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ABSTRACT

Adam outperforms SGD when training language models. Yet this advantage is not well-
understood theoretically – previous convergence analysis for Adam and SGD mainly focuses
on the number of steps T and is already minimax-optimal in non-convex cases, which are both
Õ(T−1/4). In this work, we argue that the exploitation of nice ℓ∞-geometry is the key ad-
vantage of Adam over SGD. More specifically, we give a new convergence analysis for Adam
under novel assumptions that loss is smooth under ℓ∞-geometry rather than the more common
ℓ2-geometry, which yields a much better empirical smoothness constant for GPT-2 and ResNet
models. Our experiments confirm that Adam performs much worse when the favorable ℓ∞-
geometry is changed while SGD provably remains unaffected. We also extend the convergence
analysis to blockwise Adam under novel blockwise smoothness assumptions.

1 INTRODUCTION

Large language models (LLMs) have gained phenomenal capabilities as their scale grows (Kaplan
et al., 2020; Brown et al., 2020; Touvron et al., 2023; OpenAI, 2023; Reid et al., 2024). However,
pre-training LLMs is incredibly time-consuming. Adam (Kingma & Ba, 2014) is the current to-
go optimization algorithm for LLMs due to its fast convergence. In contrast, SGD, a popular and
arguably the simplest optimizer, optimizes language model losses much more slowly than Adam.

However, the optimization benefit of Adam over SGD cannot be explained by existing theory. Cur-
rent convergence analyses for Adam and SGD focus on the dependence on the number of steps under
assumptions on loss smoothness and gradient bounds (Défossez et al., 2022), and it has been shown
that both Adam and SGD achieve the minimax convergence rate Õ(T−1/4) in the non-convex set-
tings (Arjevani et al., 2023). Thus according to the theory, in the worst case, SGD would be more
desirable than Adam because it has the same convergence rate, and yet Adam is less memory-efficient
due to its coordinate-wise adaptivity, which needs to store the empirical moving average of second-
order moments of past stochastic gradients. Therefore, we hypothesize that the coordinate-wise
adaptivity in Adam is exploiting some unknown properties of LLMs which SGD cannot make use of.

Towards this end, we identified a big difference between Adam and SGD, which is ignored in previ-
ous works. That is, SGD is rotation-equivariant, while Adam is only permutation equivariant (Defini-
tion 2.1). Intuitively, if we rotate the loss landscape, the trajectory of SGD would be the same (up to
some rotation), while the trajectory of Adam can be completely different. If Adam optimizes much
more slowly after rotation, it suggests Adam is exploiting some non-rotation-invariant properties of
the loss, which is not captured by standard smoothness assumptions in the convergence analysis.

Figure 1 summarizes our findings by comparing Adam on the original and rotated loss. The perfor-
mance of Adam on the rotated loss does become much worse than Adam on the original loss. We also
test a memory-efficient and rotation-equivariant variant of SGD, AdaSGD (Wang & Wiens, 2020), de-
fined in Algorithm 2. Surprisingly, the rotated Adam performs even worse than the SGD variant. The
results suggest it is impossible to explain the superior optimization performance of Adam over SGD
just using rotation-invariant assumptions on the loss function, which raises the natural question,

What non-rotation-invariant properties of loss functions make Adam converge faster than SGD?

We hypothesize that the ℓ2-lipschitzness of loss gradient does not provide a tight-enough charac-
terization of loss landscape of deep learning models in practice, such that we can separate Adam and
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Figure 1: Training and evaluation losses of Adam, AdaSGD and SGD on GPT-2. rotated Adam
means running Adam on a rotated loss. Adam on the original loss converges the fastest as expected.
But convergence of Adam on a rotated loss is much slower, notably even worse than AdaSGD.

other rotation-equivariant algorithms. Inspired by the similarity between Adam and SignGD and the
fact that SignGD is the normalized steepest descent with respect to ℓ∞-norm, we propose to use
ℓ∞-norm related smoothness as a better tool to analyze Adam. In particular, our main results use
the (1, 1)-norm of the Hessian of the loss normalized by variable dimension d, as the smoothness
measure, instead of its spectral norm. And we prove a convergence rate of O( 1√

T
) for Adam without

noise, or O(( log T
T )1/4) with noise. Our results have the same dependence on T as previous results,

but a much smaller smoothness constant when measured empirically. We empirically verify that
(1, 1)-norm of Hessian positively correlates with final training loss of Adam on both synthetic tasks
like quadratic loss and real tasks like training GPT2 on OpenWebText and ResNet on CIFAR10.

We summarize our contributions below:

1. We show by experiments that the empirical optimization advantage of Adam over SGD can
not be explained solely under rotation-invariant assumptions. (Figure 1)

2. We propose a new complexity metric for the optimization problem, which is the (1, 1)-
norm of the Hessian matrix of loss,

∥∥∇2L(x)
∥∥
1,1

. We present a novel convergence result
for Adam depending on this metric in the case of β1 = 0. (Theorem 3.5 )

3. We further generalize the theoretical analysis (Theorem 3.11) for Adam to blockwise Adam
(Algorithm 3) whose convergence rate can be characterized by a novel smoothness mea-
sure (Definition 3.9). Adam and AdaSGD are two notable examples of blockwise Adam. In
Adam, all blocks are of size 1. In AdaSGD, there is only one block.

4. We empirically verify that when Adam converges more slowly on the rotated loss, the (1, 1)-
norm of Hessian also increases, which suggests that our new complexity metric for Adam’s
convergence is practically relevant. (Section 4).1

2 PRELIMINARIES

Notations. For x ∈ Rd, we define the vector p-norm ∥x∥p as (
∑d

i=1 x
p
i )

1/p for p ∈ [1,∞]. For a
matrix A ∈ Rd1×d2 , its (1, 1)-norm ∥A∥1,1 is defined as

∑d1

i=1

∑d2

j=1 |Ai,j | and its operator norm

induced by vector p-norm ∥ · ∥p as supx∈Rd
∥Ax∥q

∥x∥p
, denoted by ∥A∥p, where 1

q + 1
p = 1 and ∥ · ∥q

is the dual norm of ∥ · ∥p. For a square matrix A ∈ Rd×d, |A| is defined as the unique square root
of A⊤A. For a deterministic loss function L(x), we consider optimization over L with access only
to independent stochastic functions {Lt(x)}Tt=1 such that ELt(x) = L(x) for any input x ∈ Rd.
Rotation. For an invertible function T : Rd → Rd, T is a rotating transformation if there exists
an orthogonal matrix T ∈ Rd×d such that T (x) = Tx. T is a permutating transformation if there
exists a permutation π : [d] → [d] such that T (x) = [xπ(1), . . . , xπ(d)]

⊤. A permutating transfor-
mation is always a rotating transformation. We will useR to denote a rotating transformation.
Definition 2.1. For initialization x0 and stochastic losses {Lt}Tt=1, we can get xt when running
algorithm A on (x0, {Lt}Tt=1). For a transformation T , we can also get x̃t when running A with
the same hyperparameters on (x̃0, {L̃t}Tt=1) with x̃0 = T −1(x0) and L̃t = Lt ◦ T .

1The code is at https://github.com/mohamad-amin/adam-coordinate-adaptivity.
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Algorithm 1 Adam

Hyperparam: β1, β2, ϵ ≥ 0, total steps T ,
learning rate {ηt}Tt=1, initial m0, v0

Input: initial x0, stochastic losses {Lt}Tt=1
v0,i ← v0
for t = 1, 2, · · · , T :
gt,i ← ∇iLt(xt−1)
mt,i ← β1mt−1,i + (1− β1)gt,i
vt,i ← β2vt−1,i + (1− β2)g

2
t,i

xt,i ← xt−1,i − ηt
mt,i√
vt,i+ϵreturn xT

Algorithm 2 AdaSGD (Wang & Wiens, 2020)

Hyperparam: β1, β2, ϵ ≥ 0, total steps T ,
learning rate {ηt}Tt=1, initial m0, v0

Input: initial x0, stochastic losses {Lt}Tt=1
for t = 1, 2, · · · , T :
gt,i ← ∇iLt(xt−1)
mt,i ← β1mt−1,i + (1− β1)gt,i

2

vt ← β2vt−1 + (1− β2)(∥gt∥22 /d)
xt,i ← xt−1,i − ηt

mt,i√
vt+ϵreturn xT

An algorithm A is equivariant w.r.t. T if it always holds that x̃t = T −1(xt) for any hyperparam-
eters, initialization and stochastic losses. A is rotation-equivariant if it is equivariant w.r.t. any
rotating transformation R. A is permutation-equivariant if it is equivariant w.r.t. any permutating
transformation.

Theorem 2.2 shows the difference between Adam and AdaSGD, whose proof is in Appendix B.
Theorem 2.2. AdaSGD is rotation-equivariant. Adam and SignGD are only permutation-equivariant.

3 MAIN RESULTS: CONVERGENCE RATES OF Adam

In this section, we present our main theoretical results. Theorem 3.5 gives a convergence analysis of
Adam for stochastic non-convex smooth losses with coordinate-wise gradient noise. The convergence
is measured by ℓ1 norm of the gradient. For deterministic losses, our best rate (Theorem 3.2) is
achieved by SignGD (Adam with β1 = β2 = 0). For stochastic losses with bounded gradient noise
variance, our best rate (Corollary 3.6) is achieved by RMSProp (Adam with β1 = 0, β2 ∈ [0, 1]).

Then we extend our analysis of Adam to more general blockwise Adam (Theorem 3.11), which
contains both Adam and AdaSGD as special cases. We also come up with novel smoothness mea-
sures (Definition D.2) corresponding to the set of blocks used in blockwise Adam.

Similar to previous works (Défossez et al., 2022), our analysis can be extended to the general case
of Adam, where both β1, β2 are non-zero. But the rate becomes strictly worse than the RMSProp (the
case of β1 = 0), as there will be some extra polynomials of 1

1−β1
. We decide not to include the

result for the general case, on the one hand for ease of presentation, and on the other hand, because
such result can not explain the optimization benefit of momentum (β1 > 0) in practice and does not
add any insight on the benefit of Adam. We hypothesize that the theoretical assumptions are missing
some important features of loss landscape of transformers and we leave this for future work.

3.1 WARMUP: SignGD (Adam WITH β1 = β2 = 0)

In this section, we present the convergence analysis for SignGD as a warm-up and illustrate how
Adam could benefit from a non-rotation-invariant property of the loss, which in particular is the ℓ∞
smoothness. The key observation is that SignGD is normalized steepest descent w.r.t. ℓ∞ norm (Xie
& Li, 2024), so it is more natural to analyze its convergence using ℓ∞ norm geometry of the loss.
Definition 3.1. Given a norm ∥·∥ on Rd and ∥·∥∗ as its dual norm, we say a function L is H-smooth
w.r.t. ∥·∥ if for any x,y ∈ Rd, we have that ∥∇L(x)−∇L(y)∥∗ ≤ H ∥x− y∥.

Theorem 3.2. Let L be H-smooth w.r.t. ℓ∞ norm and {xt}Tt=1 be the iterates of SignGD (Adam
with β1 = β2 = 0) on L with initialization x0 and learning rate η, it holds that

min
1≤t≤T

∥∇L(xt)∥1 ≤
L(x0)−minL(x)

Tη
+

Hη

2
.

