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1 IMPLEMENTATION DETAILS

1.1 DATASETS

LOLv1 Wei et al. (2018) is a classic low-light dataset containing images from various scenes under
different lighting conditions, comprising 500 pairs of normal-light and low-light training images
and 15 pairs of testing images. LOLv2-real Yang et al. (2021) is a dataset captured in real-world
scenarios by varying ISO and exposure time, containing a total of 689 training image pairs and
100 testing image pairs. Both of these datasets are real-world datasets that include noise within the
images. The images in the LOL series datasets are sized 400x600 pixels, and we follow the official
train-test split ratio provided in the dataset. We utilized the combined 1189 images from the v1 and
v2 training sets during training on the LOL series datasets, using only the unlabeled low-light data.
In the testing phase, reference metrics were calculated using the normal-light data.

SICE Cai et al. (2018) is a large-scale multi-exposure image dataset. The SICE dataset contains
high-resolution multi-exposure image sequences that cover a diverse range of scenes. In the dataset,
Multi-Exposure Fusion (MEF) and High Dynamic Range (HDR) techniques are used to reconstruct
reference images. Through a detailed process from image capture to filtering and reference genera-
tion, 1,200 sequences were combined with 13 MEF/HDR algorithms, resulting in 15,600 fused im-
ages. After careful selection, 589 high-quality reference images and their corresponding sequences
were retained for further use. We followed the same settings as those used in PairLie Fu et al. (2023)
for training and dataset splitting.

SIDD Abdelhamed et al. (2018) is a real-world noisy dataset captured using smartphone cameras.
For our experiments, we randomly selected low-light images from the SIDD Small dataset. The
selected images were cropped into patches of size 1024x512, from which 1,500 images were used for
training and 80 images for testing. Due to the dataset’s inclusion of reference images captured under
various camera settings, it is challenging to identify the most appropriate reference. Consequently,
we utilized no-reference evaluation metrics to assess the enhancement performance.

1.2 TRAINING DETAILS

In the experiments, we employed the ’seed torch’ function to set the random seeds for Python,
NumPy, and PyTorch to ”123.” The loss function is defined as L = ωRLR + ωLLL + ωconLcon +
ωenhLenh, with the weights ωR, ωL, ωcon, and ωenh set to a ratio of 1:1:0.1:1. In Lenh, the ra-
tio of the components controlling exposure to those controlling color balance is 1:0.5. During the
preprocessing of the training data, we randomly sampled images from the initialized dataset and
cropped them into patches of size 256×256 pixels. Additionally, we applied data augmentation
techniques—specifically horizontal flipping, vertical flipping, and image rotation—to mitigate over-
fitting. Finally, the data was normalized to the range of (0, 1) before being fed into the deep network.

2 DCT AND IDCT

As for frequency prior, we use channel-wise 2D DCT to convert the spatial-domain image I into
the frequency-domain counterpart F . Different spectral bands in the DCT domain encode different
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Table 1: The cascaded ablation study on the low-light SIDD dataset presents no-reference quantita-
tive metrics, where the top-performing method is highlighted in red and the second-best method is
marked in blue.

Methods Denoise-Enhance Enhance-Denoise Single Method
EnlightenGAN PairLIE EnlightenGAN PairLIE EnlightenGAN PairLIE Ours

BRISQUE 24.727 36.100 13.382 47.653 13.786 3.168 2.555
CLIPIQA 0.341 0.377 0.355 0.359 0.337 0.383 0.292

image visual attributes degradation representation analysis of input images:
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where the index i, j denote the 2D coordinate in the spatial domain, while u, v refer to the 2D
coordinate in the DCT frequency domain.

By performing an inverse Discrete Cosine Transform (IDCT) on these filtered maps F∗, we obtain
the corresponding spatial domain feature images:
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3 EXPERIMENTS

3.1 COMPARISON OF CASCADING METHODS

In the main text, we mention that most foundational frameworks for joint tasks employ multi-stage
training and utilize a cascaded approach to handle each degradation task sequentially. To evalu-
ate the performance difference between this approach and ours, we selected no-reference unsuper-
vised denoising and enhancement methods for a cascaded implementation of this task. For unsu-
pervised denoising, we employed the neighbor masking pipeline from Neighbor2neighbor Huang
et al. (2021). Additionally, we paired two unsupervised low-light enhancement methods without
explicit denoising design, EnlightenGAN Jiang et al. (2021) and PairLIE Fu et al. (2023), with the
denoising method in a sequential inference. This resulted in four combinations arranged based on
their processing order.

