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APPENDIX

A PRELIMINARY

Theorem A.1 (Theorem 1.1 of (Tropp, 2012)). Consider a finite sequence { X} of independent, random, self-adjoint
matrices of dimension d. Assume that each random matrix satisfies

Define fimin = Amin(D_x E[Xk]) and pimax = Amax(D_j E[Xk]). Then

s Hmin/R
Pr {/\min(z X)) <(1- 5)ﬂmm} <d <(1_65)1_5> for 5 €[0,1],and )
k
_ _— Hmax/R
Pr {Amx(z Xi) > (1+ 5)umax} <d ((He(;)m;) ford >0 5)
k

Lemma A.2 (Sherman-Morrison Formula). Let A € R"™*™ be an invertible matrix, and u,v € R™. Suppose that

1+v" A=Yy # 0. Then it holds that

A lup T AL
A Dl — —
(A+uo) 1+vTA 1y

B Two LAYER NEURAL NETWORK

Definition B.1 (Two layer neural network). We define two layer neural network as follows
1 m
fnn(VVa a, I) = ﬁ 7; ar¢(w;rx) eR

where © € R? is the input, w, € R% r € [m] is the weight vector of the first layer, W = |wy, - ,wm] €
RIX™ g, € R,r € [m] is the output weight, a = [a1, -+ ,a;,]" and ¢(-) is the non-linear activation function.
Here we consider only training the first layer W with fixed a, so we also write fon(W,2) = fon(W,a,x). Given
training data matrix X = [x1,-++ ,1,] € R"™ and labels Y = [y1,--- ,yn] € R", we denote fon(W,X) =
[fnn(W; 1‘1), o afnn(VVa xn)]T € R"™

Definition B.2. Given F,, and the distribution D, let {v1, ..., vg} be a fixed orthonormal basis of Fnn, where inner
products are taken under the distribution D, i.e.,

E () o) = 1Vi = j € @

JE i) vy @)]| <p Vi je(d

Furthermore, for any function h € Fun, there exists oa(h) := (a(h)1,...,a(h)7) under the basis (v1,...,vg) such
that
d
h(z) = Za(h)i -v; ()
i=1

Remark. Note that in for linear function family Fu,, we know that d = d. However, for the neural network function
SJamily Fn, we will have d >> d.

Definition B.3. Given distribution D and h € Fpn, we define ||h(z)||p as
@) = E (7).
Claim B.4. Ifthe activation ¢ in a neural network f., satisfies the following conditions,

o @(10d+log(1/20)/108(d)) (1) exists and is continuous.

. ¢(10d+10g(1/so)/log(d))(z) <1, zeR
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then there exists {v1, ..., vz} forms a fixed p-nearly orthonormal basis of Fnn where

(10d +1log(1/20)/ log(d)) .

d<
d d

Furthermore, for any W € REX™ there exists h € Fnn such that
[h(z) = fan(W, )| < e.

Besides, for any h € F,,, there exists W &€ RYX™ sych that
[h(z) = fan(W, )5 <.

Proof. For any activation ¢ : R — R and input 2, = w,' 2 € R, f can be expand by Taylor’s theorem

¢"(0) o) (0) p* ()
TRy T A e s

$(zr) = ¢(0) + ¢'(0)2r +

where ¢ € [0, z,].
It’s natural to consider the W bound, eg NTK regime. In NTK regime, we have with a high probability that
z = wlz < |zl < V||, < Vd.

We can claim that

S*VE) it
(k+ 1)! <G

where the first step follows from ¢(*+1)(¢) < 1, the second step follows from k > (ev/d)? 4 log(1/2¢)/log(eV/d).

Besides, taking the first £ + 1 terms in the Taylor’s theorem. Our neural network f,,, can be seen as a polynomial with

d variable and at most k degree. So, our neural network f,,, can be seen as a polynomial with at most (k'gd) terms. As

any polynomial can be orthonormal decompose, we have that

G < (k;;d) - (10d+log(1d/so)/log(d))

where the second step follows from d > e. O

2)F T < .

