ζ = −1/γ,692

κ(τ0(ζ)) = κ(0) + κ′(τ0(θ))τ
′
0(θ)(ζ +

1

γ
) ,

for some θ ∈ [−1, 1]. For large d, τ0(θ) ≈ 0 and τ ′0(θ) = O(1/
√
d). Hence we have693

g(ζ) =
ρ2κ(1) + ρ1βd

ξρ1ρ2

[
κ(0) +O

(
1√
d

)
− βdκ(τd(ζ))

κ(1)

]
− κ(τd(ζ))

ρ2κ(1)

=
1

ρ2

(
κ2(0)

ξ
−
(
κ2(0)

ξκ(1)
+

1

κ(1)

)
κ(τd(ζ))

)
+ o(1) .

As before g(ζ) > 0 whenever the coefficient of 1/ρ2 above is bounded above zero which happens for694

ζ ≥ 0.73 (for γ ≥ 3). Similarly, g(ζ) < 0 for ζ ≤ 0.695

20



B Experiments696

In this section, we provide experimental details, including hyperparameter tuning setup and some697

additional experiments.698

B.1 Details on the experimental setting699

We will first describe the four datasets that have been used in this work.700

1. Imagenette (FastAI, 2021): This is a subset of 10 classes of Imagenet, that are comparatively701

easier to classify.702

2. b-Imagenette: This is a binarized version of Imagenette, where only a subset of two classes703

(tench and English springer) is used.704

3. Waterbirds-Landbirds (Sagawa et al., 2020a): This is a majority-minority group dataset,705

consisting of waterbirds on water and land background, as well as landbirds on land and706

water background. This dataset serves as a baseline for checking the dependence of model707

on the spurious background feature when predicting the bird class, as most of the training708

examples have waterbirds on water and landbirds on land background.709

4. Imagenet (Deng et al., 2009): This is the standard benchmark for large scale image710

classification.711

5. MNIST-CIFAR (Shah et al., 2020): This is a collage dataset, created by concatenating712

MNIST and CIFAR images along an axis. This is a synthetic dataset for evaluating the713

simplicity bias of a trained model.714

Setup Throughout the paper, we work with the pretrained representations of the above datasets,715

obtained by using an Imagenet pretrained Resnet 50. We finetune a 1-hidden layer FCN with a hidden716

dimension of 100 (8000 for imagenet) on top of these representations (keeping the backbone fixed)717

using SGD with a momentum of 0.9. Every model is trained for 20000 (100000 for Imagenet) steps718

with a warmup and cosine decay learning rate scheduler. For each of the runs, we tune the batch719

size, learning rate and weight decay using validation accuracy. Below are the hyperparameter tuning720

details:721

• Batch size ∈ {128, 256}722

• Learning rate:723

– Rich regime: ∈ {0.5, 1.0} (for imagenet, ∈ {5.0, 10.0} as learning rate in rich regime724

needs to scale up with the hidden dimension)725

– Lazy regime: ∈ {0.01, 0.05}726

• Weight decay: ∈ {0, 1e−4}727

The final numbers reported are averaged across 3 independent runs with the selected hyperparameters.728

Evaluation For Imagenette, b-Imagenette, Imagenet and MNIST-CIFAR, we report the standard729

test accuracy in all the experiments. For waterbirds, we report train-adjusted test accuracy, as reported730

in Sagawa et al. (2020a). Precisely, accuracy for each group present in the test data is individually731

calculated and then weighed by the proportion of the corresponding group in the train dataset.732

B.2 Additional experimental results733

In this section, we present a few additional experimental results.734

Results on Imagenet The evolution of effective rank of the first layer weight matrix is shown in735

Figure 5. As can be seen, the weight matrix becomes sufficiently low rank in thre rich regime as the736

training progresses.737

Singular value decay . In Figure 6, we provide the singular value decay of the weight matrix for738

the first model trained in rich regime. As can be seen, the top few singular values capture most of the739

Frobenius norm of the matrix.740
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Figure 5: Evolution of effective rank of first layer weight matrix (dimension - 2048 × 2000) for
Imagenet dataset in rich and lazy regime.
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the first layer weight matrix trained in rich regime for various datasets.