The qualitative results of this comparative experiment are shown in Tab. 1, with corresponding visual
results in Fig. 1. We observed that the image quality generated by these simple cascaded combina-
tions tends to be worse than that of single-task methods (i.e., using only enhancement techniques).
Specifically, local overexposure and the generation of more complex noise patterns are common.
This is due to error accumulation during the sequential processing. Low-light enhancement meth-
ods often introduce nonlinear perturbations to the original noise, making the noise pattern more
challenging to model and distinguish. Additionally, after denoising, the image’s statistical proper-
ties (e.g., brightness, contrast, dynamic range) may shift, further complicating the dynamic range
and leading the enhancement algorithm to overcompensate or underperform.

3.2 GENERALIZATION EVALUATION

Testing on unsupervised datasets. To evaluate the generalization capability of our proposed
method, we selected SCI Ma et al. (2022), PairLIE Fu et al. (2023), and RUAS Liu et al. (2021)
as baseline methods. These approaches, along with our method, were applied to process datasets
without ground truth(LIME Guo et al. (2016), NPE Wang et al. (2013), MEF Ma et al. (2015),
DICM Lee et al. (2013) and VV Vonikakis et al. (2018)) using models trained on the LOL dataset.
For a fair comparison, all methods were trained for 100 epochs. We employed two widely-used no-
reference quality assessment metrics, NIQE and BRISQUE, as benchmarks to qualitatively evaluate
the performance of image enhancement.
The experimental results, as shown in the Fig.2, Tab.2 and3, demonstrate that our method achieves
superior performance in noise suppression, exposure stability, and natural color restoration. Com-
pared to SCI, our approach generates fewer artifacts and noise in local details (e.g., the boxed area
on the left of Fig.2). Compared to PairLIE, our method produces richer color gradations and aesthet-
ically pleasing details, with smoother handling of light and shadows. In comparison with RUAS, our
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(a) (b) (c) (d) (e)

Figure 1: The visual results of the cascaded methods. (a) EnlightenGAN-Neighbor2neighbor.
(b) PairLIE-Neighbor2neighbor. (c) Neighbor2neighbor-EnlightenGAN. (d) Neighbor2neighbor-
PairLIE. (e)Ours.

Input SCI Ours

Input SCI Ours

Input SCI Ours

Input PairLIE Ours

Input RUAS Ours

Figure 2: Qualitative results on the unsupervised dataset.

approach exhibits better generalization under the exposure conditions of the unsupervised dataset,
adaptively enhancing dark regions while avoiding overexposure in originally bright areas.

Testing on overexposed images.In addition, we explored the generalization capability of the pro-
posed method on overexposed images. Specifically, we employed the model trained for 100 epochs
on the LOL dataset to process overexposed images. The selected test dataset consists of the overex-
posed samples from the test set of the Exposure-Error Dataset in Afifi et al. (2021).

As illustrated in the experimental results Fig.6, the proposed method demonstrates generalization to
overexposed scenarios and achieves accurate Retinex decomposition. However, certain limitations
are observed. Since our adaptive illumination adjustment module (LCNet) is trained on low-light
datasets, domain discrepancies between the two tasks often result in lower output values from LC-
Net. This causes the enhanced image to maintain relatively high exposure levels. To address this
issue, we adopt enhancement measures inspired by PairLIE, leveraging traditional techniques to ad-
just the decomposed illumination map. Specifically, dynamic range adjustment is employed. The
final output exhibits richer color gradations and exposure levels closer to human visual perception,
compared to the input image.
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Table 2: Quantitative comparisons on the unsupervised dataset LIME, NPE and MEF, where the
top-performing method is highlighted in red and the second-best method is marked in blue.

Dataset LIME NPE MEF
Method NIQE↓ BRISQUE↓ NIQE↓ BRISQUE↓ NIQE↓ BRISQUE↓
RUAS 5.376 28.937 7.060 49.594 5.423 33.817

PairLIE 4.569 23.699 4.137 21.528 4.288 28.388
SCI 4.182 19.701 4.473 27.657 3.634 14.399
Ours 4.109 16.382 3.802 17.140 3.758 18.997

Table 3: Quantitative comparisons on the unsupervised dataset DICM and VV, where the top-
performing method is highlighted in red and the second-best method is marked in blue.