Claim B.5. We will claim that polynomial, ReLU, Sigmoid, and Swish hold the condition mentioned in Claim B.4.
Lemma B.6. Let A € R¥%? be defined as
A(ij) =1,Vi=j € [d]
A, 5)| < p, Vi # 5 € [d].

We will claim that
)‘maX(A) < 1+ Eﬂ; Amin(A) > 1-— EP-

Proof. First, we can lower bound A, (A) as follows
)‘min(A) > )‘min(I) - ”I - A”Q
>1—|I-Alr
>1—dp
Second, we can upper bound \;,.x(A) as follows
)‘maX(A> = ||A||2
<|lf2 + [[A=I]l2
<1+ [[A-1|F
<1+dp
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C NOTATIONS

Claim C.1. For any function h € F,,, we have
Cilla(h)|I3 < |hlID < Crlla(h)ll;
where C; := 1 — pand C, := 1+ p(d — 1).

Proof. We can rewrite ||h||% as follows:

d d
E IS a)i @) =3 E [l w@P+2 > E [a(h)alh); o))
i=1 i=1 1<i<j<d
d
=Y lam)i?+20- Y a(h)alh),
i=1 1<i<j<d

d
=1 =p)lla(n ||2+PZ

We can provide an upper bound,

xz~D

d a
[\Za(h)i'vi(x)\Q]Z(l— Yle(h)]3 + p( Za

< (1 =p)lalh )||2+ﬂd||a( )3
= (1= p+pd)a(h)ll3
= Crlla(h)ll3

We can provide a lower bound

|

z~D

a
a(h)i - vi(@)]’] = (1 = p)lla(R)]I3 + p Za

> (1= p)am)]3
= Cilla(h)3
Thus, we complete the proof. O

ISR

i=1

Now, we define condition number. Previous work only consider linear cases and we generalize it to NN.

Definition C.2. For any distribution D' over the domain G and any function h : G — R, let h(P) () = g/((:;)) h(z)
such that ED/ [\h(D )(2)|? } = ]ED/ {g,(?) |h(z)] } = ED [|h(x)|?] . When the neural network function Fyn and D

is clear, we use K p: to denote the condition number of sampling from D', i.e

P () 2 D(z A
Kpr =supq sup { ——=-5— ZSUP )
{hefm{ IS D'(x hefm{ ||h||D}

Definition C.3. For any distribution D' over the domain G and any function h : G — R. When the neural network
function Fnn and D is clear, we use K, p to denote the a-condition number of sampling from D', i.e.,

D(x
Ka,pr :Sgp{D’ -he}' {| 13 }

Definition C.4. Given F,, and underlying distribution D, let P be a random sampling procedure that terminates in
k iterations (k is not necessarily fixed) and provides a coefficient o; and a distribution D; to sample x; ~ D; in every
iteration i € [k].

We say P is an s-importance sampling procedure if it satisfies the following two properties:
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1. Let vy, ...,vg of Fon under D be defined as in Definition B.2. With probability 0.9, the matrix A(i, j) =
Vi - v;(x;) € RF*d has N(A*A) € [2, 3]

101
2. The coefficients always have Zle Bi < % and B; - Ko.p, < €/2.
Claim C.5. We will claim that
CiKp < Ko p <CrKp:

Proof. Since, we have that
1 1 1
C < <Crim s
IRl1% ~ a3 {IIhII%}

we can claim that

(D@ M@E\ . (D& |ha) (D@ i)
- s - s | B V<o 5 e (s |2}}<C’“ w{ oy s | I }
O

Definition C.6. Given a importance sampling procedure P, we say the output of P is good only if the samples x; with
weights u; = B; - D(x;)/D;(x;) satisfy the first property in Definition C.4. Given a joint distribution (D,Y") and an
execution of a importance sampling procedure P with x; ~ D; and u; of each i € [k], let the f be defined as

—argmln{Zuz y2|2}

h€Fan

by querying y; ~ (Y |x;) for each point x; .