MNIST-CIFAR In Figure 7, we show that an ensemble of f and fproj has better gaussian robustness741

than an ensemble of f and find on MNIST-CIFAR dataset.742

Non-linearity of decision boundary Figure 8 shows the decision boundary of f and fproj on743

2-dimensional subspace spanned by top two singular vectors of the weight matrix. We observe that744

the decision boundary of the second model is more non-linear compared to that of the first model.745

We also report a quantitative measure of non-linearity of the decision boundary along the top two746

singular vectors for f and fproj. Basically, we fit a linear classifier to the decision boundary and report747

its accuracy. As shown in Table 6, the test accuracy obtained by the linear classifier for fproj is less748

than f .749

Variation of LD-SB with depth In Figure 9 and 10, we show the evolution of effective rank of750

weight matrices for depth-2 and 3 ReLU networks. As can be seen, the rank still decreases with751

training, however the effect is less pronounced for the initial layers. Note that the initialization used752

in these runs was the feature learning initialization as proposed in Yang & Hu (2021).753
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Figure 7: Variation of test accuracy with the standard deviation of Gaussian noise added to the
pretrained representations of MNIST-CIFAR dataset. Model 1 is kept fixed, and values for both the
ensembles are averaged across 3 runs.
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Figure 8: Decision boundaries for f and fproj for B-Imagenette and Waterbirds datasets, visualized in
the top 2 singular directions of the first layer weight matrix. The decision boundary of fproj is more
non-linear compared to that of f .

Table 6: Quantitative measurement of non-linearity of decision boundary – accuracy of fitted linear
classifier to the decision boundary

Dataset Linear-Classifier-Acc(f ) Linear-Classifier-Acc(fproj)

b-Imagenette 96.12 95.28± 0.2
Waterbirds 97.28 93.24± 0.24
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Figure 9: Evolution of effective rank of the weight matrices for a depth-2 ReLU network on Resnet-50
pretrained representations of the dataset
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Figure 10: Evolution of effective rank of the weight matrices for a depth-3 ReLU network on Resnet-
50 pretrained representations of the dataset
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C Extended Related Works754

In this section, we provide an extensive literature survey of various topics that the paper is based on.755

Low rank Simplicity Bias in Linear Networks Multiple works have established low rank sim-756

plicity bias for gradient descent on linear networks, both for squared loss as well as cross-entropy757

loss. For squared loss, Gunasekar et al. (2017) conjectured that the network is biased towards finding758

minimum nuclear norm solutions for two-layer linear networks. Arora et al. (2019) refuted the759

conjecture and instead argued that the network is biased towards finding low rank solutions. Razin &760

Cohen (2020) provided empirical support to the low rank conjecture, by providing synthetic examples761

where the network drives nuclear norm to infinity, but minimizes the rank of the effective linear762

mapping. Li et al. (2021) established that for small enough initialization, gradient flow on linear763

networks follows greedy low-rank learning trajectory. For binary classification on linearly separable764

data, Ji & Telgarsky (2019) showed that the weight matrices of a linear network eventually become765

rank-1 as training progresses.766

Low rank Simplicity Bias in Non-Linear Networks For non-linear networks, the work related to767

low-rank simplicity bias is rather sparse. Two of the most notable works are Huh et al. (2021) and768

Galanti & Poggio (2022). Huh et al. (2021) empirically established that the rank of the embeddings769

learnt by a neural network with ReLU activations goes down as training progresses. Galanti & Poggio770

(2022) provided an intuition behind the relation between the rank of the weight matrices and various771

hyperparameter such as batch size, weight decay etc. In contrast to these works, for 1 layer nets, we772

theoretically and empirically establish that the network depends on an extremely low dimensional773

projection of the input, and this bias can be utilized to develop a robust classifier.774

Relation to OOD Many recent works in OOD detection (Cook et al., 2020; Zaeemzadeh et al.,775