Dataset DICM VV
Method NIQE BRISQUE NIQE BRISQUE
RUAS 7.052 46.522 5,297 51.085

PairLIE 4.064 30.833 3.648 31.213
SCI 4.073 27.706 2.934 21.431
Ours 3.859 26.592 3.748 29.701

3.3 ABLATION STUDY

The impact of the gamma coefficient control factor. We analyzed the impact of the gamma coef-
ficient control factor σ on image restoration performance. Initially, as σ increases, PSNR exhibits
an upward trend, while LPIPS shows a downward trend. The optimal denoising and enhancement
effects occur at σ = 1.5, where both metrics reach their respective optimal ranges. The variation in
SSIM follows a similar trend, peaking at σ = 1.8. This indicates that σ = 1.5 represents the opti-
mal point for overall image quality, with minimal distortion and superior perceptual quality, while
SSIM reaches its highest value at σ = 1.8, albeit with negligible overall variation. Thus, our results
suggest that σ = 1.5 is the optimal parameter for image restoration.

Furthermore, we investigated the restoration outcomes across three variable intervals. The find-
ings indicate that when σ is subjected to random sampling within a specified interval, the resultant
restorations significantly outperform those achieved with a fixed factor at the midpoint of the inter-
val. We propose that this random sampling approach mitigates the model’s tendency to learn the
identity transformation imposed by gamma nonlinear enhancement, thereby bolstering the robust-
ness of the retinal decomposition process. Accordingly, we identified the optimal interval (1.3, 1.7)
for our experimental configuration.

the impact of different masking strategies. Additionally, we analyzed the impact of different
masking strategies on the performance of the joint framework. We selected the Neighborhood
Masking proposed by Neighbor2Neighbor Huang et al. (2021) and the Mean Masking introduced by
ZS-N2N Mansour & Heckel (2023), as illustrated in Fig. 4. We have supplemented our work with
ablation studies on masking strategies. All experiments were conducted under the same settings.
We referred to the horizontal and vertical masking strategies from Noise2Fast Lequyer et al. (2022).
The specific steps are as follows:

Noise2Fast-H: The image is divided into patches of size 2×1 pixels along the height direction. The
top and bottom pixels within each patch are placed into the corresponding positions of two sub-
images, respectively. After masking, the sub-image dimensions are H/2 × W , containing 50% of
the pixel information.

Table 4: The impact of the loss function on model performance evaluated on the LOLv1 and LOLv2
dataset. The data ranked first is highlighted in red.

Dataset LOLv1 LOLv2
Setting PSNR SSIM LPIPS PSNR SSIM LPIPS
w/o LR 18.93 0.713 0.266 19.40 0.723 0.290
w/o LL 12.61 0.542 0.725 12.05 0.492 0.705

w/o Lenh 7.30 0.130 0.720 9.12 0.140 0.699
w/o Lcon 19.49 0.744 0.279 19.72 0.759 0.277

Full Version 19.80 0.750 0.253 20.22 0.793 0.266
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Input outputL R Input output

Figure 3: Visualization results on the overexposed dataset.

σ PSNR SSIM LPIPS
1.2 18.95 0.735 0.279
1.3 19.59 0.737 0.256
1.4 19.68 0.738 0.255
1.5 19.74 0.740 0.254
1.6 19.68 0.741 0.255
1.7 19.70 0.741 0.257
1.8 19.65 0.742 0.257
1.9 19.55 0.737 0.260

1.2-1.6 19.69 0.740 0.255
1.3-1.7 19.80 0.750 0.253
1.4-1.8 19.71 0.742 0.256

Table 5: The impact of the regulation factor σ
on model performance evaluated on the LOLv1
dataset. The data ranked first is highlighted in red.

Method Flops(G) Time(ms)
Retinexnet 14.23 7.37
LLFormer 3.46 51.99
SNR-aware 6.97 19.89
Zero-DCE 1.30 1.39

RUAS 0.05 3.72
Clip-LIT 4.56 2.10
PairLIE 5.59 1.70

SCI 0.01 1.52
ours 5.10 16.56

Table 6: Comparison of Computational
Complexity and Runtime Efficiency. The
data ranked first is highlighted in red.

