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APPENDIX

A PRELIMINARY

Theorem A.1 (Theorem 1.1 of (Tropp, 2012)). Consider a finite sequence {Xk} of independent, random, self-adjoint
matrices of dimension d. Assume that each random matrix satisfies

Xk � 0 and λ(Xk) ≤ R.

Define µmin = λmin(
∑
k E[Xk]) and µmax = λmax(

∑
k E[Xk]). Then

Pr

{
λmin(

∑
k

Xk) ≤ (1− δ)µmin

}
≤ d

(
e−δ

(1− δ)1−δ

)µmin/R

for δ ∈ [0, 1], and (4)

Pr

{
λmax(

∑
k

Xk) ≥ (1 + δ)µmax

}
≤ d

(
e−δ

(1 + δ)1+δ

)µmax/R

for δ ≥ 0 (5)

Lemma A.2 (Sherman-Morrison Formula). Let A ∈ Rn×n be an invertible matrix, and u, v ∈ Rn. Suppose that
1 + v>A−1u 6= 0. Then it holds that

(A+ uv>)−1 = A−1 − A−1uv>A−1

1 + v>A−1u
.

B TWO LAYER NEURAL NETWORK

Definition B.1 (Two layer neural network). We define two layer neural network as follows

fnn(W,a, x) :=
1√
m

m∑
r=1

arφ(w>r x) ∈ R

where x ∈ Rd is the input, wr ∈ Rd, r ∈ [m] is the weight vector of the first layer, W = [w1, · · · , wm] ∈
Rd×m, ar ∈ R, r ∈ [m] is the output weight, a = [a1, · · · , am]> and φ(·) is the non-linear activation function.
Here we consider only training the first layer W with fixed a, so we also write fnn(W,x) = fnn(W,a, x). Given
training data matrix X = [x1, · · · , xn] ∈ Rn×d and labels Y = [y1, · · · , yn] ∈ Rn, we denote fnn(W,X) =
[fnn(W,x1), · · · , fnn(W,xn)]> ∈ Rn.
Definition B.2. Given Fnn and the distribution D, let {v1, . . . , vd} be a fixed orthonormal basis of Fnn, where inner
products are taken under the distribution D, i.e.,

E
x∼D

[vi(x) · vj(x)] = 1,∀i = j ∈ [d]∣∣∣ E
x∼D

[vi(x) · vj(x)]
∣∣∣ ≤ ρ, ∀i 6= j ∈ [d]

Furthermore, for any function h ∈ Fnn, there exists α(h) := (α(h)1, . . . , α(h)d) under the basis (v1, . . . , vd) such
that

h(x) =

d∑
i=1

α(h)i · vi(x)

Remark. Note that in for linear function family Fnn, we know that d = d. However, for the neural network function
family Fnn, we will have d� d.
Definition B.3. Given distribution D and h ∈ Fnn, we define ‖h(x)‖D as

‖h(x)‖2D := E
x∼D

[|h(x)|2].

Claim B.4. If the activation φ in a neural network fnn satisfies the following conditions,

• φ(10d+log(1/ε0)/ log(d))(x) exists and is continuous.

• φ(10d+log(1/ε0)/ log(d))(x) ≤ 1, x ∈ R.
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then there exists {v1, . . . , vd} forms a fixed ρ-nearly orthonormal basis of Fnn where

d ≤
(

10d+ log(1/ε0)/ log(d)

d

)
.

Furthermore, for any W ∈ Rd×m, there exists h ∈ Fnn such that

‖h(x)− fnn(W,x)‖2D ≤ ε.

Besides, for any h ∈ Fnn, there exists W ∈ Rd×m such that

‖h(x)− fnn(W,x)‖2D ≤ ε.

Proof. For any activation φ : R→ R and input zr = w>r x ∈ R, f can be expand by Taylor’s theorem

φ(zr) = φ(0) + φ′(0)zr +
φ′′(0)

2!
z2r + · · ·+ φ(k)(0)

k!
zkr +

φ(k+1)(ξ)

(k + 1)!
zk+1
r

where ξ ∈ [0, zr].

It’s natural to consider the W bound, eg NTK regime. In NTK regime, we have with a high probability that

zr = w>r x ≤ ‖x‖1 ≤
√
d‖x‖2 ≤

√
d.

We can claim that

φ(k+1)(ξ)

(k + 1)!
zk+1
r ≤ (

e

k + 1
zr)

k+1 ≤ ε0.

where the first step follows from φ(k+1)(ξ) ≤ 1, the second step follows from k ≥ (e
√
d)2 + log(1/ε0)/ log(e

√
d).

Besides, taking the first k+ 1 terms in the Taylor’s theorem. Our neural network fnn can be seen as a polynomial with
d variable and at most k degree. So, our neural network fnn can be seen as a polynomial with at most

(
k+d
d

)
terms. As

any polynomial can be orthonormal decompose, we have that

d ≤
(
k + d

d

)
≤
(

10d+ log(1/ε0)/ log(d)

d

)
.

where the second step follows from d ≥ e.

Claim B.5. We will claim that polynomial, ReLU, Sigmoid, and Swish hold the condition mentioned in Claim B.4.

Lemma B.6. Let A ∈ Rd×d be defined as

A(i, j) = 1,∀i = j ∈ [d]

|A(i, j)| ≤ ρ,∀i 6= j ∈ [d].