D RECOVERY GUARANTEE FOR IMPORTANCE SAMPLES

D.1 PRELIMINARY

We state a tool from prior work,

Lemma D.1 (Lemma 4.3 of (Chen & Price, 2019)). Let P be a random sampling procedure terminating in k iterations
(k is not necessarily fixed) that in every iteration i, it provides a coefficient (3; and a distribution D; to sample x; ~
D,. Let the wezght w = Bi - 2@ gnd A € R¥* denote the matrix A(i,j) = Jui - vj(x;). Then for f =

D;(xi)
2

arg min — ,

hge]:nn (@,y)~ (D Y)“y M)l

E[I4" @, fsu||}<sup{zm max {8, Kop,}E [y f@)f

where K, p, is the condition number for samples from D;: K, p, = sgp{ gj(&)) . slel}p_{ H‘Z((i))l‘é }}

D.2 ANALYSIS FOR IMPORTANCE SAMPLING PROCEDURE

Lemma D.2. Forany e € (0,1), given S = (x1,...,2;) C R and their weights (u1, ... ,u) C R, let A be the
k x d matrix defined as

A(t, ) = Vu; - vj(zy).
Then,

AMA*A) e[l —g,1+4¢].
can imply that

1—¢ 1+¢
14130 = Zuj ()P € g g ) Il for every h & o
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Proof. Notice that

A-alh) = (Vur - h(z1), .., ug - h(zy)). (6)

‘We can show

k
[Bl%, = > wi- [h(:)]?
i=1

=l A-a(h)]3

=a(h)" - (A*-A) - a(h)

€ Amin(A* - A), Amax(A* - A)] - [la(h)|3
Cll—el+e- ||a<h>\|§

1—¢ 1+5

where the first step follows from the definition of the norm, the second step follows from the Eq. (6), the last step
follows from Cyf|a(h)|3 < |[B][, < Crlla(R)]3.

O
For any ¢ > 0, given S = (71,...,2;) C R? and their weights (u1,...,u;) C R>o. Let A be the k x d matrix
defined as
A(’L,j) = \/uj . ’Uj(!Ei).
For any h € Fyp, let Hh||§u be defined as
k
=) uy- h(zy))?
j=1

Then, for any h € F,,

A-alh) = (\/ul “h(x1), ..oy ug h(wk)) @)
We consider the calculation of the f Given the weights (ug,--- ,ux) on (x1,...,x) and labels (y1, ..., yx), let ¥,

denote the vector of weighted labels (\/u1 - y1, - - ., /U - Yx ). From Eq. (6), the empirical distance satisfied that for
any h € Fu,

Hh(xz y’LHSu Zuz|h xz

= HA ~a(h) = Gull
where the second step follows from Eq. (6) and the definition of ,,.
Let
f= aglgmin{uh(xn - yz-ns,u}
—argmln{HA a(h) = Full2 }
heEFn
Then,
~ ~ E ~
a(f) = (A% A~ A" Guand F= S a(Fi - v
i=1
Let

= arg min h 2
f rg i {(W) E k@) —yl I}
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Finally, we consider the distance between f and f. For convenience, let f, = (Vaur - f(z1), ..., uk - f(zr)).
Because f € F,, and Eq. (6), we can claim that,

alf) = (A" AL A .

This implies

If = £l € [Co, Gl - llalf) = N3 = [Cr Cr] - (AT - A)7H - A" - (G = F)I3.

where the first step follows from ||h||% € [C), C,]||(h)||3 and a(f — g) = a(f) — a(g).

Theorem D.3. Given a neural network function family F,,, joint distribution (D,Y), and ¢ > 0, let P be an e-

importance sampling procedure for F., and D, and let f = arg mln( . (D Y)[|y — h(x)|?]. Then the fofa good
heF (&Y
output of P satisfies

~ .
— < .
If = flp <e- e ip Y)[|y f(x)|?] in expectation

Proof. We assume the first property A\(A* - A) € [1 — 1/4,1 + 1/4] from Definition C.6. On the other hand,

E[|A" - (i — F)lI3] < ¢ [ly = f(2)P]

(7)(DY

from Lemma D.1 where P is an random sampling procedure. Conditioned on the first property, we know

(A~ )

[ly — f(@)?]