If we choose η =
√

2(L(x0)−minL(x))
TH , then min1≤t≤T ∥∇L(xt)∥1 ≤

√
2H(L(x0)−minL(x))

T .

2Here it is slightly different from Wang & Wiens (2020). We use an exponential average of the gradient for
mt instead of momentum. Our definition makes AdaSGD the same as Adam in a one-dimensional problem.
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Theorem 3.2 gives the convergence rate for SignGD and the proof is in Appendix C.

3.2 MAIN RESULT: RMSProp (Adam WITH β1 = 0, β2 ∈ [0, 1])

It is well-known that SignGD might not converge in the stochastic case as the expectation of descent
direction for mini-batch loss may not be a descent direction for L. RMSProp is proposed to address
this issue by using a moving average of the squared gradient per coordinate to reduce the correla-
tion between the denominator and the numerator, thus making the expected update direction less
biased (Hinton et al., 2012). In this subsection we formalize the above intuition and show indeed
a positive β2 in Adam helps convergence in the stochastic case. The main challenges here are from
both lower bounding the first-order term and upper bounding the second-order term in the modified
descent lemma (the RMSProp counterpart of Equation 7).

L(xt)− L(xt−1) ≤ −ηt∇L(xt)
⊤ gt√

vt + ϵ
+

H

2
η2t

∥∥∥∥ gt√
vt + ϵ

∥∥∥∥2
∞

We can only upper bound
∥∥∥ gt√

vt+ϵ

∥∥∥2
∞

by 1
1−β2

without more fine-grained analysis on the relationship
between gradients in each step, which will greatly hurt the dependence of convergence rate on 1−β2.
However, even though some large gt,i can make gt,i√

vt,i+ϵ
as large as 1√

1−β2
, the average coordinate

moving speed should be close to 1. Therefore, we introduce Definition 3.3, which is slightly stronger
than Definition 3.1 but enables decomposing the second order term into each coordinate according
to Lemma D.3. It also facilitates coordinate-wise analysis for the first order term. We note this
definition also appears in Assumption 2.3 of the concurrent work (Maladkar et al., 2024).

Definition 3.3. For any H = (H1, . . . ,Hd) ∈ Rd, we say L is H-smooth coordinate-wisely w.r.t.
ℓ∞ norm , if and only if |∇iL(x)−∇iL(y)| ≤ Hi ∥x− y∥∞ for any i ∈ [d], x,y ∈ Rd.

(1,1)-norm as an estimate for coordinate-wise smoothness. Hi in Definition 3.3 is determined
by supx

∑d
j=1

∣∣∇2
i,jL(x)

∣∣, which is difficult to compute because it requires taking supreme over

the entire domain. A computationally-tractable alternative is to approximate
∑d

i=1 Hi locally by the
(1, 1)-norm of Hessian of loss along the training trajectory. We provide an efficient approximation
algorithm with concentration guarantees in Appendix E.3, which uses hessian-vector product against
random Cauchy vectors.

By definition, H-smoothness coordinate-wisely w.r.t. ℓ∞ norm implies
∑d

i=1 Hi-smoothness w.r.t.
ℓ∞ norm. We also need Assumption 3.4 to measure the influence of noise in the stochastic setting.

Assumption 3.4 (Coordinate-wise noise). There exist constants σi such that
E [∇iLt(x)−∇iL(x)]

2 ≤ σ2
i for any i ∈ [d], t ∈ N and x ∈ Rd.

We present the main result in Theorem 3.5. The sketch of the proof is presented in Section 3.4 and
the complete proof for the generalized blockwise Adam algorithm is presented in Appendix D.1.
The proof incorporates some key steps from Li & Lin (2024), extending them to accommodate the
generalized algorithm and different smoothness assumptions.

Theorem 3.5 (Main, Adam). Let {Lt}Tt=1 be independent stochastic losses satisfying Assumption 3.4
and that their expectation L is H-coordinate-wisely smooth w.r.t. ℓ∞ norm. For Adam with β1 = 0,
we have that

min
T
2 <t≤T

E ∥∇L(xt)∥1 ≤ O

E +
√
E

√√√√ β
T
4
2

T (1− β2)
dv0 +

d∑
i=1

σi + d
√
ϵ


with E = 2

ηT E [L(x0)− L(xT )] +
(
1 + β2F

T (1−β2)

)(
η
∑d

i=1 Hi +
√
1− β2

∑d
i=1 σi

)
and F =

2 ln

(
1 +

∑d
i=1 σ2

i+∥∇L(x0)∥2
∞+

∑
i∈[d] H

2
i η

2T (T+ 1
1−β2

)

v0+ϵ

)
+ ln 32.

The convergence rate of RMSprop can be determined by choosing hyperparameters η and β2 in The-
orem 3.5 to minimize E. By assuming v0+ϵ > (

∑d
i=1 σ

2
i +∥∇L(x0)∥2∞+

∑
i H

2
i η

2)/poly(T ) and
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1
1−β2

= poly(T ), we can simplify the term by considering F = O(log T ). The two terms involving∑d
i=1 σi have a lower bound Θ

(∑d
i=1 σi

(
log T
T

) 1
2

)
, which is achieved with 1−β2 = Θ

(
log T
T

)
.

Then the three terms involving η has a lower bound Θ

(√
(L(x0)−minx L(x))

∑d
i=1 Hi

T

)
reached by

η = Θ
(√

L(x0)−minx L(x)

T
∑d

i=1 Hi

)
. These hyperparameter choices yield the optimal convergence rate for

stochastic case in Corollary 3.6. For convenience, we define R ≜ (L(x0)−minx L(x))
∑d

i=1 Hi,
which will be the core term in Corollaries 3.6 and 3.7.
Corollary 3.6 (Stochastic Case, general σi). Let {Lt}Tt=1 be independent stochastic losses sat-
isfying Assumption 3.4 and that their expectation L is H-coordinate-wisely smooth w.r.t. ℓ∞

norm. For β1 = 0, 1 − β2 = Θ( log T
T ), ϵ = 0, η = Θ

(√
L(x0)−minx L(x)

T
∑d

i=1 Hi

)
and v0 >

(
∑d

i=1 σ
2
i + ∥∇L(x0)∥2∞ +

∑
i H

2
i η

2)/poly(T ), we have that

min
T
2 <t≤T

E ∥gt∥1 = O

√R

T
+

√√√√ d∑
i=1

σi

(
R

T

) 1
4

+

d∑
i=1

σi

(
log T

T

) 1
4

+ δT


with δT =

√
dv0

T (1−β2)
exp

(
−T (1−β2)

8

)[(
R
T

) 1
4 +

√∑d
i=1 σi

(
log T
T

) 1
4

]
.

Here δT can be smaller than any polynomial of T by manipulating the value of T (1−β2)
log T = Θ(1).

Then
∑d

i=1 σi

(
log T
T

) 1
4

is the leading term w.r.t. T in the rate whose coefficient only involves∑d
i=1 σi. It suggests that the rate can be much improved when noise is small. Below we get the

convergence rate with the same hyperparameters in deterministic case in Corollary 3.7.
Corollary 3.7 (Deterministic Case, σi = 0). Let {Lt}Tt=1 be deterministic losses satisfying Assump-
tion 3.4 and that their expectation L is H-coordinate-wisely smooth w.r.t. ℓ∞ norm. For β1 = 0,
1 − β2 = Ω( log T

T ), ϵ = 0, η = Θ
(√

L(x0)−minx L(x)

T
∑d

i=1 Hi

)
and v0 > (

∑d
i=1 σ

2
i + ∥∇L(x0)∥2∞ +∑

i H
2
i η

2)/poly(T ) for any polynomial poly(T ), we have that

min
T
2 <t≤T

∥gt∥1 = O

(√
R

T
+ δT

)

with δT =
√

dv0

T (1−β2)
exp

(
−T (1−β2)

8

) (
R
T

) 1
4 .

Corollary 3.7 almost recovers Theorem 3.2, except for the smoothness constant. Specifically, it uses
supx ∥∇2L(x)∥(1,1) that is larger than supx ∥∇2L(x)∥∞ in Theorem 3.2 as ∥·∥1,1 ≥ ∥·∥∞ always
holds. This gap is due to technical difficulty of analyzing Adam as mentioned in Section 3.2.

Dependence on ϵ, v0 and β2. While many previous works rely on the relatively large magnitude
of ϵ compared to vt and give a bound in the regime of SGD when the adaptive effect is dominated
by the constant ϵ (Zaheer et al., 2018; De et al., 2018), our result actually prefers ϵ to be 0 while
maintaining the value of v0 + ϵ. We also note the dependence of our bound in Theorem 3.5 on v0 is
very mild and logarithmic. Theorem 3.5 has similar convergence rates for all v0 of magnitude at most
poly(T ), while most previous result only addresses the case where v0,i is at the scale of noise (Li
& Lin, 2024) or 0. The main reason for this adaptivity to a wide range of v0 is our specific choice of
β2 = 1−Θ( log T

T ), which allows the initial large v0 to decay fast and resume normal training. Other
existing results using β2 = 1−Θ(1/T ) (Défossez et al., 2022; Li & Lin, 2024) cannot allow large
initial value v0 because v0 only decays a constant fraction throughout the training and the effective
learning rate will be too small.

3.3 A UNIFIED ANALYSIS FOR BLOCKWISE Adam

In this subsection, we present convergence analysis for a broader class of adaptive algorithms de-
fined in Algorithm 3. It can be viewed as a coarser version of Adam because it does pre-conditioning
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Algorithm 3 Blockwise Adam

Hyperparam: β1, β2, ϵ ≥ 0, block partition Φ, total steps T , learning rate {ηt}Tt=1, initial m0, v0.
Input: initial x0, stochastic losses {Lt}Tt=1
v0,b ← v0
for t = 1, 2, · · · , T :
gt,i ← ∇iLt(xt−1)
mt,i ← β1mt−1,i + (1− β1)gt,i

vt,b ← β2vt−1,b + (1− β2)
∑

Φ(i)=b g2
t,i

db

xt,i ← xt−1,i − ηt
mt,i√

vt,Φ(i)+ϵ
return xT

blockwisely instead of coordinate-wisely. Since Adam and AdaSGD can be viewed as special cases
of blockwise Adam with ΦAdam : i 7→ i and ΦAdaSGD : i 7→ 1 respectively, any convergence results for
Algorithm 3 would imply convergence of Adam and AdaSGD. Finally we also note that such block-
wise Adam has been recently studied empirically by some concurrent work, where the algorithm is
named by Adam-mini (Zhang et al., 2024b) and Adalayer (Zhao et al., 2024).

We first introduce more notations. For a partition function Φ : [d]→ [B] where B is the number of
blocks, (b) is defined as Φ−1(b) = {i|Φ(i) = b} and db = #(b), the number of parameters in block
b. We define the vector x(b) as [xi]Φ(i)=b and the submatrix A(b),(b′) as [Ai,j ]Φ(i)=b,Φ(j)=b′ .
Definition 3.8 (Φ-norm). We define the (∞, 2)-norm w.r.t. partition Φ of x as the ℓ∞ norm of the

vector
(
∥x(b)∥2√

db

)B

b=1

, which is maxb∈[B]
∥x(b)∥2√

db
. For convenience, we will denote it by ∥x∥Φ or

just call it Φ-norm. We denote its dual norm by ∥x∥Φ,∗, which is equal to
∑B

b=1

√
db
∥∥x(b)

∥∥
2
.