We will claim that

λmax(A) ≤ 1 + dρ, λmin(A) ≥ 1− dρ.

Proof. First, we can lower bound λmin(A) as follows

λmin(A) ≥ λmin(I)− ‖I −A‖2
≥ 1− ‖I −A‖F
≥ 1− dρ

Second, we can upper bound λmax(A) as follows

λmax(A) = ‖A‖2
≤ ‖I‖2 + ‖A− I‖2
≤ 1 + ‖A− I‖F
≤ 1 + dρ
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C NOTATIONS

Claim C.1. For any function h ∈ Fnn, we have

Cl‖α(h)‖22 ≤ ‖h‖2D ≤ Cr‖α(h)‖22
where Cl := 1− ρ and Cr := 1 + ρ(d− 1).

Proof. We can rewrite ‖h‖2D as follows:

E
x∼D

[|
d∑
i=1

α(h)i · vi(x)|2] =

d∑
i=1

E
x∼D

[|α(h)i · vi(x)|2] + 2
∑

1≤i<j≤d

E
x∼D

[α(h)iα(h)j · vi(x)vj(x)]

=
d∑
i=1

|α(h)i|2 + 2ρ ·
∑

1≤i<j≤d

α(h)iα(h)j

= (1− ρ)‖α(h)‖22 + ρ(
d∑
i=1

α(h)i)
2

We can provide an upper bound,

E
x∼D

[|
d∑
i=1

α(h)i · vi(x)|2] = (1− ρ)‖α(h)‖22 + ρ(

d∑
i=1

α(h)i)
2

≤ (1− ρ)‖α(h)‖22 + ρd‖α(h)‖22
= (1− ρ+ ρd)‖α(h)‖22
= Cr‖α(h)‖22

We can provide a lower bound

E
x∼D

[|
d∑
i=1

α(h)i · vi(x)|2] = (1− ρ)‖α(h)‖22 + ρ(
d∑
i=1

α(h)i)
2

≥ (1− ρ)‖α(h)‖22
= Cl‖α(h)‖22

Thus, we complete the proof.

Now, we define condition number. Previous work only consider linear cases and we generalize it to NN.

Definition C.2. For any distributionD′ over the domainG and any function h : G→ R, let h(D
′)(x) =

√
D(x)
D′(x) ·h(x)

such that E
x∼D′

[
|h(D′)(x)|2

]
= E
x∼D′

[
D(x)
D′(x) |h(x)|2

]
= E
x∼D

[
|h(x)|2

]
. When the neural network function Fnn and D

is clear, we use KD′ to denote the condition number of sampling from D′, i.e.,

KD′ = sup
x

{
sup
h∈Fnn

{
|h(D′)(x)|2

‖hD′‖2D′

}}
= sup

x

{
D(x)

D′(x)
· sup
h∈Fnn

{ |h(x)|2

‖h‖2D

}}
.

Definition C.3. For any distribution D′ over the domain G and any function h : G → R. When the neural network
function Fnn and D is clear, we use Kα,D′ to denote the α-condition number of sampling from D′, i.e.,

Kα,D′ = sup
x

{
D(x)

D′(x)
· sup
h∈Fnn

{ |h(x)|2

‖α(h)‖22

}}
.

Definition C.4. Given Fnn and underlying distribution D, let P be a random sampling procedure that terminates in
k iterations (k is not necessarily fixed) and provides a coefficient αi and a distribution Di to sample xi ∼ Di in every
iteration i ∈ [k].

We say P is an ε-importance sampling procedure if it satisfies the following two properties:
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1. Let v1, . . . , vd of Fnn under D be defined as in Definition B.2. With probability 0.9, the matrix A(i, j) =
√
ui · vj(xi) ∈ Rk×d has λ(A∗A) ∈ [ 34 ,

5
4 ].

2. The coefficients always have
∑k
i=1 βi ≤

5
4 and βi ·Kα,Di ≤ ε/2.

Claim C.5. We will claim that

ClKD′ ≤ Kα,D′ ≤ CrKD′

Proof. Since, we have that

Cl
1

‖h‖2D
≤ 1

‖α(h)‖22
≤ Cr

{ 1

‖h‖2D

}
,

we can claim that

Cl · sup
x

{
D(x)

D′(x)
· sup
h∈Fnn

{ |h(x)|2

‖h‖2D

}}
≤ sup

x

{
D(x)

D′(x)
· sup
h∈Fnn

{ |h(x)|2

‖α(h)‖22

}}
≤ Cr · sup

x

{
D(x)

D′(x)
· sup
h∈Fnn

{ |h(x)|2

‖h‖2D

}}

Definition C.6. Given a importance sampling procedure P , we say the output of P is good only if the samples xi with
weights ui = βi ·D(xi)/Di(xi) satisfy the first property in Definition C.4. Given a joint distribution (D,Y ) and an
execution of a importance sampling procedure P with xi ∼ Di and ui of each i ∈ [k], let the f̃ be defined as

f̃ = arg min
h∈Fnn

{
k∑
i=1

ui · |h(xi)− yi|2
}

by querying yi ∼ (Y |xi) for each point xi .