B[4 (7.~ F)IE] <

IN
o‘mo‘

9 (z,y)~ (D Y)
where P’ is the event where importance sampling procedure P good executed.

This implies
E[I(4"- A7 A" (fu— F)IB] < B ain(A"- )71 AT (G~ f)3]
<2e- (ly — f(2)”]

(z,y)~ (D Y)

where the second step follows from the first property in the definition of a importance sampling procedure P and P’
is a good output of P. O

E A LINEAR-SAMPLE ALGORITHM FOR KNOWN DISTRIBUTION

E.1 PRELIMINARY

We state several tools from prior work.
Lemma E.1 (Lemma 3.3 in (Batson et al., 2012)). Forany j € [k], A(B;) € (I;,75).

Lemma E.2 (A combination of Claim 5.5 and Lemma 5.6 in (Chen & Price, 2019)). After exiting the while loop in
Procedure RANDOMIZEDBSS, we always have

1 rp,— 1 < 93/’)/.

2. (1-920). yh 2 <mid<3F

Jj= 1¢>J
3.0 <148y, then (A" - A) € (1= 57,1+ 57).

Lemma E.3 (Lemma 5.1 in (Chen & Price, 2019)). Given any dimension d linear space Fpn, any distribution D over
the domain of Fun, and any € > 0, there exists an e-importance sampling procedure that terminates in O(d/¢) rounds
with probability 0.99.
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Algorithm 2 A importance sampling procedure based on Randomized Sampling

1: procedure RANDOMIZEDS AMPLING(Fn, D, €)

2: Find an p-nearly orthonormal basis vy, . . ., v; of F,, under D;
3: v + €/ Co;

& mid e (4d/3)/(1/(1 =) = 1/(1+7));

5: By + 0;7

6: lp + —Qd/’}/;

7: ro < 2d/7;

8: 7« 0; B

9: while Tj+1 — lj+1 < Sd/’)/ do;

10: (I)j < tI‘[(T’jI — Bj)il] —+ tI‘[(Bj — lj[)il];
1 D;(x) = D(@) - (v(@) (5] = Bj) " o(w) + v(2)T(B; = 1) \o(a) ) /@y 5
12: Sample x; ~ Dj;

13: sj < v - D(@)/(®; - D;(2));

14: Bj+1 — Bj + 85 - U(.l?j)v(xj)T;

15: riv1 1+ 9/ (25(1=7)):

16: lj+1 <—lj+’y/(<l>j(1+'y));

17: Jj—J+1

18: end while

19: k < j;
20: for j € [k] do
21: 5j <—’Y/((I)j mld),
22: Uj sj/mid,

23: end for
24: Output z, D, u, 8
25: end procedure

E.2 ANALYSIS FOR OUR RANDOMIZED SAMPLING

Our results in Lemma E.4, Lemma E.5, Lemma E.6, and E.7 are different than results in (Allen-Zhu et al., 2015; Lee
& Sun, 2018). First, they consider a potential function tr[(r;I — B;)~9] + tr[(B; — {;1)~9] with ¢ > 10. But, in our
cases, ¢ = 1. Second, their results is for orthonormal basis but not for p-nearly orthonormal basis.

Lemma E.4. Let e € (0,1/2). Suppose that w' (ul — A)"*w < cand w' (A —1I)"‘w < e. It holds that
tr[(A— 1T +ww ) ) < tr[(A=ID)7 = (1 —e)w' (A - 1) 2w
tr[(ul — A —ww )7 < trf(ul — A7+ (1 +28)w! (ul — A) 2w.

Proof. LetY = A — I . By the Sherman-Morrison Formula (Lemma A.2), it holds that
Y lwwTy-!