2021) explicitly create low-rank embeddings so that it is easier to discriminate them for an OOD776

point. Other works also implicitly rely on the low-rank nature of the embeddings. Ndiour et al. (2020)777

use PCA on the learnt features, and only model the likelihood along the small subspace spanned by778

the top few directions. Wang et al. (2022) utilise the low rank nature of the embeddings to estimate779

the perpendicular projection of a given data point to this low rank subspace and combine it with logit780

information to detect OOD datapoints. While there have been works implicitly utilizing the low rank781

property of embeddings, we note that our paper (i) demonstrates low rank property of the weights,782

rather than that of embeddings, and (ii) shows that it is a consequence of SB.783

Other Simplicity Bias There have been many works exploring the nature of simplicity bias in784

neural networks, both empirically and theoretically. Kalimeris et al. (2019) empirically demonstrated785

that SGD on neural networks gradually learns functions of increasing complexity. Rahaman et al.786

(2018) empirically demonstrated that neural networks tend to learn lower frequency functions first.787

Ronen et al. (2019) theoretically established that in NTK regime, the convergence rate depends on788

the eigenvalues of the kernel spectrum. Hacohen et al. (2020) showed that neural networks always789

learn train and test examples almost in the same order, irrespective of the architecture. Pezeshki et al.790

(2021) proposes that gradient starvation at the beginning of training is a potential reason for SB791

in the lazy/NTK regime but the conditions are hard to interpret. In contrast, our results are shown792

for any dataset in the IFM model in the rich regime of training. Lyu et al. (2021) consider anti-793

symmetric datasets and show that single hidden layer input homogeneous networks (i.e., without bias794

parameters) converge to linear classifiers. However, such networks have strictly weaker expressive795

power compared to those with bias parameters. Hacohen & Weinshall (2022) showed that for deep796

linear networks, in NTK regime, they learn the higher principal components of the input data first.797

Most of the previous works used simplicity bias as a reason behind better generalization of neural798

nets. However, Shah et al. (2020) showed that extreme simplicity bias could also lead to worse OOD799

performance.800

Learning diverse classifiers: There have been several works that attempt to learn diverse classifiers.801

Most works try to learn such models by ensuring that the input gradients of these models do not802

align (Ross & Doshi-Velez, 2018; Teney et al., 2022). Xu et al. (2022) proposes a way to learn803

diverse/orthogonal classifiers under the assumption that a complete classifier, that uses all features is804

available, and demonstrates its utility for various downstream tasks such as style transfer. Lee et al.805

(2022) learns diverse classifiers by enforcing diversity on unlabeled target data.806
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Spurious correlations: There has been a large body of work which identifies the reasons for807

spurious correlations in NNs (Sagawa et al., 2020b) as well as proposing algorithmic fixes in different808

settings (Liu et al., 2021; Chen et al., 2020b).809

Implicit bias of gradient descent: There is also a large body of work understanding the implicit bias810

of gradient descent dynamics. Most of these works are for standard linear (Ji & Telgarsky, 2019) or811

deep linear networks (Soudry et al., 2018; Gunasekar et al., 2018). For nonlinear neural networks,812

one of the well-known results is for the case of 1-hidden layer neural networks with homogeneous813

activation functions (Chizat & Bach, 2020), which we crucially use in our proofs.814

D More discussion on the extension of results to deep nets815

Extending our theoretical results to deep nets is a very exciting and challenging research direction. For816

shallow as well as deep nets, even in the mean field regime of training, results regarding convergence817

to global minima have been established (Chizat & Bach, 2018; Fang et al., 2021). However, to the818

best of our knowledge, only for 1-hidden layer FCN (Chizat & Bach, 2020), a precise characterization819

of the global minima to which gradient flow converges has been established. Understanding this820

implicit bias of gradient flow is still an open problem for deep nets, which we think is essential for821

extension of our results to deep nets.822

E Convergence to F1−max-margin classifier for ReLU networks823

In this section, we will provide a brief background on Wasserstein gradient flow and state the precise824

result of Chizat & Bach (2020) regarding the asymptotic convergence point of gradient flow on ReLU825

networks. We will follow the notation of Chizat & Bach (2020) for ease of the reader. In this entire826

section, we will consider that a neural network is parameterized by a probability measure µ on the827

neurons and is given by828

h(µ, x) =

∫
ϕ(w, x)dµ(w)

where ϕ(w, x) = b(a⊤(x, 1))+ (+ denotes the positive component, i.e the ReLU activation) with829

w = (a, b) ∈ Rd+2.830

E.1 Wasserstein gradient flow831

Gradient flow can be defined for many functions f over a general metric space X . For a given step832

size η, define833

xk+1 ∈ argmin f(x) +
1

2η
d(x, xk)