D RECOVERY GUARANTEE FOR IMPORTANCE SAMPLES

D.1 PRELIMINARY

We state a tool from prior work,
Lemma D.1 (Lemma 4.3 of (Chen & Price, 2019)). Let P be a random sampling procedure terminating in k iterations
(k is not necessarily fixed) that in every iteration i, it provides a coefficient βi and a distribution Di to sample xi ∼
Di. Let the weight ui = βi · D(xi)

Di(xi)
and A ∈ Rk×d denote the matrix A(i, j) =

√
ui · vj(xi). Then for f =

arg min
h∈Fnn

E
(x,y)∼(D,Y )

[|y − h(x)|2],

E
P

[
‖A∗(~yu − ~fS,u)‖22

]
≤ sup

P

{ k∑
i=1

βi
}
·max

j

{
βj ·Kα,Dj

}
E

(x,y)∼(D,Y )
[|y − f(x)|2],

where Kα,Di is the condition number for samples from Di: Kα,Di = sup
x

{
D(x)
Di(x)

· sup
v∈F

{ |v(x)|2
‖α(v)‖22

}}
.

D.2 ANALYSIS FOR IMPORTANCE SAMPLING PROCEDURE

Lemma D.2. For any ε ∈ (0, 1), given S = (x1, . . . , xk) ⊂ Rd and their weights (u1, . . . , uk) ⊂ R≥0, let A be the
k × d matrix defined as

A(i, j) :=
√
ui · vj(xi).

Then,

λ(A∗A) ∈ [1− ε, 1 + ε].

can imply that

‖h‖2S,u :=

k∑
j=1

uj · |h(xj)|2 ∈ [
1− ε
Cr

,
1 + ε

Cl
] · ‖h‖2D for every h ∈ Fnn
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Proof. Notice that

A · α(h) =
(√
u1 · h(x1), . . . ,

√
uk · h(xk)

)
. (6)

We can show

‖h‖2S,u =

k∑
i=1

ui · |h(xi)|2

= ‖A · α(h)‖22
= α(h)∗ · (A∗ ·A) · α(h)

∈ [λmin(A∗ ·A), λmax(A∗ ·A)] · ‖α(h)‖22
⊆ [1− ε, 1 + ε] · ‖α(h)‖22

⊆ [
1− ε
Cr

,
1 + ε

Cl
] · ‖h‖2D

where the first step follows from the definition of the norm, the second step follows from the Eq. (6), the last step
follows from Cl‖α(h)‖22 ≤ ‖h‖2D ≤ Cr‖α(h)‖22.

For any ε > 0, given S = (x1, . . . , xk) ⊂ Rd and their weights (u1, . . . , uk) ⊂ R≥0. Let A be the k × d matrix
defined as

A(i, j) :=
√
ui · vj(xi).

For any h ∈ Fnn, let ‖h‖2S,u be defined as

‖h‖2S,u :=

k∑
j=1

uj · |h(xj)|2

Then, for any h ∈ Fnn

A · α(h) =
(√
u1 · h(x1), . . . ,

√
uk · h(xk)

)
. (7)

We consider the calculation of the f̃ . Given the weights (u1, · · · , uk) on (x1, . . . , xk) and labels (y1, . . . , yk), let ~yu
denote the vector of weighted labels (

√
u1 · y1, . . . ,

√
uk · yk). From Eq. (6), the empirical distance satisfied that for

any h ∈ Fnn

‖h(xi)− yi‖2S,u =
k∑
i=1

ui|h(xi)− yi|2

= ‖A · α(h)− ~yu‖22
where the second step follows from Eq. (6) and the definition of ~yu.

Let

f̃ = arg min
h∈Fnn

{
‖h(xi)− yi‖S,u

}
= arg min

h∈Fnn

{
‖A · α(h)− ~yu‖2

}
Then,

α(f̃) = (A∗ ·A)−1 ·A∗ · ~yu and f̃ =
d∑
i=1

α(f̃)i · vi.

Let

f = arg min
h∈Fnn

{
E

(x,y)∼(D,Y )
[|h(x)− y|2]

}
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Finally, we consider the distance between f and f̃ . For convenience, let ~fu =
(√
u1 · f(x1), . . . ,

√
uk · f(xk)

)
.

Because f ∈ Fnn and Eq. (6), we can claim that,

α(f) = (A∗ ·A)−1 ·A∗ · ~fu.

This implies

‖f̃ − f‖2D ∈ [Cl, Cr] · ‖α(f̃)− α(f)‖22 = [Cl, Cr] · ‖(A∗ ·A)−1 ·A∗ · (~yu − ~fu)‖22.

where the first step follows from ‖h‖2D ∈ [Cl, Cr]‖α(h)‖22 and α(f − g) = α(f)− α(g).

Theorem D.3. Given a neural network function family Fnn, joint distribution (D,Y ), and ε > 0, let P be an ε-
importance sampling procedure for Fnn and D, and let f = arg min

h∈F
E

(x,y)∼(D,Y )
[|y − h(x)|2]. Then the f̃ of a good

output of P satisfies

‖f − f̃‖2D ≤ ε · E
(x,y)∼(D,Y )

[|y − f(x)|2] in expectation.