Ty—17 __ —1

]
By the assumption of w'Y 1w < ¢, we have that
Y‘lwaY_l]

1+4+¢
Y—1/2way—1/2

1+¢ )

tr[Y NI — (1 — &)Y 2w Y ~2)]
tr[Y 7 — (1 —e)w 'Y 2w.

tr[(Y +ww )7 < tr[y ! —

tr[Y (T —

<
<

Let Z = ul — A . By the Sherman-Morrison Formula (Lemma A.2), it holds that
Z \ww' Z71
Ty\—1 -1
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By the assumption of w' Z 1w < ¢, we have that

tr[(Z —ww )7 < tr[Z271 +

1—c¢
Z71/2 Tz 1/2
— w[Z27( + ';”“’ )]
—¢

tr[ 27V + (14 26) 27 2ww T Z271/7))
tr[Z7 + (14 26)w ' Z7%w.

IN A

where the third step follows from ¢ < 0.5.
Lemma E.5. Let w; be defined as

Y
Wi — cv(x;).
= T T BT e B h )
Let v < min{1/(clog(d/y"),1/(c(1 + dp)e?)}. Then, it holds that
Pr[0 < ijjT <--(rI-Bj)|>1—+

(B =L 21—

alROI=

Pr[0 < waJT =

Proof. Let R; = v(x;) " (r;I — Bj)tu(z;) + v(a;) T (B — ;1) o(x;).

We can claim that

I =— E < T
LB el = g B lagyo(a) ] = S
Let
zj = (r;] = B;) ™' w;.
It holds that

tr[zjij] = tr[(r;I — Bj)fl/ijij(rjI— Bj)fl/z}
= Rl tr[(rid = By) ™20 (1 — By) 717
J

g T _
~ & trfv; (ril = Bj) ™y

=7
and Amax (2 ZJT) < 4. Moreover, it holds that
(1 +dp)
J

: /\max (

Elz;z, ]| = (il = B;) ™!

1

=< -
- T‘j[ - Bj

2
. . T.
D, )
This implies that

Amax(Elz7] ]) <
It holds by the Matrix Chernoff Bound (Lemma A.1) that
- 6
PrlAman(Elz2 ) = (1+ 0)) - (2O yurn,

(1+9)0+o
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Set 1+ 6 to be

With probability at least

=1-d-(

1—d- (cey(1+dp))/ eV
1—d-exp(=1/(cy))
1—v

vV IV IV

where the fourth step follows from v < 1/(c(1 + dp)e?), the fifth step follows from v < 1/(clog(d/")).

As a result, we can prove that

1
Pr[0 < wjw, “(rjI—=Bj)] >1—4".

J

IA
I

Similarly, we can prove that

Pr[0 < ij;r

A
I

1
(B =) > 149"
&

Lemma E.6. It holds that
B (@] <®;.

z;€D;
Proof. We claim that
wjw; = % ~(r;I = Bj) = % - (rjsal — Bj)
We apply Lemma E.4 with e = 1/c and get that
LB frl(rysal = Bj1a) 1)
< tr[(rjead — By) '+ (14 2/e) tr[(rje1] — Bj) > Elwjw) |]
= ety — B+ D g1 )
j

Note that ;41 — 1, = v/(®;(1 — 7)), we define a function f by
F@&) = e[((rj +t - (rja —15))] = Bj) 7).

Notice that

df@®) _ gl _
TR W tr[((rj +t - (rjp1 =) = By) ™7
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Since f is convex, we have that
YOS 51) = £(0) =l = By) ) = ul(ry T — B;) 1.

‘We can conclude that

mj]éEDj[tr[(erI = Bj1) ] < tr[(rjad = By) T + (1+q)2j/c)7

tr[(rjal — Bj) 7]
+ (1 +2/c)(1 = )(tl(r; ] — Bj)™'] = tel(rjal — Bj) ™)
< trl(r;l — B;) 7]
where the last step follows from (1 +2/¢)(1 —v) < 1.