Definition 3.9 (Φ-smoothness). We say a diagonal matrix A follows partition Φ iff its diagonal
elements are constant within each block, i.e., there are a1, · · · , aB s.t. Ai,i = aΦ(i) for any i ∈ [d].

We say a twice-differentiable L is H-smooth under partition Φ if there exists a diagonal matrix A
following partition Φ such that H = Tr(A) and A dominates

∣∣∇2L(x)
∣∣ for all x. We further

define the Φ-smoothness of loss L, denoted by H(L,Φ), as the smallest constant H such that L is
H-smooth under parition Φ, that is,

H(L,Φ) = min
A follows Φ, A⪰|∇2L(x)|,∀x

Tr(A) (1)

We note that Φ-smoothness is different from the smoothness under Φ-norm, where the latter is equal
to supx∈Rd sup∥u∥Φ≤1

∥∥∇2L(x)u
∥∥
Φ,∗. For each x, it holds that

sup
∥u∥Φ≤1

∥∥∇2L(x)u
∥∥
Φ,∗ = sup

∥u∥Φ≤1

sup
∥v∥Φ≤1

v⊤∇2L(x)u = sup
∥u∥Φ≤1

∣∣u⊤∇2L(x)u
∣∣ .

When A ⪰
∣∣∇2L(x)

∣∣, we have that sup∥u∥Φ≤1

∣∣u⊤∇2L(x)u
∣∣ ≤ sup∥u∥Φ≤1 u

⊤Au. When diag-
onal A follows partition Φ, we have that sup∥u∥Φ≤1 u

⊤Au = Tr(A). So Φ-smoothness defined in
Definition 3.9 is always no smaller than the smoothness under Φ-norm.

Another advantage with the definition is that the H(L,Φ) will always non-increase with a more
fine-grained partition. For two partition functions Φ1 and Φ2, we say Φ1 includes Φ2 if and only if
Φ1(i) = Φ1(j) for any i, j ∈ [d] such that Φ2(i) = Φ2(j). If a diagonal matrix A follows partition
Φ1 and partition Φ1 includes Φ2, then A also follows Φ2. So we have that {A | A follows Φ1,A ⪰∣∣∇2L(x)

∣∣ for all x} ⊆ {A | A follows Φ2,A ⪰
∣∣∇2L(x)

∣∣ for all x} and H(L,Φ1) is no smaller
than H(L,Φ2). Since ΦAdaSGD includes any partition and any partition includes ΦAdam, H(L,ΦAdaSGD)
is the largest and H(L,ΦAdam) is the smallest among all the partitions Φ.

With Assumption 3.10 on noise, we can prove the result for blockwise Adam in Theorem 3.11.
Assumption 3.10 (Generalized version of Assumption 3.4). There exists constant σb such that
E
∥∥∇(b)Lt(x)−∇(b)L(x)

∥∥2
2
≤ dbσ

2
b for any block b ∈ [B], t ∈ N and x ∈ Rd.

Theorem 3.11 (Main, Blockwise Adam). For a specific partition Φ, we consider the updates defined
in Algorithm 3. Under Assumption 3.10, we have that

min
T
2 <t≤T

E
B∑

b=1

√
db
∥∥∇(b)L(xt)

∥∥
2
≤ 2
√
2E +

√
2E

√√√√ 4β
T
4
2

T (1− β2)
d
√
v0 +

B∑
b=1

dbσb + d
√
ϵ
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with E = 2
ηT E [L(x0)− L(xT )]+

(
1 + β2F

T (1−β2)

)(
ηH(L,Φ) + 2

√
1− β2

∑B
b=1 dbσb

)
and F =

2 ln

(
1 +

∑B
b=1 σ2

b+∥∇L(x0)∥2
Φ+

∑
b∈[B] H

2
b dbη

2T (T+ 1
1−β2

)

v0+ϵ

)
+ ln 32.

When L is (H1, . . . ,Hd)-smooth coordinate-wisely w.r.t. ℓ∞ norm, we show in Appendix D.2 that
diag(H1, . . . ,Hd) ⪰

∣∣∇2L(x)
∣∣ for all x ∈ Rd and diag(H1, . . . ,Hd) follows ΦAdam partition. So

H(L,ΦAdam) is at most
∑d

i=1 Hi and we can use Theorem 3.11 to derive Theorem 3.5. We can also
estimate H(L,ΦAdam) by supx∈Rd

∥∥∇2L(x)
∥∥
1,1

as discussed in Section 3.2. For ΦAdaSGD being the
mapping i 7→ 1, H(L,ΦAdaSGD) is the same as the smoothness under ΦAdaSGD-norm, whose value is
d supx∈Rd

∥∥∇2L(x)
∥∥
2
.

Different norms for smoothness. As an implication of Theorem 3.11, we can get analogs of
Corollaries 3.6 to 3.7 for AdaSGD, with the corresponding noise and smoothness assumptions. When

the optimization is not noise-dominated and
√

R
T =

√
(L(x0)−minx L(x))H(L,Φ)

T becomes the lead-
ing term, the choice of Φ now matters a lot. The key difference between AdaSGD and Adam lies in the
gap between H(L,ΦAdaSGD) and H(L,ΦAdam) and comparing these coefficients can provide insight
into which algorithm may be more effective under different conditions.

Previous analyses of Adam’s convergence (Shi & Li, 2021; Défossez et al., 2022; Li & Lin, 2024)
usually assume smoothness under the ℓ2 norm and the rate of Adam ends up being identical to the
rate of AdaSGD, which fails to explain why Adam often performs better than AdaSGD in practice. By
adopting an ℓ∞ norm smoothness assumption, the coefficient for Adam’s convergence rate changes
from d supx ∥∇2L(x)∥2 to H(L,ΦAdam), where the latter is typically much smaller when Adam

optimizes faster because supx
∥∥∇2L(x)

∥∥
1,1

is much smaller than d supx
∥∥∇2L(x)

∥∥
2
.

Finally, we note that the ΦAdam-smoothness H(L,ΦAdam) is not rotation-invariant in the sense that
H(L,ΦAdam) ̸= H(L ◦ R,ΦAdam) for a typical rotation R. In practice, the (1, 1)-norm of Hessian
matrix can vary a lot when a rotation is performed on the loss as shown in Section 4.1. In contrast,
ΦAdaSGD-smoothness H(L,ΦAdaSGD) is invariant under loss rotations.

3.4 PROOF SKETCH OF THEOREM 3.11

We will use ḡt = E[gt|x<t] = ∇L(xt−1) to denote the full batch gradient and consider the decrease
of L(xt) in a single step t. We can upper bound the second order term in the Taylor expansion
(Equation 2) with H ⪰ ∇2L(x) that achieves Tr(H) = H(L,Φ). Then we can get

L(xt)− L(xt−1) ≤ −η
d∑

i=1

gt,iḡt,i√
vt,Φ(i) + ϵ

+
1

2
η2

B∑
b=1

Hb

∥∥gt,(b)∥∥22
vt,b + ϵ

(2)

= −η
B∑

b=1

g⊤
t,(b)ḡt,(b)√
vt,b + ϵ

+
1

2
η2

B∑
b=1

Hbdb

∥∥gt,(b)∥∥22 /db
vt,b + ϵ

(3)

The proof contains two main parts: lower bounding the first order term using ∥ḡt∥Φ,∗ and upper
bounding the second order term. We address the second-order term by employing Lemma 3.12 to
bound the sum by T + β2

1−β2
ln

vT,b+ϵ
v0,b+ϵ , where we set vt ≜ vt,b and gt ≜

∥∥gt,(b)∥∥2 /√db.

Lemma 3.12. Given any 0 < β2 < 1, for any scalar sequences {vt}Tt=0 and {gt}Tt=1 satisfying
v0 ≥ 0, v1 > 0 and vt − β2vt−1 ≥ (1− β2)g

2
t for t ≥ 1, it holds that

∑T
t=1

g2
t

vt
≤ T + β2

1−β2
ln vT

v0
.

Now we turn to the first term. Ideally, for each block b ∈ [B], we would like to connect the

first order term to ∥ḡt,(b)∥22 by taking expectation, i.e., Et
g⊤
t,(b)ḡt,(b)√

vt,b+ϵ
≈ Etg

⊤
t,(b)ḡt,(b)√
vt,b+ϵ

=
∥ḡt,(b)∥2

2√
vt,b+ϵ

,

where we use Et[·] as abbreviation for E[·|x<t]. However, this is not correct because both the

numerator and denominator in
g⊤
t,(b)ḡt,(b)√

vt,b+ϵ
depend on the stochastic gradient gt. To circumvent this

difficulty, we lower bound each conditional expectation Et
g⊤
t,(b)ḡt,(b)√

vt,b+ϵ
by

Etg
⊤
t,(b)ḡt,(b)

2
√

Etvt,b+ϵ
, minus error

7
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terms related to noise magnitude σb. We can further have
Etg

⊤
t,(b)ḡt,(b)√
Etvt,b+ϵ

≥ ∥
ḡt,(b)∥22√
ṽt,b+ϵ

, where ṽt,b =

β2vt−1,b+(1−β2)
(∥∥ḡt,(b)∥∥22 /db + σ2

b

)
. This leads to Lemma 3.13 whose proof is in Appendix D.

Lemma 3.13 (first-order approximation). With Assumption 3.10, it holds that for any block b ∈ [B]

E
T∑

t=1

g⊤
t,(b)ḡt,(b)√
vt,b + ϵ

≥ 1

2
E

T∑
t=1

∥∥ḡt,(b)∥∥22√
ṽt,b + ϵ

−
√
1− β2Tdbσb −

dbσbβ2√
1− β2

E
[
ln

vT,b + ϵ

v0,b + ϵ

]
. (4)

Combining Lemmas 3.12 and 3.13 and Equation 3 gives an upper bound for E
∑T

t=1

∑B
b=1

∥ḡt,(b)∥22√
ṽt,b+ϵ

.

Finally, we employ Cauchy inequality (Equation 5) and Lemma 3.14 to upper bound ∥ḡt∥Φ,∗ using

E
∑T

t=T
2 +1

∑B
b=1

∥ḡt,(b)∥22√
ṽt,b+ϵ

. This completes the proof.

T∑
t=T

2 +1

∥ḡt∥Φ,∗=

T∑
t=T

2 +1

B∑
b=1

√
db
∥∥ḡt,(b)∥∥2 ≤

√√√√√ T∑
t=T

2 +1

B∑
b=1

∥∥ḡt,(b)∥∥22√
ṽt,b + ϵ

√√√√√ T∑
t=T

2 +1

B∑
b=1

db
√
ṽt,b + ϵ. (5)

Lemma 3.14. With Assumption 3.10, it holds that for any block b ∈ [B]

T∑
t=T

2 +1

E
[√

ṽt,b + ϵ
]
≤ 2β

T
4
2

1− β2

√
v0,b +

T

2
σb +

T

2

√
ϵ+ 2

T∑
t=1

E

[∥∥ḡt,(b)∥∥22 /db√
ṽt,b + ϵ

]
. (6)

4 EXPERIMENTS

In order to empirically investigate and confirm the implications of our proposed theory, we compare
the training performance of Adam with AdaSGD, SGD and rotated Adam on multiple different tasks.
The details of all experiments are in Appendix E.1.