Proof. We assume the first property λ(A∗ ·A) ∈ [1− 1/4, 1 + 1/4] from Definition C.6. On the other hand,

E
P

[‖A∗ · (~yu − ~fu)‖22] ≤ ε · E
(x,y)∼(D,Y )

[|y − f(x)|2]

from Lemma D.1 where P is an random sampling procedure. Conditioned on the first property, we know

E
P ′

[‖A∗ · (~yu − ~fu)‖22] ≤ 1

0.9
E
P

[‖A∗ · (~yu − ~fu)‖22]

≤ ε

0.9
· E
(x,y)∼(D,Y )

[|y − f(x)|2]

where P ′ is the event where importance sampling procedure P good executed.

This implies

E
P ′

[
‖(A∗ ·A)−1 ·A∗ · (~yu − ~fu)‖22

]
≤ E

P ′

[
λmin(A∗ ·A)−1 · ‖A∗ · (~yu − ~fu)‖22

]
≤ 2ε · E

(x,y)∼(D,Y )
[|y − f(x)|2]

where the second step follows from the first property in the definition of a importance sampling procedure P and P ′
is a good output of P .

E A LINEAR-SAMPLE ALGORITHM FOR KNOWN DISTRIBUTION

E.1 PRELIMINARY

We state several tools from prior work.

Lemma E.1 (Lemma 3.3 in (Batson et al., 2012)). For any j ∈ [k], λ(Bj) ∈ (lj , rj).

Lemma E.2 (A combination of Claim 5.5 and Lemma 5.6 in (Chen & Price, 2019)). After exiting the while loop in
Procedure RANDOMIZEDBSS, we always have

1. rk − lk ≤ 9d/γ.

2. (1− 0.5γ2

d
) ·
∑k
j=1

γ
φj
≤ mid ≤

∑k
j=1

γ
φj

.

3. If rklk ≤ 1 + 8γ, then λ(A∗ ·A) ∈ (1− 5γ, 1 + 5γ).

Lemma E.3 (Lemma 5.1 in (Chen & Price, 2019)). Given any dimension d linear space Fnn, any distribution D over
the domain of Fnn, and any ε > 0, there exists an ε-importance sampling procedure that terminates in O(d/ε) rounds
with probability 0.99.

19



Under review as a conference paper at ICLR 2022

Algorithm 2 A importance sampling procedure based on Randomized Sampling

1: procedure RANDOMIZEDSAMPLING(Fnn, D, ε)
2: Find an ρ-nearly orthonormal basis v1, . . . , vd of Fnn under D;
3: γ ←

√
ε/C0;

4: mid← (4d/γ)/(1/(1− γ)− 1/(1 + γ));
5: B0 ← 0;
6: l0 ← −2d/γ;
7: r0 ← 2d/γ;
8: j ← 0;
9: while rj+1 − lj+1 < 8d/γ do;

10: Φj ← tr[(rjI −Bj)−1] + tr[(Bj − ljI)−1];

11: Dj(x)← D(x) ·
(
v(x)>(rjI −Bj)−1v(x) + v(x)>(Bj − ljI)−1v(x)

)
/Φj ;

12: Sample xj ∼ Dj ;
13: sj ← γ ·D(x)/(Φj ·Dj(x));
14: Bj+1 ← Bj + sj · v(xj)v(xj)

>;
15: rj+1 ← rj + γ/(Φj(1− γ));
16: lj+1 ← lj + γ/(Φj(1 + γ));
17: j ← j + 1;
18: end while
19: k ← j;
20: for j ∈ [k] do
21: βj ← γ/(Φj ·mid),
22: uj ← sj/mid,
23: end for
24: Output x,D, u, β
25: end procedure

E.2 ANALYSIS FOR OUR RANDOMIZED SAMPLING

Our results in Lemma E.4, Lemma E.5, Lemma E.6, and E.7 are different than results in (Allen-Zhu et al., 2015; Lee
& Sun, 2018). First, they consider a potential function tr[(rjI −Bj)−q] + tr[(Bj − ljI)−q] with q ≥ 10. But, in our
cases, q = 1. Second, their results is for orthonormal basis but not for ρ-nearly orthonormal basis.
Lemma E.4. Let ε ∈ (0, 1/2). Suppose that w>(uI −A)−1w ≤ ε and w>(A− lI)−1w ≤ ε. It holds that

tr[(A− lI + ww>)−1] ≤ tr[(A− lI)−1]− (1− ε)w>(A− lI)−2w

tr[(uI −A− ww>)−1] ≤ tr[(uI −A)−1] + (1 + 2ε)w>(uI −A)−2w.

Proof. Let Y = A− lI . By the Sherman-Morrison Formula (Lemma A.2), it holds that

tr[(Y + ww>)−1] = tr[Y −1 − Y −1ww>Y −1

1 + w>Y −1w
].

By the assumption of w>Y −1w ≤ ε, we have that

tr[(Y + ww>)−1] ≤ tr[Y −1 − Y −1ww>Y −1

1 + ε
]

= tr[Y −1(I − Y −1/2ww>Y −1/2

1 + ε
)]

≤ tr[Y −1(I − (1− ε)Y −1/2ww>Y −1/2)]

≤ tr[Y −1]− (1− ε)w>Y −2w.

Let Z = uI −A . By the Sherman-Morrison Formula (Lemma A.2), it holds that

tr[(Z − ww>)−1] = tr[Z−1 +
Z−1ww>Z−1

1− w>Z−1w
].
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By the assumption of w>Z−1w ≤ ε, we have that

tr[(Z − ww>)−1] ≤ tr[Z−1 +
Z−1ww>Z−1

1− ε
]

= tr[Z−1(I +
Z−1/2ww>Z−1/2

1− ε
)]

≤ tr[Z−1(I + (1 + 2ε)Z−1/2ww>Z−1/2)]

≤ tr[Z−1] + (1 + 2ε)w>Z−2w.

where the third step follows from ε ≤ 0.5.