A

tr[(rjs1l — Bj) ™7

IN

On the other hand, we can proof that

1
wjwl 2= (Bj — ;1) <

p (Bj = ljl)

Q\'—‘

We apply Lemma E.4 with ¢ = 1/c and get that
E_[tr{(Bys1 — L))

tr[(Bj — i)' = (1= 1/e) te[(By — Lia D) "> Efwjw, ]

tr[(Bj — lj+ 1) 7] — (1_(1;/0)7“[(% — )77

IN

Note that l;11 — I; = v/(®;(1 + 7)), we define a function g by
g(t) = tr[(Bj — (I + ¢ (L1 — 1)) 7',
Notice that

dg(t) v
dt Q;(1+7)

tr[(Bj — (I; +t - (L1 — ;))1) 77

Since g is convex, we have that
dg _ _
WO > (1)~ 9(0) = (B, ~ L))~ (B, ~ 1))

We can conclude that

£ (rl(Bys L)) < (B~ D)7~ S v, 1007

z;€D; j
< tr[(Bj — L) 7]
+ (1 =1/0)(1+y)(tr[(B; = 1) ™ = tr[(By = [ D))
< (B — ;1))

where the last step follows from (1 — 1/¢)(1 +~) > 1 and tr[(Bj — [;1) '] — tr[(B; — lj411)71] < 0. O
Lemma E.7. There exists a constant C' such that with probability at least 0.99, Procedure RANDOMIZEDS AMPLING
takes at most k = C - d/~? random points x1, . .., x), and guarantees that l" <1+ 8.
Proof.
k-1 5
Pr[algorithm finishes within k iterations] > Pr[4d/vy + 8d
[alg ] [4d/~ jz::o B, _,y) “a04 )) /]
k—1 =
1 4d(1 — ~?
31.2 k—1
SP UL
4d(1 —~?) =

23
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By Lemma E.5, every picked matrix w;w T in iteration j satisfies

1
0 < ijj = 3 (r;I —A) (8)

with probability at least (1 — /)% > 1 — k+’. Under the condition of Eq. (8), by Lemma E.6, we have that
k—1
Z Q;] < kn.
7=0

Therefore, it holds that

Pr[algorithm does not finish within k iterations]

< Prl——— ;]
<Pl —Z
= A3k Tl -1
<P ZCI)J 7’72) and Vj : wjw; =< 2(1“]1 A+ Pr[Fj : wjw; £ i(rjI—Aj)}
7=0
4d(1— %)
S + k'
1
<
— 200

where the last step follows from 4’ < 1/(400k) and k > 1600d(1 — v?)/~>.

Let ATJ' =T; —Tj-1, Al,j = lj — lj_l. Since

Arjrr—Ajrn - v/ (9;(1=7) —v/(®;(1+7)) 2y

At 7/ (@;(1—7)) 14y

We can claim that
re— e Ad/y+ Z?;&(Ar,jﬂ — A1)
e 2d/y + Y52 Arjin
4d/y + Y520 (Arger = D)
T2/ + (L4 9)/(29) 55 (Arjen — Arji)

By the ending condition of the algorithm, it holds that rj, — I > 8d/~. As a result

and

where the last step follows from v < 1/8. O

F PERFORMANCE OF I.1.D. DISTRIBUTIONS

Lemma F.1. Let D' be an arbitrary distribution over G. There exists an absolute constant C such that for any n € N7T,
Fon ofdtmenston d e € (0,1)andd € (0,1), when S = (z1,...,xy) are independently from the distribution D' with

E> S S - Kplog 4 and u; = mfor each j € [k), the k x d matrix A(i, j) = \/u; - v;(x;) satisfies

|A*A — I|| < e with probability at least 1 — 0.

24



Under review as a conference paper at ICLR 2022

Proof. At the same time, for any fixed z,

d DY 2 (D) 2
/ . h i - h

Z |'U1(D )(x)IQ — sup | Zz:l a( ) 1)21 (‘T)l — sup ‘ (1‘)2|

— a(h) lee(R)I3 heFw lla(h)ll3

i€[d]

by the tightness of the Cauchy Schwartz inequality. Thus
def BP0 @)P (D)2
K, p = sup sup  ———5— indicates  sup v; z)|* = Ko, pr. )
AN O rup 2 )

D(z;)
k-D'(z;)’

For each point z; in S with weight u; = let A; denote the jth row of the matrix A. It is a vector in R4
0 (. ,
defined by A; (i) = A(j,i) = /T - vs(x;) = 5 S0 A*A = b, A% A;.
For A% - Aj;, itis always = 0. Notice that the only non-zero eigenvalue of A} - A; is
Ka,D’
k

* * 1 '
AT Ap) = Ay 45 = | 1 ) | <
i€[d]
from (9).

