ADDING_A_METRIC.md

Adding a Metric

The metrics are implemented in a way so that adding a new metric is straightforward.

All of the abstract metric classes are defined in syntherela.metrics.base . To add a
new metric, you need to create a new class that inherits from one of the abstract
classes. All of our metrics inherit the BaseMetric class from the SDV package. We
divide the metrics into 3 categories based on the type: Statistical, Distance, and
Detection , and into 3 categories based on the granularity: SingleColumnMetric ,
SingleTable , and MultiTable .

BaseMetric Class

All of our metrics inherit the BaseMetric class from the SDV package. The
BaseMetric class has a compute function, as well as the class variables name ,
goal (maximize or minimize), min_value and max_value . All of the metrics should

implement the compute function, which calculates the metric value and returns a

dictionary with the results of the metric. The goal variable should be set to
maximize or minimize based on the metric. The min_value and max_value

variables should be set to the minimum and maximum possible values of the metric.

In our abstract metric classes we implement a run function additionally to the
compute function. When the benchmark is run, the run function is called, which
usually validates the data, calls the compute function and validates the results.

Statistical metrics

Statistical metrics calculate the metric value and the p-value. The
StatisticalBaseMetric class is written in a way that when adding a new metric you
only need to implement the compute function and the validate function. The
compute function accepts an original and synthetic col returns a dictionary of the
form:

{"statistic": <statistic>, "p_value": <pval>}



The validate function should be implemented in the metric class and should return
a boolean value indicating whether the metric results are valid. The validate
function is called before the compute function on the real and synthetic data. If the
validate functionreturns False , the metric is skipped for that specific column,
table or dataset it is computed on.

Distance metrics

Distance metrics calculate the distance between the original and synthetic data. The
DistanceBaseMetric class is written in a way that when adding a new metric you
only need to implement the compute function. The compute function accepts an
original and synthetic col, table or dataset and returns the metric value (distance).
Then, the metric automatically calculates the reference mean, variance and
confidence interval by bootstrapping the original data, which is used to decide
whether the metric has detected that the data is synthetic or not. Then, the metric
also calculates the bootstrap mean and standard error of the metric by bootstrapping
the real and synthetic data. Finnally, the metric returns a dictionary of the form:

{'value': value,

'reference_mean': reference_mean,
'reference_variance' : reference_variance,
'reference_ci': reference_standard_ci,
'bootstrap_mean': bootstrap_mean,
'bootstrap_se': bootstrap_se}

Detection metrics

Detection metrics alongside the real and synthetic data also accept a scikit-learn API
based classifier to calculate the accuracy of the classifier on the real and synthetic
data. The DetectionBaseMetric class is written in a way that when adding a new
metric you don't need to implement anything, or you can overwrite any of the
functions. The run function calculates the accuracy and standard error of the
classifier on the real and synthetic data and then the p values of the binomial test for
the detection of synthetic data or detection of potential data copying. The function
returns a dictionary of the form:

{"accuracy": np.mean(scores),

"SE": standard_error,

"bin_test_p_val" : np.round(bin_test_p_val, decimals=16),
"copying_p_val": np.round(copying_p_val, decimals=16)}



The metric also implements a prepare_data function where the data gets
transformed from a pandas dataframe to a numpy array. The prepare_data function
can be overwritten if the data needs to be transformed in a different way, it just has to
return the X and y arrays. If the classifier supports feature importance there is also
a function plot_feature_importance .

Single Column and SingleTable Metrics

For granularity, a SingleColumnMetric and SingleTableMetric classes are provided
where a function is_applicable should be implemented for the single column
metrics. The function accepts a column type as a string (for single column) or
metadata (for single table) and should return a boolean whether the metric is
applicable to the column type/table. For single table metrics the is_applicable function
is already implemented and checks whether the table contains at least one column
which is not a primary or foreign key.

Example

Here is an example of how to add a new metric to the benchmark. Let's say we want

to add a new distance metric that calculates absolute difference of the means of the

real vs synthetic column. We would create a new class that inherits from
DistanceBaseMetric and SingleColumnMetric , and implement the compute and
is_applicable functions.

class AbsoluteMeanDistance(DistanceBaseMetric, SingleColumnMetric):

def __init__ (self, xxkwargs):
super().__init__ (*xkwargs)
self.name = "AbsoluteMeanDistance"
self.goal = Goal.MINIMIZE
self.min_value = 0.0
self.max_value = float('inf')

@staticmethod
def is_applicable(column_type):
return column_type in ["numerical"]

@staticmethod

def compute(real_data, synthetic_data, *kkwargs):
orig_col = pd.Series(real_data).dropna()
synth_col = pd.Series(synthetic_data).dropna()

return np.abs(orig_col.mean() - synth_col.mean())

For more examples look at the implementations of the metrics in

syntherela.metrics .