Lemma E.5. Let wi be defined as

wj :=

√
γ

v(xj)>(rjI −Bj)−1v(xj) + v(xj)>(Bj − ljI)−1v(xj)
· v(xj).

Let γ ≤ min{1/(c log(d/γ′), 1/(c(1 + dρ)e2)}. Then, it holds that

Pr[0 � wjw>j �
1

c
· (rjI −Bj)] ≥ 1− γ′

Pr[0 � wjw>j �
1

c
· (Bj − ljI)] ≥ 1− γ′

Proof. Let Rj = v(xj)
>(rjI −Bj)−1v(xj) + v(xj)

>(Bj − ljI)−1v(xj).

We can claim that

E
x∼Dj

[wjw
>
j ] =

γ

Φj
E

x∼D
[v(xj)v(xj)

>] � γ(1 + dρ)

Φj
· I

Let

zj = (rjI −Bj)−1/2wj .

It holds that

tr[zjz
>
j ] = tr[(rjI −Bj)−1/2wjw>j (rjI −Bj)−1/2]

=
γ

Rj
· tr[(rjI −Bj)−1/2vjv>j (rjI −Bj)−1/2]

=
γ

Rj
· tr[v>j (rjI −Bj)−1vj ]

≤ γ,

and λmax(zjz
>
j ) ≤ γ. Moreover, it holds that

E[zjz
>
j ] =

γ(1 + dρ)

Φj
· (rjI −Bj)−1

� γ

Φj
· λmax(

1

rjI −Bj
) · I.

This implies that

λmax(E[zjz
>
j ]) ≤ γ(1 + dρ)

Φj
· λmax(

1

rjI −Bj
) =: µ

It holds by the Matrix Chernoff Bound (Lemma A.1) that

Pr[λmax(E[zjz
>
j ]) ≥ (1 + δ)µ] ≤ d · ( exp(δ)

(1 + δ)(1+δ)
)µ/γ .
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Set 1 + δ to be

1 + δ = 1/(cµ)

=
Φj

cγ(1 + dρ)
λmin(rjI −Bj)

≥ 1

cγ(1 + dρ)

With probability at least

1− d · ( exp(δ)

(1 + δ)(1+δ)
)µ/γ ≥ 1− d · ( e

1 + δ
)µ(1+δ)/γ

= 1− d · ( e

1 + δ
)1/cγ

≥ 1− d · (ceγ(1 + dρ))1/(cγ)

≥ 1− d · exp(−1/(cγ))

≥ 1− γ′

where the fourth step follows from γ ≤ 1/(c(1 + dρ)e2), the fifth step follows from γ ≤ 1/(c log(d/γ′)).

As a result, we can prove that

Pr[0 � wjw>j �
1

c
· (rjI −Bj)] ≥ 1− γ′.

Similarly, we can prove that

Pr[0 � wjw>j �
1

c
· (Bj − ljI)] ≥ 1− γ′.

Lemma E.6. It holds that

E
xj∈Dj

[Φj+1] ≤ Φj .

Proof. We claim that

wjw
T
j �

1

c
· (rjI −Bj) �

1

c
· (rj+1I −Bj)

We apply Lemma E.4 with ε = 1/c and get that

E
xj∈Dj

[tr[(rj+1I −Bj+1)−1]]

≤ tr[(rj+1I −Bj)−1] + (1 + 2/c) tr[(rj+1I −Bj)−2 E[wjw
>
j ]]

= tr[(rj+1I −Bj)−1] +
(1 + 2/c)γ

Φj
tr[(rj+1I −Bj)−2]

Note that rj+1 − rj = γ/(Φj(1− γ)), we define a function f by

f(t) = tr[((rj + t · (rj+1 − rj))I −Bj)−1].

Notice that

df(t)

dt
= − γ

Φj(1− γ)
tr[((rj + t · (rj+1 − rj))I −Bj)−2]
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Since f is convex, we have that
df(t)

dt

∣∣
t=1
≥ f(1)− f(0) = tr[(rj+1I −Bj)−1]− tr[(rjI −Bj)−1].

We can conclude that

E
xj∈Dj

[tr[(rj+1I −Bj+1)−1]] ≤ tr[(rj+1I −Bj)−1] +
(1 + 2/c)γ

Φj
tr[(rj+1I −Bj)−2]

≤ tr[(rj+1I −Bj)−1]

+ (1 + 2/c)(1− γ)(tr[(rjI −Bj)−1]− tr[(rj+1I −Bj)−1])

≤ tr[(rjI −Bj)−1]

where the last step follows from (1 + 2/c)(1− γ) ≤ 1.

On the other hand, we can proof that

wjw
T
j �

1

c
· (Bj − ljI) � 1

c
· (Bj − lj+1I)

We apply Lemma E.4 with ε = 1/c and get that
E

xj∈Dj
[tr[(Bj+1 − lj+1)−1]]

≤ tr[(Bj − lj+1I)−1]− (1− 1/c) tr[(Bj − lj+1I)−2 E[wjw
>
j ]]

= tr[(Bj − lj+1I)−1]− (1− 1/c)γ

Φj
tr[(Bj − lj+1I)−2]

Note that lj+1 − lj = γ/(Φj(1 + γ)), we define a function g by
g(t) = tr[(Bj − (lj + t · (lj+1 − lj))I)−1].