4.1 QUADRATIC LOSS

We perform controlled experiments on quadratic loss to study the relationship between optimiza-
tion speed of Adam and the shape of Hessian in terms of ΦAdam-smoothness. More specifically,
we consider Σ = diag(1, · · · , 1, 1

22 ,
1
32 , · · · ,

1
9902 ) ∈ R1000×1000 and manually generate orthog-

onal matrices Ri. Then we optimize L0(x) = 1
2x

⊤Σx with AdaSGD and Adam and optimize
Li(x) = 1

2x
⊤R⊤

i ΣRix with Adam for 100 steps. Because AdaSGD is rotation-equivariant, the
optimization process of AdaSGD is the same on all Li. We tune learning rates for each setting with
10 random seeds and present their lowest average loss with standard deviation in Table 1.

Optimizer (1, 1)-norm/d Loss (β1 = β2 = 0) Loss (β1 = 0.9, β2 = 0.99)

AdaSGD 0.01164 0.00887± 0.00119 0.00405± 0.00021
Adam 0.01164 0.00022± 0.00007 0.00002± 0.00001
Adam (R1) 0.08324 0.00314± 0.00031 0.00066± 0.00008
Adam (R2) 0.50729 0.00567± 0.00053 0.00134± 0.00007
Adam (R3) 1.23731 0.00751± 0.00086 0.00183± 0.00009
Adam (R4) 2.59919 0.00978± 0.00132 0.00254± 0.00008

Table 1: The final loss values obtained by different optimizers and the (1, 1)-norm of Hessian matrix
for the corresponding objectives. The spectral norm of the Hessian is always 1. Adam optimizes
worse when the (1, 1)-norm of Hessian matrix increases, as suggested by Corollary 3.7. Moreover,
when (1, 1)-norm divided by d is much smaller than spectral norm, Adam tends to optimize faster
than AdaSGD, supporting Φ-smoothness as a predictor of blockwise Adam’s optimization speed.

We find a clear pattern that Adam optimizes worse when the (1, 1)-norm of Hessian matrix increases,
as suggested by our Corollary 3.7. Moreover, when (1, 1)-norm divided by dimension is smaller than
spectral norm, Adam tends to optimize faster than AdaSGD, as suggested by our Theorem 3.11.
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Figure 2: Training (solid line) and test (dashed line) losses and accuracy of ResNet18 on CIFAR-10
with Adam, AdaSGD, rotated Adam, and SGD. Adam converges faster than other algorithms.

4.2 GPT-2 ON LANGUAGE MODELING TASK

We train GPT-2 on the OpenWebText corpus. The training losses and evaluation losses of different
optimizers are plotted in Figure 1. As mentioned in Section 1, Adam converges faster than AdaSGD
while they both converge faster than rotated Adam. Since we propose the (1, 1)-norm of Hessian
as a non-rotation-invariant metric that can affect the convergence rate of Adam, we also measure it
for the original loss function L and rotated loss function L̃ on checkpoints trained with different
losses. The results are presented in Table 2. The same correlation between norms and convergence
rates holds here. The smaller the norm is, the faster the optimizer works.

Optimizer Smoothness Metric Upper Bound Estimated Value

AdaSGD H(L,ΦAdaSGD) d
∥∥∇2L(x)

∥∥
2

4.2446

Adam H(L,ΦAdam)
∥∥∇2L(x)

∥∥
1,1

2.3538

Rotated Adam H(L ◦ R,ΦAdam)
∥∥R⊤∇2L(x)R

∥∥
1,1

14.3745

Table 2: Hessian norms for the last GPT-2 checkpoints trained with different optimizers.

We also explore how learning rate can affect the performance of different optimizers and find another
advantage of Adam over AdaSGD: it can maintain stable training at a larger learning rate, which is
often beneficial to faster and more efficient convergence. The results and details are in Appendix E.4.

GPT-2 small models have more than 100 million parameters, and thus the size of its hessian of loss
as well as the rotation matrix is more than 1016, which is way more than the storage of the modern
computers. We introduce how to rotate the loss efficiently in Appendix E.2 and how to estimate
Hessian norms in Appendix E.3.

4.3 RESNET18 ON CIFAR-10

To further test whether the correlation between Φ-smoothness and the optimization performance
holds for architectures other than transformers, we conduct an experiment on ResNet18 trained on
CIFAR-10 (Krizhevsky & Hinton, 2009).

Figure 2 depicts the loss and accuracy curves for the best performing hyperparameters chosen over
the training set’s final loss for batch size 256.3 The results for other batch sizes are in Table 4. When
it comes to optimization speed, even for ResNet18, Adam is always better than rotated Adam and
they are always better than AdaSGD and SGD across different batch sizes. Note that this does not
contradict with common practice of training ResNet with SGD, where the goal is to get better gener-
alization and the training budget is large so all optimizers can easily achieve full training accuracy.
In our experiment, we study optimization speed and intentionally limit the number of steps.

3We have intentionally limited the number of training iterations to emphasize the difference of optimizers
in terms of training speed over generalization.
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Optimizer Smoothness Metric Upper Bound Estimated Value

AdaSGD H(L,ΦAdaSGD) d
∥∥∇2L(x)

∥∥
2

1.5355

Adam H(L,ΦAdam)
∥∥∇2L(x)

∥∥
1,1

0.0036

Rotated Adam H(L ◦ R,ΦAdam)
∥∥R⊤∇2L(x)R

∥∥
1,1

0.9868

Table 3: Hessian norms for optimal ResNet checkpoints trained with different optimizers.

We also measure the Hessian for checkpoints obtained at batch size 256 and the results are in Table 3.
The correlation between norms and convergence rates still holds here. When the (1, 1)-norm is
smaller than d times spectral norm, Adam optimizes faster than AdaSGD.

5 RELATED WORKS

Comparison between Adam and SGD Previous work tries to analyze the difference between
Adam and SGD from different perspectives. Zhou et al. (2018) proves a faster convergence rate of
Adam than SGD when the stochastic gradients are sparse. Zhang et al. (2020) suggests that SGD
suffers more from heavy-tailed noise than Adam. Pan & Li (2023) claims that Adam has lower
directional sharpness because of the effect of coordinate-wise clipping. Other works also consider
the coordinate-wise normalization of Adam (Balles & Hennig, 2018; Kunstner et al., 2022). Kunstner
et al. (2024) shows that the heavy-tailed class imbalance in language modeling tasks will cause SGD
to converge slower when it can only optimize majority class well. Zhang et al. (2024a) finds that
Adam is better at handling the block heterogeneity of Hessian matrix, which is a specific phenomenon
in transformers. When viewing Adam as an adaptive method, there are works showing that adaptive
methods have an advantage of achieving optimal convergence rate without relying on problem-
dependent constant (Ward et al., 2020; Levy et al., 2021).

Convergence rate of Adam There are many works showing convergence rate for Adam (Zhou
et al., 2018; Chen et al., 2018; Zou et al., 2019; Shi & Li, 2021; Guo et al., 2021; Défossez et al.,
2022; Zhang et al., 2022). Most of them rely on the smoothness of the loss function, which is
measured w.r.t. ℓ2 norm. Zhang et al. (2019) proposes (L0, L1)-smoothness condition should be
more reasonable than globally bounded smoothness. Li et al. (2024) further generalizes the (L0, L1)
smoothness condition. However, they still focus on the default rotation-invariant ℓ2 norm. To the
best of our knowledge, we are the first to assume smoothness under ℓ∞ norm for analyzing Adam.

Comparison with Li & Lin (2024) Li & Lin (2024) employs the same ℓ1 norm for gradient and
improves the dependence on dimension d compared to previous results for ℓ2 norm. But they still
assume ℓ2 norm smoothness while we adapt their results under ℓ∞ norm smoothness to potentially
further improve dependence on d. Another drawback of Li & Lin (2024) is setting v0 based on noise
magnitude σ. which is impractical in real experiments because σ is unknown. Overestimating σ
will result in slow convergence because large v0 causes Adam to behave similarly with SGD without
adjusting the learning rate adaptively. In contrast, we allow for general initialization for v0 and
our convergence rate can work well in both noisy setting and deterministic setting. We also use
1−β2 = Θ

(
log T
T

)
to obtain our convergence rate while Li & Lin (2024) requires 1−β2 = Θ

(
1
T

)
.

6 CONCLUSION

We give a new convergence analysis (Theorem 3.5) for Adam in the stochastic non-convex setting us-
ing a novel smoothness assumption. We show the convergence rate for the ℓ1 norm of the gradient is

O
(

1√
T

)
in the deterministic case (Corollary 3.7) and O

((
log T
T

) 1
4

)
in the stochastic case (Corol-

lary 3.6). We also extend our analysis to blockwise Adam on loss L with respect to an arbitrary
partition of the parameters Φ (Theorem 3.11) using the corresponding smoothness H(L,Φ) (Defi-
nition D.2). Our bound for Adam involves (1, 1)-norm of Hessian, rather than the spectral norm of
Hessian, which is relevant to the convergence speed of AdaSGD. This leads to significantly better
smoothness conditions for deep learning models including ResNet-18 and GPT2 empirically. Our
experiments also verify that the smoothness measure H(L,Φ) positively correlates with the opti-
mization speed of blockwise Adam with respect to the partition Φ.
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A MORE RELATED WORK

We note the definition of ΦAdam-smoothness been mentioned in previous work. Bernstein et al.
(2018) relies on it to prove the convergence rate of SignGD. Previous and concurrent work Ene et al.
(2021); Liu et al. (2024); Jiang et al. (2024) uses this assumption for analyzing AdaGrad. We are the
first to analyze Adam under such smoothness assumption. Moreover, we are the first to empirically
measure it for loss functions in real task with theoretical guarantee. Concurrent work Maes et al.
(2024) proposes another algorithm to measure (1, 1)-norm of Hessian matrix. Ling et al. (2022)
analyzes the rotation equivariance property of Adam in the geometry optimization setting.
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B INVARIANCE PROPERTY OF Adam AND SGD

Theorem 2.2. AdaSGD is rotation-equivariant. Adam and SignGD are only permutation-equivariant.

Proof of Theorem 2.2. For SGD and AdaSGD, we will show they are rotation-equivariant by induc-
tion. For any rotating transformation R(x) = Rx, suppose x̃s = R−1(xs) = R⊤xs holds for
s ≤ t− 1. Then we have that g̃t = ∇x̃L̃t(x̃t) = R⊤∇xL(R

−1x̃t−1) = R⊤∇xL(xt−1) = R⊤gt
and m̃t = R⊤mt. From the update rule of SGD, we have that x̃t = x̃t−1 − ηtm̃t =
R⊤xt−1 − ηtR

⊤mt = R⊤(xt−1 − ηtmt) = R⊤xt. For the update rule of AdaSGD, we fur-
ther have that ∥g̃t∥22 = ∥gt∥22 because R is an orthogonal matrix. Then ṽt = vt and the derivation
is similar.