At the same time, because the expectation of the entry (i,1') in A} - A; is

D’ D’
ol (25) 07 ()

m_,»ED’[A(jJ) -A(j,4)] = z_ED,[ : k ]
_ D(z) - vi(z;) - vir(x5)
=l k- D'(x;) ]
vi(5) - vir (z5)
- zj]ED k ]

We can claim that
[A(j,9) - A(g,1")] = 1/k, Vi =i,

CEJ'ND/

CEJ'ND/

As a result, we have that

Amin (O E[AT - Aj]) > 1 — pd,

~
Il
-

M=

Amax() E[A% - Aj]) <1+ pd.

BN
I
—

Now we apply Theorem A.1 on A*A = Zle(Aj - Aj):
Pr[A(A*4) ¢ [(1 - )(1 - pd), (1 +&)(1 + pd)]]

B ¢ (1—pd) | e _ o—¢ (1—pd)/ 22"
<d|——— dl —M——
- <(1—e)1—5) * ((1+6)1+5>
&2 k}((lfpﬁ)
<24 exp(———5=)
<é.
a

where the last step follows from k& > %
Thus, we complete the proof. O
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Lemma F.2. Given any distribution D’ with the same support of D and any ¢ > 0, the random sampling procedure

with k = O(K, p logd+ D’) i.i.d. random samples from D' and coefficients 8; = 1/k, Vi € [k] is an e-importance
sampling procedure.

Proof. Because the coefficient 3; = 1/k = O(¢/K,,pr) and ), 5; = 1, this indicates the second property of
importance sampling procedure.

Since k = ©(K,,pr log d), by Lemma F.1, we know all eigenvalues of A*- A are in [1 —1/4, 1+ 1/4] with probability
1 — 10~3. This indicates the first property of importance sampling procedure. O

G RESULTS FOR ACTIVE LEARNING

Previous work (Chen & Price, 2019) only consider linear case, we generalize it into NN.
Lemma G.1. Consider any dimension d linear space Fon Of functions from a domain G to R. Let (D,Y") be a joint

distribution over G x R and f = arg min lly — h(z)|?]. Let K, = sup w and P be a
h€Fnn (ac,y) (D Y) hefnn:h;aéo HO‘( )HQ

importance sampling procedure terminating in m,(¢) rounds with probability 1 — 1073 for F,,, distribution D, and
e. Forany e € (0,1/10), Algorithm 1 takes O(K log(d) + K /<) unlabeled samples from D and requests at most
my,(/8) labels to output f satisfying

E [If(z) = f(=)]"] e By f= )|) in expectation.

Proof. We still use || f|| p- to denote IED,[| f(z)|?]. By Lemma F.2 with D and the property of P, with probability

atleast 1 — 21073, e
2
We condition on Eq. (10) holds from now on.

-||h||% for every h € Fp. (10)

Let y; denote a random label of z; from Y (z;) for each i € [k¢] including the unlabeled samples in the algorithm and
the labeled samples in Step 6 of Algorithm 1. Let f/ be defined as

f' = arg min E yi — h(z)?] . 1n
hEFm Ti~Do,yi~Y (x4) [| ( )‘ ]

Using Eq. (10) and Lemma F.2, we have
E [ = fFIp] <

€- from the proof of Theorem D.3 .
(1,91)5-(Thg Yhg ) (z, D Y)Hy Us )| ] P

In the next a few paragraph, we will show that f of a good output of P with distribution Dy guarantees I f—f H2DU <

y—f with high probability.
e Zpyy 1= T@)F] ghp y

Using Eq. (10) and the guarantee of Procedure P, we have
E(If = b < E [l = f'(z0)]
P x~Do

from the proof of Theorem D.3.