Notice that
dg(t)

dt
=

γ

Φj(1 + γ)
tr[(Bj − (lj + t · (lj+1 − lj))I)−2]

Since g is convex, we have that
dg(t)

dt

∣∣
t=1
≥ g(1)− g(0) = tr[(Bj − lj+1I)−1]− tr[(Bj − ljI)−1].

We can conclude that

E
xj∈Dj

[tr[(Bj+1 − lj+1)−1]] ≤ tr[(Bj − lj+1I)−1]− (1− 1/c)γ

Φj
tr[(Bj − lj+1I)−2]

≤ tr[(Bj − lj+1I)−1]

+ (1− 1/c)(1 + γ)(tr[(Bj − ljI)−1]− tr[(Bj − lj+1I)−1])

≤ tr[(Bj − ljI)−1]

where the last step follows from (1− 1/c)(1 + γ) ≥ 1 and tr[(Bj − ljI)−1]− tr[(Bj − lj+1I)−1] ≤ 0.

Lemma E.7. There exists a constant C such that with probability at least 0.99, Procedure RANDOMIZEDSAMPLING
takes at most k = C · d/γ2 random points x1, . . . , xk and guarantees that rklk ≤ 1 + 8γ.

Proof.

Pr[algorithm finishes within k iterations] ≥ Pr[4d/γ +

k−1∑
j=0

(
γ

Φj(1− γ)
− γ

Φj(1 + γ)
) ≥ 8d/γ]

≥ Pr[

k−1∑
j=0

1

Φj
≥ 4d(1− γ2)

γ3
]

≥ Pr[
γ3k2

4d(1− γ2)
≥
k−1∑
j=0

Φj ]
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By Lemma E.5, every picked matrix wjw>j in iteration j satisfies

0 � wjw>j �
1

2
· (rjI −A) (8)

with probability at least (1− γ′)k ≥ 1− kγ′. Under the condition of Eq. (8), by Lemma E.6, we have that

E[

k−1∑
j=0

Φj ] ≤ kγ.

Therefore, it holds that

Pr[algorithm does not finish within k iterations]

≤ Pr[
γ3k2

4d(1− γ2)
≤
k−1∑
j=0

Φj ]

≤ Pr[

k−1∑
j=0

Φj ≥
γ3k2

4d(1− γ2)
and ∀j : wjw

>
j �

1

2
(rjI −Aj)] + Pr[∃j : wjw

>
j �

1

2
(rjI −Aj)]

≤ 4d(1− γ2)

γ2k
+ kγ′

≤ 1

200

where the last step follows from γ′ ≤ 1/(400k) and k ≥ 1600d(1− γ2)/γ2.

Let ∆r,j = rj − rj−1,∆l,j = lj − lj−1. Since

∆r,j+1 −∆l,j+1

∆r,j+1
=
γ/(Φj(1− γ))− γ/(Φj(1 + γ))

γ/(Φj(1− γ))
=

2γ

1 + γ
.

We can claim that

rk − lk
rk

=
4d/γ +

∑k−1
j=0 (∆r,j+1 −∆l,j+1)

2d/γ +
∑k−1
j=0 ∆r,j+1

≤
4d/γ +

∑k−1
j=0 (∆r,j+1 −∆l,j+1)

2d/γ + (1 + γ)/(2γ) ·
∑k−1
j=0 (∆r,j+1 −∆l,j+1)

By the ending condition of the algorithm, it holds that rk − lk ≥ 8d/γ. As a result

rk − lk
rk

≤ 4γ,

and
rk
lk
≤ 1

1− 4γ
≤ 1 + 8γ.

where the last step follows from γ ≤ 1/8.

F PERFORMANCE OF I.I.D. DISTRIBUTIONS

Lemma F.1. LetD′ be an arbitrary distribution overG. There exists an absolute constantC such that for any n ∈ N+,
Fnn of dimension d, ε ∈ (0, 1) and δ ∈ (0, 1), when S = (x1, . . . , xk) are independently from the distribution D′ with
k ≥ C

ε2 ·KD′ log d
δ and uj =

D(xj)
k·D′(xj) for each j ∈ [k], the k × d matrix A(i, j) =

√
ui · vj(xi) satisfies

‖A∗A− I‖ ≤ ε with probability at least 1− δ.
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Proof. At the same time, for any fixed x,∑
i∈[d]

|v(D
′)

i (x)|2 = sup
α(h)

|
∑d
i=1 α(h)i · v(D

′)
i (x)|2

‖α(h)‖22
= sup
h∈Fnn

|h(D′)(x)|2

‖α(h)‖22

by the tightness of the Cauchy Schwartz inequality. Thus

Kα,D′
def
= sup

x∈G

{
sup

h∈Fnn:h6=0

|h(D′)(x)|2

‖α(h)‖22

}
indicates sup

x∈G

∑
i∈[d]

|v(D
′)

i (x)|2 = Kα,D′ . (9)

For each point xj in S with weight uj =
D(xj)
k·D′(xj) , let Aj denote the jth row of the matrix A. It is a vector in Rd

defined by Aj(i) = A(j, i) =
√
uj · vi(xj) =

v
(D′)
i (xj)√

k
. So A∗A =

∑k
j=1A

∗
j ·Aj .