For Adam and SignGD, it is easy to show by induction they are equivariant w.r.t. any permu-
tating transformation because the operation on gradient is performed on each coordinate sepa-
rately. We only need to show they are not equivariant w.r.t. a rotating transformation. We choose
R = [ 1√

2
, 1√

2
; 1√

2
,− 1√

2
], Lt(x) = L(x) = 2x2

1 + x2
2. Due to the update rule of SignGD, it can

only update x and x̃ in the direction of [1, 1] and [1,−1]. But when rotating the update direction
on x̃ back to the space of x. The update direction can only be [1, 0] or [0, 1] that are different from
the update direction in the original space. Because the first step in Adam takes the same direction in
SignGD, we simultaneously show that both SignGD and Adam are not rotation-equivariant.

C CONVERGENCE RATE OF SignGD FOR DETERMINISTIC LOSS

Theorem 3.2. Let L be H-smooth w.r.t. ℓ∞ norm and {xt}Tt=1 be the iterates of SignGD (Adam
with β1 = β2 = 0) on L with initialization x0 and learning rate η, it holds that

min
1≤t≤T

∥∇L(xt)∥1 ≤
L(x0)−minL(x)

Tη
+

Hη

2
.

If we choose η =
√

2(L(x0)−minL(x))
TH , then min1≤t≤T ∥∇L(xt)∥1 ≤

√
2H(L(x0)−minL(x))

T .

Proof of Theorem 3.2. We will directly prove a more general verion of Theorem 3.2. Because L is
H-smooth with respect to ∥ · ∥∞, we have that

L(xt+1)− L(xt) ≤ −∇L(xt)
⊤(xt − xt+1) +

H

2
∥xt − xt+1∥2

≤ −η ∥∇L(xt)∥∗ +
η2H

2
η2 (7)

This implies that

min
1≤t≤T

∥∇L(xt)∥∗ ≤
1

T

T∑
t=1

∥∇L(xt)∥∗ ≤
L(x0)− L(xT )

Tη
+

Hη

2
,

which completes the proof.

D PROOF DETAILS

D.1 PROOF FOR CONVERGENCE RATE OF BLOCKWISE Adam

We will use Lemma 3.12 to better control the growth of the sum of second order term.

Lemma 3.12. Given any 0 < β2 < 1, for any scalar sequences {vt}Tt=0 and {gt}Tt=1 satisfying
v0 ≥ 0, v1 > 0 and vt − β2vt−1 ≥ (1− β2)g

2
t for t ≥ 1, it holds that

∑T
t=1

g2
t

vt
≤ T + β2

1−β2
ln vT

v0
.
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Proof of Lemma 3.12. Notice that 1− x ≤ ln 1
x for any positive x. We can have that

T∑
t=1

g2t
vt
≤

T∑
t=1

vt − β2vt−1

(1− β2)vt

=

T∑
t=1

[
1 +

β2

1− β2

(
1− vt−1

vt

)]

≤ T +
β2

1− β2

T∑
t=1

ln
vt

vt−1

= T +
β2

1− β2
ln

vT
v0

. (8)

when v0 ̸= 0. When v0 = 0, we can still have that

T∑
t=1

g2t
vt
≤ 1

1− β2
+

T∑
t=2

g2t
vt

≤ 1

1− β2
+ (T − 1) +

β2

1− β2
ln

vT
v1

= T +
β2

1− β2
ln

vT
v1/e

.

As mentioned in Section 3.4, we deal with the first order term by approximating it with a deter-
ministic term. Recall the notation defined in Section 3.4. gt denotes the gradient of mini-batch
Lt(xt−1) at step t. And E [gt|xt−1] = ∇L(xt−1) because ELt = L. The full-batch gradient is
ḡt = ∇L(xt−1). Different kinds of second-order momentum are defined in the following way

vt,b = βt
2

∥∥g1,(b)∥∥22 /db + (1− β2)

t−1∑
j=0

βj
2

(∥∥gt−j,(b)

∥∥2
2

)
/db,

ṽt,b = (1− β2)
(∥∥ḡt,(b)∥∥22 /db + σ2

b

)
+ β2vt−1,b.

Lemma 3.13 (first-order approximation). With Assumption 3.10, it holds that for any block b ∈ [B]

E
T∑

t=1

g⊤
t,(b)ḡt,(b)√
vt,b + ϵ

≥ 1

2
E

T∑
t=1

∥∥ḡt,(b)∥∥22√
ṽt,b + ϵ

−
√
1− β2Tdbσb −

dbσbβ2√
1− β2

E
[
ln

vT,b + ϵ

v0,b + ϵ

]
. (4)

Proof of Lemma 3.13. The first order change in block b can decomposed into two terms.

E
T∑

t=1

∑
Φ(i)=b

gt,iḡt,i√
vt,b + ϵ

= E
T∑

t=1

∑
Φ(i)=b

gt,iḡt,i√
ṽt,b + ϵ

+ E

 T∑
t=1

∑
Φ(i)=b

gt,iḡt,i√
vt,b + ϵ

− gt,iḡt,i√
ṽt,b + ϵ

 (9)
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The first term E
∑T

t=1

∑
Φ(i)=b

gt,iḡt,i√
ṽt,b+ϵ

equals to E
∑T

t=1

∑
Φ(i)=b

ḡ2
t,i√

ṽt,b+ϵ
when taking expecta-

tion conditional on xt−1. For the second term, it holds for each t that∑
Φ(i)=b

∣∣∣∣∣gt,iḡt,i
(

1
√
vt,b + ϵ

− 1√
ṽt,b + ϵ

)∣∣∣∣∣
=
∑

Φ(i)=b

|gt,iḡt,i (ṽt,b − vt,b)|√
vt,b + ϵ

√
ṽt,b + ϵ

(√
vt,b + ϵ+

√
ṽt,b + ϵ

)
=
∑

Φ(i)=b

∣∣∣gt,iḡt,i(1− β2)
(∥∥ḡt,(b)∥∥22 /db + σ2

b −
∥∥gt,(b)∥∥22 /db)∣∣∣

√
vt,b + ϵ

√
ṽt,b + ϵ

(√
vt,b + ϵ+

√
ṽt,b + ϵ

)

=
∑

Φ(i)=b

∣∣∣∣gt,iḡt,i(1− β2)

(√∥∥ḡt,(b)∥∥22 /db + σ2
b +

√∥∥gt,(b)∥∥22 /db)(√∥∥ḡt,(b)∥∥22 /db + σ2
b −

√∥∥gt,(b)∥∥22 /db)∣∣∣∣
√
vt,b + ϵ

√
ṽt,b + ϵ

(√
vt,b + ϵ+

√
ṽt,b + ϵ

)
(1)

≤
∑

Φ(i)=b

∣∣∣∣gt,iḡt,i√1− β2

(√∥∥ḡt,(b)∥∥22 /db + σ2
b −

√∥∥gt,(b)∥∥22 /db)∣∣∣∣
√
vt,b + ϵ

√
ṽt,b + ϵ

(2)

≤ 1

2

∑
Φ(i)=b

ḡ2t,i√
ṽt,b + ϵ

(√∥∥ḡt,(b)∥∥22 /db + σ2
b −

√∥∥gt,(b)∥∥22 /db)2

E[
(√∥∥ḡt,(b)∥∥22 /db + σ2

b −
√∥∥gt,(b)∥∥22 /db)2

|xt−1]

(10)

+
1

2

∑
Φ(i)=b

(1− β2)g
2
t,iE[

(√∥∥ḡt,(b)∥∥22 /db + σ2
b −

√∥∥gt,(b)∥∥22 /db)2

|xt−1]

(vt,b + ϵ)
√
ṽt,b + ϵ

(11)

The first inequality (1) is because vt,b + ϵ ≥ (1 − β2)
∥∥gt,(b)∥∥22 /db and ṽt,b + ϵ ≥ (1 −

β2)
(∥∥ḡt,(b)∥∥22 /db + σ2

b

)
. The second inequality (2) is obtained with AM-GM inequality. For

the term in Equation 10, it will be exactly 1
2

∥ḡt,(b)∥22√
ṽt,b+ϵ

after taking expectation conditional on xt−1

because only
(√∥∥ḡt,(b)∥∥22 /db + σ2

b −
√∥∥gt,(b)∥∥22 /db)2

depends on xt. For the term in Equa-

tion 11, we have the following inequality

E

[(√∥∥ḡt,(b)∥∥22 /db + σ2
b −

√∥∥gt,(b)∥∥22 /db)2
∣∣∣∣∣xt−1

]

=E

∥∥ḡt,(b)∥∥22 /db + σ2
b +

∑
Φ(j)=b

g2t,j/db − 2

√∥∥gt,(b)∥∥22 /db√∥∥ḡt,(b)∥∥22 /db + σ2
i

∣∣∣∣∣∣xt−1


(1)

≤2
(∥∥ḡt,(b)∥∥22 /db + σ2

b

)
− 2

√∥∥ḡt,(b)∥∥22 /db + σ2
bE
[√∥∥gt,(b)∥∥22 /db∣∣∣∣xt−1

]
(2)

≤2
(∥∥ḡt,(b)∥∥22 /db + σ2

b

)
− 2

√∥∥ḡt,(b)∥∥22 /db + σ2
b

√∥∥ḡt,(b)∥∥22 /db
=2

√∥∥ḡt,(b)∥∥22 /db + σ2
b

(√∥∥ḡt,(b)∥∥22 /db + σ2
b −

√∥∥ḡt,(b)∥∥22 /db)
≤2
√∥∥ḡt,(b)∥∥22 /db + σ2

bσb.

The first inequality (1) replaces E[
∑

Φ(j)=b g
2
t,j/db | xt−1] with

∥∥ḡt,(b)∥∥22 /db + σ2
b based on As-

sumption 3.10. The second inequality (2) is because ℓ2 norm is a convex function. Then we can
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bound Equation 11 by

∑
Φ(i)=b

(1− β2)g
2
t,iE

[(√∥∥ḡt,(b)∥∥22 /db + σ2
b −

√∥∥gt,(b)∥∥22 /db)2

|xt−1

]
(vt,b + ϵ)

√
ṽt,b + ϵ

≤
∑

Φ(i)=b

(1− β2)g
2
t,i2
√∥∥ḡt,(b)∥∥22 /db + σ2

bσb

(vt,b + ϵ)
√

ṽt,b + ϵ

≤2
√
1− β2σb

∑
Φ(i)=b

g2t,i
vt,b + ϵ

.

Then back to Equation 9, we have that

E
T∑

t=1

∑
Φ(i)=b

gt,iḡt,i√
vt,b + ϵ

= E
T∑

t=1

∑
Φ(i)=b

gt,iḡt,i√
ṽt,b + ϵ

+ E

 T∑
t=1

∑
Φ(i)=b

gt,iḡt,i√
vt,b + ϵ

− gt,iḡt,i√
ṽt,b + ϵ


≥ E

T∑
t=1

∑
Φ(i)=b

ḡ2t,i√
ṽt,b + ϵ

− 1

2
E

T∑
t=1

∑
Φ(i)=b

ḡ2t,i√
ṽt,b + ϵ

− 1

2
2
√
1− β2σbE

T∑
t=1

∥∥gt,(b)∥∥22
vt,b + ϵ

=
1

2
E

T∑
t=1

∑
Φ(i)=b

ḡ2t,i√
ṽt,b + ϵ

−
√
1− β2σbE

T∑
t=1

∥∥gt,(b)∥∥22
vt,b + ϵ

.