Next we bound the right hand side [lyi — f/(z:)]?] by

[|y f(x)[?] over the randomness of
zi~Do (@)~ (

(561791)» cey (ajkovyko):

(s — mﬂ]

(21,Y1)5-- (kg Ykg) |:””7ND

<
(T1,91),-,(Thg 1 Ykg) MNDO

<2 [y — f(@)]?] +

(z,y)~ (D Y)

[lys — F(@)l?] + 2 f — f’II%O}
3

Cl (Z1,Y1),--3 (kg 1Yk )

[ = £11%]-
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where the last step follows from Eq. (10).

Hence
E  [EIF-/I)] SC+2)- lly - F@)?]
(@1,91) 0 (Thg yko) P 0 Cz (z.y)~ <DY
<g.
Ser E L lw-f@P).
where the last step follows from p < 1/2.
From all discussion above, by rescaling €, we have
17 = f1%
<2|f = fIp +21f = FlB
+2|f = £l
8C,¢e €
< + —-
3 o (DY)[Iy f(@))?] 1 e (DY)[Iy f(@)?)
Se(1+C.
+C)- Bl @)P)
<e(l+ pd
(+pd)- E_ - @)

O

Theorem G.2. Let F,, be a neural network function family of functions from a domain G to R with dimension d, and
consider any (unknown) distribution on (x,y) over G x R. Let D be the marginal distribution over x, and suppose it
has bounded “condition number”

S 2
Ko oy SPecc M@ )

h€Fan:h#0 ||h||2D

Let f* € Fun minimize E[|f(x) — y|?]. For any ¢ < 1, there exists an randomized algorithm that takes O((1 +
pd)(K log(d) + K/¢)) unlabeled samples from D and requires O(d/<) labels to output f such that

E [1F@) ~ £ @ S 1+ ) - E [ly - £ (@)

f xz~D

Proof. We can claim that

h(z)|? h(z)|?
wp e NP o b ()
nermhzo  [hllD neFmhzo (b3
where C. <1+ pE.
By applying Lemma G.1, Lemma E.3, we can finish our proof immediately. O

Theorem G.3. Let fon (W, z) be a neural network as defined in Definition B.1, and consider any (unknown) distri-
bution on (x,y) over R? x R. Let D be the marginal distribution over x, and suppose it has bounded “condition
number”

w. 2
K = sup SUPze@ |f( a$)| ) (13)

werixmayzo  |If(W,z)||3

Let W* € RY>™ minimize E|| fon (W, z) — y|?]. There exists p € (0,1/10),d > 3,50 € (0,1/10). Forany 0 < ¢ <
1/log®(d), there exists an randomized algorithm P that takes O((1 + pd) (K log(d) + K /<)) unlabeled samples from
D and requires O(d/e) labels to output W € R¥>™ such that

s EDann(/W#U) - fnn(W*zx)m Sete- Elfly— fnn(W*a$)|2]~
T~ T,y
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Proof. By Claim B.4, we have that there exists {vy, ... ,vg} forms a fixed p-nearly orthonormal basis of F,,, such
that there exists h* satisfied that

Ih* () = fan (W™, 2)[[] < e0.
By Theorem G.2, there exists an randomized algorithm that takes O((1 + pd)(K log(d) + K /¢)) unlabeled samples
from D and requires O(d/<) labels to output A such that

E IED[Iﬁ(x) ~h @] Se- Elly - h*(2)).
B T~ T,y

By Claim B.4, there exists W such that
Ih(z) = fan(W,2)[[5 < €0

As aresult,
EE [fan(W,2) = fan(W*,2)
< ;E%LED[QW*(@ - fnn(VV*vx”2 + 2|fnn(wvx) - h*|2]
< E E [21h"(2) ~ fun(W",2)* +4lh(2) = h* (@) + 4[() — fn (W, 2) ]

x

Seo+e Elly— @)

IN

€0 +e- xEy[Qw - fnn(VV*vx)‘2 + 2|fnn(W*7x) - h*(l‘)|2]

Seote- IEy[ly - fnn(W*vx)F]'
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