For A∗j ·Aj , it is always � 0. Notice that the only non-zero eigenvalue of A∗j ·Aj is

λ(A∗j ·Aj) = Aj ·A∗j =
1

k

∑
i∈[d]

|v(D
′)

i (xj)|2
 ≤ Kα,D′

k

from (9).

At the same time, because the expectation of the entry (i, i′) in A∗j ·Aj is

E
xj∼D′

[A(j, i) ·A(j, i′)] = E
xj∼D′

[
v
(D′)
i (xj) · v(D

′)
i′ (xj)

k
]

= E
xj∼D′

[
D(x) · vi(xj) · vi′(xj)

k ·D′(xj)
]

= E
xj∼D

[
vi(xj) · vi′(xj)

k
].

We can claim that

E
xj∼D′

[A(j, i) ·A(j, i′)] = 1/k, ∀i = i′,

E
xj∼D′

[A(j, i) ·A(j, i′)] ≤ ρ/k,∀i 6= i′.

As a result, we have that

λmin(

k∑
j=1

E[A∗j ·Aj ]) ≥ 1− ρd,

λmax(

k∑
j=1

E[A∗j ·Aj ]) ≤ 1 + ρd.

Now we apply Theorem A.1 on A∗A =
∑k
j=1(A∗j ·Aj):

Pr
[
λ(A∗A) /∈ [(1− ε)(1− ρd), (1 + ε)(1 + ρd)]

]
≤ d

(
e−ε

(1− ε)1−ε

)(1−ρd)/
K
α,D′
k

+ d

(
e−ε

(1 + ε)1+ε

)(1−ρd)/
K
α,D′
k

≤ 2d · exp(−
ε2 · k(1−ρd)Kα,D′

3
)

≤ δ.

where the last step follows from k ≥ 6Kα,D′ log
d
δ

ε2(1−ρd) .

Thus, we complete the proof.
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Lemma F.2. Given any distribution D′ with the same support of D and any ε > 0, the random sampling procedure
with k = Θ(Kα,D′ log d+ KD′

ε ) i.i.d. random samples fromD′ and coefficients βi = 1/k, ∀i ∈ [k] is an ε-importance
sampling procedure.

Proof. Because the coefficient βi = 1/k = O(ε/Kα,D′) and
∑
i βi = 1, this indicates the second property of

importance sampling procedure.

Since k = Θ(Kα,D′ log d), by Lemma F.1, we know all eigenvalues ofA∗ ·A are in [1−1/4, 1+1/4] with probability
1− 10−3. This indicates the first property of importance sampling procedure.

G RESULTS FOR ACTIVE LEARNING

Previous work (Chen & Price, 2019) only consider linear case, we generalize it into NN.

Lemma G.1. Consider any dimension d linear space Fnn of functions from a domain G to R. Let (D,Y ) be a joint

distribution over G × R and f = arg min
h∈Fnn

E
(x,y)∼(D,Y )

[|y − h(x)|2]. Let Kα = sup
h∈Fnn:h6=0

supx∈G |h(x)|
2

‖α(h)‖22
and P be a

importance sampling procedure terminating in mp(ε) rounds with probability 1 − 10−3 for Fnn, distribution D, and
ε. For any ε ∈ (0, 1/10), Algorithm 1 takes O(K log(d) + K/ε) unlabeled samples from D and requests at most
mp(ε/8) labels to output f̃ satisfying

E
x∼D

[|f̃(x)− f(x)|2] ≤ ε · E
(x,y)∼(D,Y )

[|y − f(x)|2] in expectation.

Proof. We still use ‖f‖D′ to denote
√

E
x∼D′

[|f(x)|2].By Lemma F.2 with D and the property of P , with probability

at least 1− 2 · 10−3,

‖h‖2D0
∈ [

3

4Cr
,

5

4Cl
] · ‖h‖2D for every h ∈ Fnn. (10)

We condition on Eq. (10) holds from now on.

Let yi denote a random label of xi from Y (xi) for each i ∈ [k0] including the unlabeled samples in the algorithm and
the labeled samples in Step 6 of Algorithm 1. Let f ′ be defined as

f ′ = arg min
h∈Fnn

E
xi∼D0,yi∼Y (xi)

[
|yi − h(xi)|2

]
. (11)

Using Eq. (10) and Lemma F.2, we have

E
(x1,y1),...,(xk0 ,yk0 )

[‖f ′ − f‖2D] ≤ ε · E
(x,y)∼(D,Y )

[|y − f(x)|2] from the proof of Theorem D.3 .

In the next a few paragraph, we will show that f̃ of a good output of P with distribution D0 guarantees ‖f̃ − f ′‖2D0
.

E
(x,y)∼(D,Y )

[
|y − f(x)|2

]
with high probability.

Using Eq. (10) and the guarantee of Procedure P , we have

E
P

[‖f̃ − f ′‖2D0
] ≤ ε · E

x∼D0

[
|yi − f ′(xi)|2

]
from the proof of Theorem D.3.