For the second term, we can apply Lemma 3.12 and get that
T∑

t=1

∥∥gt,(b)∥∥22 /db
vt,b + ϵ

≤ T +
β2

1− β2
ln

vT,b + ϵ

v0,b + ϵ
.

Combining these two terms, we can get that

E
T∑

t=1

∑
Φ(i)=b

gt,iḡt,i√
vt,b + ϵ

≥ 1

2
E

T∑
t=1

∑
Φ(i)=b

ḡ2t,i√
ṽt,b + ϵ

−
√
1− β2Tdbσb −

dbσbβ2√
1− β2

E
[
ln

vT,b + ϵ

v0,b + ϵ

]
.

Next we need Lemma 3.14 to deal with the denominator in the approximated first order term. The
lemma is largely inspired by Lemma 6 in Li & Lin (2024), where we further generalize it to the case
of block-wise Adam.
Lemma 3.14. With Assumption 3.10, it holds that for any block b ∈ [B]

T∑
t=T

2 +1

E
[√

ṽt,b + ϵ
]
≤ 2β

T
4
2

1− β2

√
v0,b +

T

2
σb +

T

2

√
ϵ+ 2

T∑
t=1

E

[∥∥ḡt,(b)∥∥22 /db√
ṽt,b + ϵ

]
. (6)

Proof of Lemma 3.14. For each t ≤ T , we have that

E
[√

ṽt,b + ϵ
]

=E
[√

β2vt−1,b + (1− β2)(
∥∥ḡt,(b)∥∥22 /db + σ2

b ) + ϵ

]

=E

 β2vt−1,b + (1− β2)σ
2
b + ϵ√

β2vt−1,b + (1− β2)(
∥∥ḡt,(b)∥∥22 /db + σ2

b ) + ϵ

+ (1− β2)E

[∥∥ḡt,(b)∥∥22 /db√
ṽt,b + ϵ

]

≤E
[√

β2vt−1,b + (1− β2)σ2
b + ϵ

]
+ (1− β2)E

[∥∥ḡt,(b)∥∥22 /db√
ṽt,b + ϵ

]
.

(12)
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We use β2vt−1,b + (1 − β2)(
∑

Φ(i)=b ḡ
2
t,i/db + σ2

b ) + ϵ ≥ β2vt−1,b + (1 − β2)σ
2
b + ϵ in the last

step. And for each s ≤ t− 1, we have that

E
[√

βs
2vt−s,b + (1− βs

2)σ
2
b + ϵ

]
=E

[√
βs+1
2 vt−s−1,b + βs

2(1− β2)
∥∥gt−s,(b)

∥∥2
2
/db + (1− βs

2)σ
2
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]
=E

[
E
[√

βs+1
2 vt−s−1,b + βs

2(1− β2)
∥∥gt−s,(b)

∥∥2
2
/db + (1− βs

2)σ
2
b + ϵ

∣∣∣∣xt−s−1

]]
(1)

≤E

[√
βs+1
2 vt−s−1,b + βs

2(1− β2)E
[∥∥gt−s,(b)

∥∥2
2
/db

∣∣∣xt−s−1

]
+ (1− βs

2)σ
2
b + ϵ

]
(2)

≤E
[√

βs+1
2 vt−s−1,b + βs

2(1− β2)
∥∥ḡt−s,(b)

∥∥2
2
/db + (1− βs+1

2 )σ2
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]

=E

 βs+1
2 vt−s−1,b + (1− βs+1

2 )σ2
b + ϵ√

βs+1
2 vt−s−1,b + βs

2(1− β2)
∥∥ḡt−s,(b)

∥∥2
2
/db + (1− βs+1

2 )σ2
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
+ E

 βs
2(1− β2)

∥∥ḡt−s,(b)

∥∥2
2
/db√

βs+1
2 vt−s−1,b + βs

2(1− β2)
∥∥ḡt−s,(b)

∥∥2
2
/db + (1− βs+1

2 )σ2
b + ϵ


≤E

[√
βs+1
2 vt−s−1,b + (1− βs+1

2 )σ2
b + ϵ

]
+
√

βs
2(1− β2)E

[∥∥ḡt−s,(b)

∥∥2
2
/db√

ṽt−s,b + ϵ

]
.

The first inequality (1) is because
√
x is a concave function. The second inequality (2) is based on

the noise Assumption 3.10. By summing the above inequality over s = 1, · · · , t− 1, we have that

E
[√

β2vt−1,b + (1− β2)σ2
b + ϵ

]
≤E

[√
βt
2v0,b + (1− βt

2)σ
2
b + ϵ

]
+

t−1∑
s=1

√
βs
2(1− β2)E

[∥∥ḡt−s,(b)

∥∥2
2
/db√

ṽt−s,b + ϵ

]

≤
√
βt
2v0,b +

√
σ2
b + ϵ+

t−1∑
s=1

√
βs
2(1− β2)E

[∥∥ḡt−s,(b)

∥∥2
2
/db√

ṽt−s,b + ϵ

]
.

Back to Equation 12, we have that

E
[√

ṽt,b + ϵ
]
≤
√
βt
2v0,b +

√
σ2
b + ϵ+

t−1∑
s=0

√
βs
2(1− β2)E

[∥∥ḡt−s,(b)

∥∥2
2
/db√

ṽt−s,b + ϵ

]
.

By summing the above inequality over t = T
2 + 1, · · · , T , we have that

T∑
t=T

2 +1

[√
ṽt,b + ϵ

]
≤

T∑
t=T

2 +1

√
βt
2v0,b +

T

2

√
σ2
b + ϵ+

T∑
t=T

2 +1

t−1∑
s=0

√
βs
2(1− β2)E

[∥∥ḡt−s,(b)

∥∥2
2
/db√

ṽt−s,b + ϵ

]

≤ β
T
4
2

1−
√
β2

√
v0,b +

T

2

√
σ2
b + ϵ+

1− β2

1−
√
β2

T∑
t=1

E

[∥∥ḡt,(b)∥∥22 /db√
ṽt,b + ϵ

]

=
β

T
4
2 (1 +

√
β2)

1− β2

√
v0,b +

T

2

√
σ2
b + ϵ+ (1 +

√
β2)

T∑
t=1

E

[∥∥ḡt,(b)∥∥22 /db√
ṽt,b + ϵ

]

≤ 2β
T
4
2

1− β2

√
v0,b +

T

2
σb +

T

2

√
ϵ+ 2

T∑
t=1

E

[∥∥ḡt,(b)∥∥22 /db√
ṽt,b + ϵ

]
.

19



Published as a conference paper at ICLR 2025

This following Lemma D.1 is to control the growth of vT,b so that the right hand side in Lemma 3.12

is indeed Θ
(
T + log T

1−β2

)
instead of Θ( T

1−β2
) when all the constants are poly(T ).

Lemma D.1. Suppose there exists H dominates
∣∣∇2L(x)

∣∣ and follows the partition Φ (Defini-
tion 3.9). We denote the diagonal element in block b by Hb, i.e., Hi,i = HΦ(i). With Assump-
tion 3.10, it holds that

ln
Emaxb∈[B] vT,b + ϵ

v0 + ϵ
≤ 2 ln

(
1 +

∑B
b=1 σ

2
b + ∥∇L(x0)∥2Φ +

∑
b∈[B] H

2
b dbη

2T (T + 1
1−β2

)

v0 + ϵ

)
+ ln 32

Proof of Lemma D.1. From the definition of vt,b and Assumption 3.10, we have that

Emax
b∈[B]

vt,b = Emax
b∈[B]

[
βt
2v0,b + (1− β2)

t∑
s=1

βt−s
2

∥∥gs,(b)∥∥22 /db
]

≤ ∥v0∥∞ + (1− β2)E
t∑

s=1

βt−s
2 max

b∈[B]

∥∥gs,(b)∥∥22 /db (13)

We can bound each
∥∥gs,(b)∥∥22 /db as following

∥∥gs,(b)∥∥22 /db (1)

≤ 2/db
∥∥E[gs,(b)|xs−1]

∥∥2
2
+ 2/db

∥∥gs,(b) − E[gs,(b)|xs−1]
∥∥2
2

= 2/db
∥∥∇(b)L(xs−1)

∥∥2
2
+ 2/db

∥∥gs,(b) − E[gs,(b)|xs−1]
∥∥2
2

(2)

≤ 4/db
∥∥∇(b)L(x0)

∥∥2
2
+ 4/db

∥∥∇(b)L(xs−1)−∇(b)L(x0)
∥∥2
2
+ 2/db

∥∥gs,(b) − E[gs,(b)|xs−1]
∥∥2
2

≤ 4 max
b′∈[B]

∥∥∇(b′)L(x0)
∥∥2
2
/db′ + 4 ∥∇L(xs−1)−∇L(x0)∥22 + 2

B∑
b′=1

∥∥gs,(b′) − E[gs,(b′)|xs−1]
∥∥2
2
/db′

where we employ (a + b)2 ≤ 2a2 + 2b2 in (1) and (2). This bound holds for any specific b ∈ [B]

so it is also an upper bound for maxb∈[B]

∥∥gs,(b)∥∥22 /db. We will further simplify the bound and first
upper bound the distance between gradients with the distance between parameters

∥∇L(xs−1)−∇L(x0)∥22 ≤
B∑

b=1

Hb

∥∥xs−1,(b) − x0,(b)

∥∥2
2
. (14)

The distance between parameters can be characterized by the total updates and use Lemma 3.12 in
(1) below

1

db

∥∥xt,(b) − x0,(b)

∥∥2
2
=

η2

db

∑
Φ(j)=b

∣∣∣∣∣
t∑

s=1

gs,j√
vs,b + ϵ

∣∣∣∣∣
2

≤ η2

db

∑
Φ(j)=b

t

t∑
s=1

g2s,j
vs,b + ϵ

= η2t

t∑
s=1

∑
Φ(j)=b g

2
s,j/db

vs,b + ϵ

(1)

≤ η2t

(
t+

β2

1− β2
ln

vt,b + ϵ

v0,b + ϵ

)
≤ η2t2 + η2t

β2

1− β2
ln

maxb′∈[B] vt,b′ + ϵ

v0 + ϵ
. (15)

We can bound the distance between stochastic gradient and deterministic gradient with Assump-
tion 3.10

E
B∑

b′=1

∥∥gs,(b′) − E[gs,(b′)|xs−1]
∥∥2
2
/db′ ≤

B∑
b=1

σ2
b .
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Combining these results, we can get that

(1− β2)E
t∑

s=1

βt−s
2 max

b∈[B]

∥∥gs,(b)∥∥22 /db
≤(1− β2)

t∑
s=1

βt−s
2

[
4 max
b′∈[B]

∥∥∇(b′)L(x0)
∥∥2
2
/db′ + 4

B∑
b=1

Hbd
2
bη

2(s− 1)2 + 2

B∑
b=1

σ2
b

]

+ (1− β2)

t∑
s=1

βt−s
2 4

B∑
b=1

Hbdbη
2(s− 1)

β2

1− β2
E ln

maxb′∈[B] vt,b′ + ϵ

v0 + ϵ

≤4 max
b′∈[B]

∥∥∇(b′)L(x0)
∥∥2
2
/db′ + 2

B∑
b=1

σ2
b + 4

B∑
b=1

Hbd
2
bη

2t2 + 4

B∑
b=1

Hbdbη
2t

β2

1− β2
E ln

maxb′∈[B] vt,b′ + ϵ

v0 + ϵ

We define C = ϵ + ∥v0∥∞ + 2
∑B

b=1 σ
2
b + 4maxb∈[B]

∥∥∇(b)L(x0)
∥∥2
2
/db for simplicity. We also

define G = max1≤t≤T Emaxb∈[B] vt,b + ϵ. There exists t ≤ T such that

G = Emax
b∈[B]

vt,b + ϵ ≤ C + 4η2T 2
B∑

b=1

H2
b db + 4η2T

β2

1− β2

B∑
b=1

H2
b db ln

G

v0 + ϵ
.