2

where d is the metric associated with X . With appropriate interpolation schemes (Santambrogio,834

2016), this curve converges to the gradient flow curve as step size tends to 0.835

Wasserstein metric on the space of probability measures is defined as836

Wp(ν1, ν2) = inf
γ∈Γν1,ν2

[∫
∥x− y∥pdγ

]1/p
where ν1, ν2 are two probability measures and γ is a coupling between them (i.e marginals of γ are837

ν1 and ν2). Here, we will be particularly concerned with the case p = 2. For two discrete measures838

ν1 = 1
m

∑
δxi

and ν2 = 1
m

∑
δyj

, their Wasserstein distance is defined as839

W 2
2 (ν1, ν2) =

1

m
min ∥xi − yσ(i)∥2

over all permutations σ : {1, ..,m} → {1, ...,m}. Notice that if we are considering a small840

neighborhood of ν1, then the mapping would remain the same within that small neighborhood. Thus,841

Wasserstein gradient flow on the discrete measure would be the same as gradient flow on the particles842

as the notion of distance is the same locally. This intuition leads to the proof that gradient flow on a843

2-layer neural net converges to Wasserstein gradient flow on the probability measure µ as width tends844

to infinity. This is made formal in Chizat & Bach (2018).845
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E.2 Asymptotic convergence point of gradient flow on ReLU networks846

A neural network is parameterized by a probability measure µ on the neurons and is given by847

h(µ, x) =

∫
ϕ(w, x)dµ(w)

where ϕ(w, x) = b(a⊤(x, 1))+ (+ denotes the positive component, i.e the ReLU activation) with848

w = (a, b) ∈ Rd+2. As the network is 2-homogeneous, a projection of the measure µ on the unit849

sphere can be defined. The projection operator (Π2) on the sphere for a measure µ is defined such850

that for any continuous function φ on the sphere,851 ∫
Sd+1

φ(θ)d[Π2(µ)](θ) =

∫
Rd+2

∥w∥2φ(w/∥w∥)dµ(w)

Now, let ρ denote the input distribution on the input space X and let the labeling function y : X → Y852

be deterministic. Then, consider the population objective given by853

F (µ) = − log

[∫
X
exp(−y(x)h(µ, x))dρ(x)

]
Note that log doesn’t affect the direction of the gradients, thus, the trajectory of gradient flow on this854

loss is the same as on exponential loss. Also, let the population smooth margin be given by855

S(f) = − log

(∫
X
exp(−f(x))dρ(x)

)
For this particular case, f(x) = y(x)h(µ, x). Denote y(x) · h(µ, x) by ĥ(µ).856

Theorem E.1. Suppose that ρ has bounded density and bounded support, and labeling function y is857

continuous, then there exists a Wasserstein gradient flow (µt) on F with µ0 = U(Sd)⊗ U{−1, 1},858

i.e, input (resp. output) weights uniformly distributed on the sphere (resp. on {−1, 1}). If ∇S(ĥ(µt))859

converges weakly in P(X ), if ν̄t = Π2(µt)/([Π2(µt)](Sd+1)) converges weakly in P(Sd+1) and860

F ′(µt) converges in C1
loc to F ′ that satisfies the Morse-Sard property, then h(ν̄∞, .) is a maximizer861

for max∥f∥F1
≤1 minx∈X y(x)f(x).862

where P(X ) denotes the space of probability distributions on X and [Π2(µt)](Sd+1) denotes the863

total mass of the measure Π2(µt) on Sd+1.864

To parse the theorem, note that865

∇S(f) =
exp(−f(x))dρ(x)∫

X exp(−f(x′))dρ(x′)

Thus, ∇S(f) convergence means that the exponentiated normalized margins converge. Also, ν̄t is866

similar to the directional convergence of weights, however, in this case, weights are replaced by867

directions in Sd+1. For explanation of the Morse-Sard property and the metric C1
loc, please refer to868

Appendix H of Chizat & Bach (2020).869
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