Next we bound the right hand side E
xi∼D0

[
|yi − f ′(xi)|2

]
by E

(x,y)∼(D,Y )

[
|y − f(x)|2

]
over the randomness of

(x1, y1), . . . , (xk0 , yk0):

E
(x1,y1),...,(xk0 ,yk0 )

[
E

xi∼D0

[
|yi − f ′(xi)|2

]]
≤ E

(x1,y1),...,(xk0 ,yk0 )

[
2 E
xi∼D0

[
|yi − f(xi)|2

]
+ 2‖f − f ′‖2D0

]
≤ 2 E

(x,y)∼(D,Y )

[
|y − f(x)|2

]
+

3

Cl
E

(x1,y1),...,(xk0 ,yk0 )

[
‖f − f ′‖2D

]
.
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where the last step follows from Eq. (10).

Hence

E
(x1,y1),...,(xk0 ,yk0 )

[
E
P

[‖f̃ − f ′‖2D0
]
]
. ε(2 +

3ε

Cl
) · E

(x,y)∼(D,Y )

[
|y − f(x)|2

]
. ε · E

(x,y)∼(D,Y )

[
|y − f(x)|2

]
.

where the last step follows from ρ ≤ 1/2.

From all discussion above, by rescaling ε, we have

‖f̃ − f‖2D
≤ 2‖f̃ − f ′‖2D + 2‖f ′ − f‖2D

≤ 8Cr
3
‖f̃ − f ′‖2D0

+ 2‖f ′ − f‖2D

≤ 8Crε

3
E

(x,y)∼(D,Y )
[|y − f(x)|2] +

ε

4
· E
(x,y)∼(D,Y )

[|y − f(x)|2]

. ε(1 + Cr) · E
(x,y)∼(D,Y )

[|y − f(x)|2]

. ε(1 + ρd) · E
(x,y)∼(D,Y )

[|y − f(x)|2]

Theorem G.2. Let Fnn be a neural network function family of functions from a domain G to R with dimension d, and
consider any (unknown) distribution on (x, y) over G× R. Let D be the marginal distribution over x, and suppose it
has bounded “condition number”

K := sup
h∈Fnn:h6=0

supx∈G |h(x)|2

‖h‖2D
. (12)

Let f∗ ∈ Fnn minimize E[|f(x) − y|2]. For any ε < 1, there exists an randomized algorithm that takes O((1 +

ρd)(K log(d) +K/ε)) unlabeled samples from D and requires O(d/ε) labels to output f̃ such that

E
f̃
E

x∼D
[|f̃(x)− f∗(x)|2] . ε(1 + ρd) · E

x,y
[|y − f∗(x)|2].

Proof. We can claim that

sup
h∈Fnn:h6=0

supx∈G |h(x)|2

‖h‖2D
≤ Cr sup

h∈Fnn:h6=0

supx∈G |h(x)|2

‖α(h)‖22

where Cr ≤ 1 + ρd.

By applying Lemma G.1, Lemma E.3, we can finish our proof immediately.

Theorem G.3. Let fnn(W,x) be a neural network as defined in Definition B.1, and consider any (unknown) distri-
bution on (x, y) over Rd × R. Let D be the marginal distribution over x, and suppose it has bounded “condition
number”

K := sup
W∈Rd×m:W 6=0

supx∈G |f(W,x)|2

‖f(W,x)‖2D
. (13)

Let W ∗ ∈ Rd×m minimize E[|fnn(W,x) − y|2]. There exists ρ ∈ (0, 1/10), d ≥ 3, ε0 ∈ (0, 1/10). For any 0 < ε .
1/ log3(d), there exists an randomized algorithm P that takes O((1 + ρd)(K log(d) +K/ε)) unlabeled samples from
D and requires O(d/ε) labels to output W̃ ∈ Rd×m such that

E
P
E

x∼D
[|fnn(W̃ , x)− fnn(W ∗, x)|2] . ε+ ε · E

x,y
[|y − fnn(W ∗, x)|2].
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Proof. By Claim B.4, we have that there exists {v1, . . . , vd} forms a fixed ρ-nearly orthonormal basis of Fnn, such
that there exists h∗ satisfied that

‖h∗(x)− fnn(W ∗, x)‖2D ≤ ε0.

By Theorem G.2, there exists an randomized algorithm that takes O((1 + ρd)(K log(d) + K/ε)) unlabeled samples
from D and requires O(d/ε) labels to output h̃ such that

E
h̃
E

x∼D
[|h̃(x)− h∗(x)|2] . ε · E

x,y
[|y − h∗(x)|2].

By Claim B.4, there exists W̃ such that

‖h̃(x)− fnn(W̃ , x)‖2D ≤ ε0.

As a result,

E
P
E

x∼D
[|fnn(W̃ , x)− fnn(W ∗, x)|2]

≤ E
P
E

x∼D
[2|h∗(x)− fnn(W ∗, x)|2 + 2|fnn(W̃ , x)− h∗|2]

≤ E
P
E

x∼D
[2|h∗(x)− fnn(W ∗, x)|2 + 4|h̃(x)− h∗(x)|2 + 4|h̃(x)− fnn(W̃ , x)|2]

. ε0 + ε · E
x,y

[|y − h∗(x)|2]

≤ ε0 + ε · E
x,y

[2|y − fnn(W ∗, x)|2 + 2|fnn(W ∗, x)− h∗(x)|2]

. ε0 + ε · E
x,y

[|y − fnn(W ∗, x)|2].
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