We will upper bound the last term by the linear term G as following

4η2T 2
B∑

b=1

H2
b db + 4η2T

β2

1− β2

B∑
b=1

H2
b db ln

G

v0 + ϵ

=4η2T
β2

1− β2

∑
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b db

ln
G(1− β2)

4
∑
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2
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2Tβ2
+ ln 4

∑
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2T
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2
+ 4η2T
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b db ln 4

∑
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b dbη

2T
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2
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4
∑
b∈[B]
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b dbη

2T
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(1− β2)(v0 + ϵ)

2

.

The last two inequalities come from lnx ≤ x
2 and x ln(x) ≤ x2. Then we can get that

G ≤ 2C + 8
∑
b∈[B]

H2
b dbη

2T 2 + 32(v0 + ϵ)
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and

ln
Emaxb∈[B] vT,b + ϵ

v0 + ϵ

≤ ln
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2
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2
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(1−β2)(v0+ϵ)

)2
v0 + ϵ

≤ ln
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2
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+
2
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2
b dbη
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+

4
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2
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2
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2
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)
+ ln 32.
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Finally, we give the proof for Theorem 3.11. When Φ(i) = i, i.e., each parameter forms a single
block, it becomes the proof for Theorem 3.5.

Theorem 3.11 (Main, Blockwise Adam). For a specific partition Φ, we consider the updates defined
in Algorithm 3. Under Assumption 3.10, we have that

min
T
2 <t≤T

E
B∑

b=1

√
db
∥∥∇(b)L(xt)

∥∥
2
≤ 2
√
2E +

√
2E

√√√√ 4β
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4
2
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d
√
v0 +

B∑
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√
ϵ

with E = 2
ηT E [L(x0)− L(xT )]+

(
1 + β2F

T (1−β2)

)(
ηH(L,Φ) + 2

√
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∑B
b=1 dbσb

)
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2 ln

(
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2
b dbη

2T (T+ 1
1−β2

)

v0+ϵ

)
+ ln 32.

Proof of Theorem 3.11. From Definition 3.9, there exists a diagonal matrix H that follows Φ and
always dominates ∇2L(x) satisfying H(L,Φ) = Tr(H) =

∑
b∈[B] Hbdb. In a single step, we can

have that

L(xt)− L(xt−1) ≤ ∇L(xt−1)
⊤(xt − xt−1) +

1

2

B∑
b=1

Hb

∑
Φ(i)=b

(xt,i − xt−1,i)
2

= −η
B∑
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ḡ⊤
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+
1

2
η2
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∥∥gt,(b)∥∥22
vt,b + ϵ

.

If we sum over t from 1 to T and take expectation, we can get

E [L(xT )− L(x0)] ≤ −E

[
η
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ḡ⊤
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vt,b + ϵ

]

≤ −E

[
η
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ḡ⊤
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1
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v0,b + ϵ
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.

The second inequality comes from applying Lemma 3.12. By Lemma 3.13, we have that

1

T
E

[
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]
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[
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√
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√
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√
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B∑
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√
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√
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From Lemma D.1, we can define

E =
2

ηT
E [L(x0)− L(xT )] +

(
1 +

β2F

T (1− β2)

)(
η

B∑
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√
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B∑
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)
,
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with

F = 2 ln

(
1 +

∑B
b=1 σ

2
b + ∥∇L(x0)∥2Φ +

∑
b∈[B] H

2
b dbη

2T (T + 1
1−β2
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+ ln 32.

Then it holds that

1

T
E

[
T∑
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B∑
b=1

ḡ2
t,(b)√

ṽt,b + ϵ

]
≤ E.

By Lemma 3.14 and Cauchy inequality, we have that
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2 +1
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2

≤
√
2E

(
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4β
T
4
2

T (1− β2)
d
√
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dbσb + d
√
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) 1
2

≤ 2
√
2E +

√
2
√
E

√√√√ 4β
T
4
2

T (1− β2)
d
√
v0 +
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dbσb + d
√
ϵ.

This completes the proof.

D.2 PROOF FOR CONVERGENCE RATE OF Adam

We rely on Definition D.2 that generalizes Definition 3.3 to obtain Theorem 3.5 from Theorem 3.11.

Definition D.2 (Generalized version of Definition 3.3). For any partition function Φ : [d] → [B]
and H = (H1, . . . ,HB), we say a function L is H-blockwisely-smooth w.r.t. Φ-norm , if and only
if
∥∥∇(b)L(x)−∇(b)L(y)

∥∥
2
≤
√
dbHb ∥x− y∥Φ for any b ∈ [B], x,y ∈ Rd.

The following Lemma D.3 will show that H(L,Φ) is upper bounded by
∑B

b=1 dbHb when L is
H-blockwisely-smooth w.r.t. Φ-norm.

Lemma D.3. For any twice differentiable loss which is H-blockwisely-smooth w.r.t. Φ-norm (Defi-
nition D.2), we have for any x and ∆ ∈ Rd,

∣∣∆⊤∇2L(x)∆
∣∣ ≤ B∑

b=1

Hb

∥∥∆(b)

∥∥2
2
. (16)

Then the diagonal matrix A defined by Ai,i = HΦ(i) follows partition Φ and dominates
∣∣∇2L(x)

∣∣.
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Proof of Lemma D.3. From Definition D.2, we know that

Hb ≥ sup
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∥∆(b′)∥2√
db′

= sup
x,∆,

∥∥∥∆′
(b)

∥∥∥
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∥∥∥
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Then for any x and ∆, we know that
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∥∥
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B∑
b=1

√
db
∥∥∆(b′)

∥∥
2√

db′
∥∥∆(b)

∥∥
2

∣∣∣〈∆(b′),∇2
(b′),(b)L(x)∆(b)

〉∣∣∣
≥2

B∑
b=1

B∑
b′=1

∣∣∣∆⊤
(b)∇

2
(b),(b′)L(x)∆(b′)

∣∣∣ ≥ 2
∣∣∆⊤∇2L(x)∆

∣∣ .

E EXPERIMENT DETAILS

E.1 TRAINING DETAILS

In Adam and its variants (including AdaSGD) we set (β1, β2) = (0.9, 0.99) for experiments on the
quadratic loss (Section 4.1) and ResNet18 (Section 4.3) and (β1, β2) = (0.9, 0.95) for experiments
on GPT-2 (Section 4.2). Momentum in SGD is also set to 0.9. Weight decay is always deactivated.

For the quadratic loss experiments in Section 4.1, we generate orthogonal matrices Ri in the fol-
lowing way. We first sample M ∈ Rd×d where Mi,j is i.i.d. sampled from N(0, 1). Then
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A =M−M⊤ is a skew-symmetric matrix and exp (tA) represents a continuous family of matri-
ces. We define Ri = exp (tiA) for different ti. When ti = 0, we know Ri = I . When ti → ∞,
Ri converges to a random orthogonal matrix in distribution. We pick t1 = 0.002, t2 = 0.008, t3 =
0.015, t4 = 0.1 for our experiments. The initial x0 is decided by sampling from Unif([0, 1]1000)
when there is no rotation. When Ri is not identity matrix, we will start training from R⊤

i x0 to
ensure the initial loss values are the same across different rotations.

For the experiments in Section 4.2, we train GPT-2 small (124M parameters)4 on the OpenWebText
corpus containing more than 9B tokens for 100k iterations with sequence length of 512 sequence
length and 480 sentences per batch. We use cosine learning rate schedule of the same peak learning
rate 6 × 10−4 for all the adaptive optimizers, which is also the default of nanoGPT codebase. We
did a grid search to find the maximum possible peak learning rate for SGD5.

For the experiments in Section 4.3, we applied random crop and random horizontal flip augmen-
tations over the training data to promote better generalization. We tuned each optimizer through
searching over the same grid of learning rates6 The number of iterations is adjusted per batch size
to result in 20 epochs for each training run (for instance, 4000 iterations were used for a batch size
of 256, and 1000 iterations were used for a batch size of 1024). For the training loss and training
accuracy plotted in Figure 2, it is measured on a subset of augmented training data that is the same
size of evaluation set. The evaluation loss and accuracy are measured on the entire evaluation set
without the augmentation. Track running stats is set to false at initialization.

E.2 Adam ON A ROTATED LOSS

A key difficulty in implementing rotated Adam arises from applying an orthogonal rotation on the
parameters before calculating the loss. It is computationally infeasible to apply a 125M × 125M
orthogonal matrix on the 125M-sized parameter vector. To avoid such computation, we design a
new orthogonal transformer to rotate the parameters of the network. In what follows, we elaborate
on this rotation.

RandPerm. Given a vector v of size d, we can orthogonally rotate it by repeatedly applying these
consecutive operations: 1. Permute the entries of the vector according to a randomly chosen permu-
tation π ∈ Sd. 2. Reshape the permuted vector into a 3D tensor of size [s1, s2, s3], apply a fixed
orthogonal rotation of size s × s on each side of the tensor and then reshape it back to a vector of
size d.

This operation performs an orthogonal transformation R on the input vector v. We can chain mul-
tiple operations of this kind and construct RandPermk, where k is a positive number indicating the
number of consecutive RandPerm s applied. Building upon this rotation, we train GPT-2 125M with
Adam on L ◦ RandPerm2 to analyze our hypothesis regarding the ℓ∞ geometry of the loss landscape
and to verify that Adam will indeed suffer from the induced orthogonal equivariance. Figure 1 con-
firms our findings, as the performance of rotated Adam with RandPerm2 is significantly worse than
Adam. This suggests that Adam is highly sensitive to the rotation and adaptivity alone can’t explain
its advantage.

Concurrent work (Maes et al., 2024) also run Adam on a rotated loss. They use a different way to
achieve global rotation efficiently. They also conduct extensive module-wise rotation experiments
for a more fine-grained analysis.

E.3 COMPUTATION OF MATRIX NORMS

As mentioned in Section 3.3, it is computationally infeasible to get the full Hessian matrix and
directly compute norms of it. Instead we leverage Hessian vector product function in Jax to probe
the Hessian matrix. We use Lanczos algorithm to estimate spectral norm.

4Our codebase is built upon nanoGPT codebase https://github.com/karpathy/nanoGPT.
5We tried 0.00001, 0.00003, 0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.
6We used the following values: 6.25×10−4, 1.25×10−3, 2.5×10−3, 5.0×10−3, 1.0×10−2, 2.0×10−2,

4.0× 10−2, 8.0× 10−2, 1.6× 10−1, 3.2× 10−1, 6.4× 10−1, 1.28× 100.
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We propose Algorithm 4 to estimate the sum of absolute values for each row and sum over all the
rows to get (1, 1)-norm of Hessian matrix. We first subsample a fixed batch of training data for
estimating the (1, 1)-norm of Hessian matrix. The high-level idea is to compute the matrix vector
products between Hessian of training loss on this batch and a sequence of random Cauchy vectors.
Then we take the ℓ1 norm of the coordinate-wise median of the resulting sequence of Hessian vector
products. Because the Cauchy distribution is 1-stable, the resulting product is also a vector of
Cauchy random variables, and the magnitude of each element equals to ℓ1 norm of the corresponding
row of the Hessian. Thus with infinitely many samples, the ℓ1 norm of the coordinate-wise median
converges almost surely to the (1, 1)-norm of the Hessian.

We choose n = 200 for the measurement experiments on GPT-2 and n = 50 for the measurement
experiments on ResNet18. We also prove a non-asymptotic high-probability multiplicative bound
for the estimation error which depends mildly on the dimension d in Theorem E.2.

Algorithm 4 Estimation of (1, 1)-Norm of Hessian,∇2L(x)

Input: Number of Cauchy vectors n, parameter x ∈ Rd, loss L
1: for i = 1 to n :
2: Sample a independent Cauchy vector v(i) ∈ Rd where v(i)j

i.i.d.∼ Cauchy(0, 1) for j = 1, . . . , d.
3: H:,i ← ∇2L(x) · v(i) (Using hessian-vector product)
4: return

∑d
j=1 median(|Hj,:|)

First we prove that median of random variables following uniform distribution is sub-Gaussian.

Lemma E.1. Suppose Z1, · · · , Zn
iid∼ Unif([0, 1]). Then

P (

∣∣∣∣median(Z1, · · · , Zn)−
1

2

∣∣∣∣ ≥ ϵ) ≤ 2 exp
(
−2nϵ2

)
for any ϵ ≥ 0.

Proof of Lemma E.1. Define S =
∑n

i=1 1Zi≤ 1
2−ϵ. Since 1Zi≤ 1

2−ϵ follows i.i.d. Bernoulli distribu-
tion with p1 = 1

2 − ϵ, S ∼ Bin(n, p1).

Mn = median(Z1, · · · , Zn) ≤ 1
2 − ϵ if and only if at least n+1

2 Zi’s are smaller than 1
2 − ϵ. And we

can apply Hoeffding’s inequality on S and get that

P (Mn ≤
1

2
− ϵ) ≤ P (S ≥ n

2
) = P (S − np1 ≥

n

2
− np1)

≤ exp

(
−
2(n2 − np1)

2

n

)
= exp

(
−2nϵ2

)
.

We can know P (Mn ≥ 1
2 + ϵ) ≤ exp(−2nϵ2) from the symmetry of distribution.

Theorem E.2. For the estimate in Algorithm 4 with n Cauchy vectors, it holds that

P

∣∣∣∣∣∣
d∑

j=1

median(|Hj,:|)−
∥∥∇2L(x)

∥∥
1,1

∣∣∣∣∣∣ ≥ ϵ
∥∥∇2L(x)

∥∥
1,1


≤2d exp(−n∆2

2
) + 2 exp

(
−
2nϵ2 cos4((1 + ∆)π4 )

π2

)
for every ϵ,∆ ∈ (0, 1) when n ≥ π3

2ϵ2 cos4((1+∆)π
4 ) .

In other words, for any ϵ, δ ∈ (0, 1), we can use n = Ω(ln d+ 1
ϵ2 ln

1
δ ) hessian-vector product of the

loss L at parameter x and nd extra computation time to get an estimation of (1,1)-norm of L with at
most ϵ multiplicative error and at least probability 1− δ.
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Proof of Theorem E.2. Define aj =
∑d

k=1

∣∣∇2L(x)j,k
∣∣ for j ∈ [d]. When v

(i)
j

i.i.d.∼ Cauchy(0, 1),
it holds that Hj,i = ∇2L(x)j,: · v(i) follows Cauchy(0, aj) because Cauchy distribution is 1-stable.
And Hj,1, · · · , Hj,n are independent. Then it suffices to show that

P

∣∣∣∣∣∣
d∑

j=1

ajmedian(|Yj,1| , · · · , |Yj,n|)−
d∑

j=1

aj

∣∣∣∣∣∣ ≥ ϵ

d∑
j=1

aj


≤2d exp(−n∆2

2
) + 2 exp

(
−
2nϵ2 cos4((1 + ∆)π4 )

π2

)
.

for any {Yj,k} such that Yj,1, · · · , Yj,n
iid∼ Cauchy(0, 1) for any j ∈ [d]. Furthermore,

(|Yj,1| , · · · , |Yj,n|)
d
= (tan(Xj,1), · · · , tan(Xj,n)) for Xj,1, · · · , Xj,n

iid∼ Unif(0, π
2 ). So we only

need to show that

P

∣∣∣∣∣∣
d∑

j=1

ajmedian(tan(Xj,1), · · · , tan(Xj,n))−
d∑

j=1

aj

∣∣∣∣∣∣ ≥ ϵ

d∑
j=1

aj


≤2d exp(−n∆2

2
) + 2 exp

(
−
2nϵ2 cos4((1 + ∆)π4 )

π2

)
.

(17)

for any {Xj,k} such that Xj,1, · · · , Xj,n
iid∼ Unif(0, π

2 ) for any j ∈ [d].

Fix ∆ ∈ (0, 1). We define

f(x) =


tan(x) if

∣∣x− π
4

∣∣ ≤ ∆π
4 ,

1
cos2((1−∆)π

4 ) (x− (1−∆)π4 ) + tan((1−∆)π4 ) if 0 < x < (1−∆)π4 ,
1

cos2((1+∆)π
4 ) (x− (1 + ∆)π4 ) + tan((1 + ∆)π4 ) if (1 + ∆)π4 < x < π

2 .

Then f(x) is a differentiable function on (0, π
2 ) that equals to tan(x) in the middle and is linear on

both ends.

We can decompose Equation 17 into

P

∣∣∣∣∣∣
d∑

j=1

ajmedian(tan(Xj,1), · · · , tan(Xj,n))−
d∑

j=1

aj

∣∣∣∣∣∣ > ϵ

d∑
j=1

aj


=P

∣∣∣∣∣∣
d∑

j=1

aj tan(median(Xj,1, · · · , Xj,n))−
d∑

j=1

aj

∣∣∣∣∣∣ > ϵ

d∑
j=1

aj


≤P

∣∣∣∣∣∣
d∑

j=1

aj tan(median(Xj,1, · · · , Xj,n))−
d∑

j=1

ajf(median(Xj,1, · · · , Xj,n))

∣∣∣∣∣∣ > 0


+ P

∣∣∣∣∣∣
d∑

j=1

ajf(median(Xj,1, · · · , Xj,n))−
d∑

j=1

aj

∣∣∣∣∣∣ > ϵ

d∑
j=1

aj

 .

For the first part, we have that

P

∣∣∣∣∣∣
d∑

j=1

aj tan(median(Xj,1, · · · , Xj,n))−
d∑

j=1

ajf(median(Xj,1, · · · , Xj,n))

∣∣∣∣∣∣ > 0


≤

d∑
j=1

P (|tan(median(Xj,1, · · · , Xj,n))− f(median(Xj,1, · · · , Xj,n))| > 0)

≤
d∑

j=1

P
(∣∣∣median(Xj,1, · · · , Xj,n)−

π

4

∣∣∣ > ∆
π

4

)
≤2d exp (−n∆2

2
)
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where we apply Lemma E.1 in the last step.

For the second part, we first know that median(Xj,1, · · · , Xj,n) − π
4 is sub-Gaussian variable with

σ2 = π2

16n from Lemma E.1. Then f(median(Xj,1, · · · , Xj,n)) − Ef(median(Xj,1, · · · , Xj,n))

is sub-Gaussian variable with σ2 = 1
cos4((1+∆)π

4 )
π2

16n because f ′(x) ≤ 1
cos2((1+∆)π

4 ) . And∑d
j=1 ajf(median(Xj,1, · · · , Xj,n))−

∑d
j=1 ajEf(median(Xj,1, · · · , Xj,n)) is sub-Gaussian vari-

able with σ2 = 1
cos4((1+∆)π

4 )
π2

16n

(∑d
j=1 aj

)2
. When n ≥ π3

2ϵ2 cos4((1+∆)π
4 ) , it holds that

|Ef(median(Xj,1, · · · , Xj,n))− 1| ≤ E
∣∣∣f(median(Xj,1, · · · , Xj,n))− f(

π

4
)
∣∣∣

≤ max
x

f ′(x)E
∣∣∣median(Xj,1, · · · , Xj,n)−

π

4

∣∣∣
≤ 1

cos2((1 + ∆)π4 )

√
2π

π

4
√
n
≤ ϵ

2

and

P

∣∣∣∣∣∣
d∑
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ajf(median(Xj,1, · · · , Xj,n))−
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aj
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ajf(median(Xj,1, · · · , Xj,n))−
d∑

j=1

ajEf(median(Xj,1, · · · , Xj,n))

∣∣∣∣∣∣ > ϵ

2

d∑
j=1

aj
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+
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P
(
|Ef(median(Xj,1, · · · , Xj,n))− 1| > ϵ

2

)
≤2 exp

(
−
2nϵ2 cos4((1 + ∆)π4 )

π2

)
.

Combining these two parts, we can get that

P

∣∣∣∣∣∣
d∑

j=1

ajmedian(tan(Xj,1), · · · , tan(Xj,n))−
d∑

j=1

aj

∣∣∣∣∣∣ ≥ ϵ

d∑
j=1

aj


≤2d exp(−n∆2

2
) + 2 exp

(
−
2nϵ2 cos4((1 + ∆)π4 )

π2

)
for n ≥ π3

2ϵ2 cos4((1+∆)π
4 ) .

E.4 MORE RESULTS

As mentioned in Section 4.2, we also explore how learning rate can affect the performance of differ-
ent optimizers by using peak learning rate 3× 10−4 and 1.8× 10−3 for all the adaptive optimizers.
The training losses are plotted in Figure 3. All the optimizers perform worse with smaller learning
rate, which aligns with the common understanding that optimizers tend to work better with larger
learning rate as long as the training is still stable. When a larger learning rate is used, the per-
formance of Adam is improved but the performance of rotated Adam becomes worse than with the
default learning rate. The training with AdaSGD even completely failed. This suggests that another
advantage of Adam over AdaSGD: it can maintain stable training at a larger learning rate, which is
often beneficial to faster and more efficient convergence.

As mentioned in Section 4.3, we tried different batch sizes when training ResNet and the results are
in Table 4.
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Figure 3: Training losses of Adam, AdaSGD and rotated Adam on GPT-2 under different learning rates.
All the optimizers perform worse with smaller learning rate 3×10−4. Only Adam will perform better
with larger learning rate 1.8× 10−3.

Batch Size SGD AdaSGD Adam Rotated Adam
16 0.0777 0.114 0.064 0.0905
64 0.0698 0.0854 0.0472 0.0574
256 0.0723 0.0787 0.0359 0.0485
1024 0.1115 0.0915 0.0735 0.0817

Table 4: Training losses of ResNet for different optimizers and different batch sizes within 20
epochs. For each setting, we choose the optimal performance over all the learning rates. The perfor-
mance of Adam is consistently the best among all four optimizers.
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