Noise2Fast-W: The image is divided into patches of size 1×2 pixels along the width direction. The
left and right pixels within each patch are placed into the corresponding positions of two sub-images,
respectively. After masking, the sub-image dimensions are H ×W/2, containing 50% of the pixel
information.

Mean Masking: The image is divided into patches of size 2×2 pixels. The average of the pixels along
the two diagonals is computed and placed into the corresponding positions of two sub-images. After
masking, the sub-image dimensions are H/2×W/2, containing 50% of the pixel information.

All three methods employ deterministic masking strategies, whereas Neighbor-masking adopts a
stochastic masking approach. The experimental results are presented in Tab. 7.
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(a) Mean Masking (a) Neighborhood Masking

Figure 4: The schematic diagram illustrating the mechanisms of two mask strategies.
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Table 7: The ablation study on the impact of different masking strategies on the joint framework.
The data ranked first is highlighted in red.

Dataset LOLv1 LOLv2
Masking Method PSNR SSIM LPIPS PSNR SSIM LPIPS
Mean Masking 18.70 0.758 0.258 20.17 0.787 0.263
Noise2Fast-H 18.99 0.736 0.260 19.94 0.777 0.261
Noise2Fast-W 19.05 0.744 0.253 19.80 0.783 0.267

Neighborhood Masking 19.80 0.750 0.253 20.22 0.793 0.266
Table 8: uantitative comparisons on the real-world dataset LSRW, where the top-performing method
is highlighted in red.

Dataset LSRW-Huawei LSRW-Nikon
Method PSNR SSIM PSNR SSIM
RUAS 15.74 0.498 12.21 0.439

PairLIE 18.99 0.550 15.52 0.427
SCI 15.70 0.428 14.65 0.407
Ours 18.94 0.558 17.61 0.493

Based on the analysis of the results above, despite the fact that the other three methods mask a
smaller percentage of pixels during sampling, they fail to outperform Neighbor-masking. We at-
tribute this outcome to the following two reasons: 1) Reduced sample diversity due to deterministic
sampling: Deterministic sampling limits the variability of the training data. For instance, the other
three masking strategies produce only one possible image pair per sampling, whereas Neighbor-
masking generates 4×2=8 possible pairs. 2) Impact of noise correlation in real-image denoising
tasks: Noise in neighboring pixels tends to exhibit correlations, which can negatively affect masked
denoising. Increasing the masking ratio, thus enlarging the distance between visible pixels, helps
mitigate this correlation to some extent.

Although intuitively, a higher masking ratio may result in the loss of local details and over-
smoothing, the unique nature of image denoising tasks sets it apart from self-supervised image
compression. Specifically, it requires additional consideration of noise correlation. After compre-
hensive evaluation, we opted for the current strategy. In future work, we plan to further explore
alternative masking approaches.

3.4 COMPARISON ON LSRW DATASET

To further validate the reliability and stability of our proposed method, we conducted additional
comparative experiments on the real-world LSRW dataset. The LSRW dataset consists of two sub-
sets: Huawei smartphone and Nikon camera. We performed separate training and testing on each
subset, using PSNR and SSIM as quantitative evaluation metrics. The experimental results are pre-
sented in Tab.8 and Fig.5.

Input RUAS PairLIE SCI Ours Reference

Figure 5: The visualization results on LSRW Dataset.

Compared to two other zero-reference methods, SCI and RUAS, as well as the unsupervised method
PairLIE, our approach achieves superior results in both quantitative metrics and visual outcomes.
From a visual perspective, RUAS and SCI suffer from the absence of adaptive illumination design,
leading to overexposure or underexposure under uneven low-light conditions. In contrast, PairLIE
tends to produce artifacts and excessively enhanced edges. Our method delivers the best perceptual
results, addressing these challenges effectively.
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4 THE SUPPLEMENTARY VISUAL RESULTS

Here, we provide some supplementary visual results. Fig.7 illustrates the Retinex decomposition vi-
sualization, while Fig.8, 9, 10 present the results on the LOL, SICE, and SIDD datasets, respectively.

Input P Input P

Figure 6: The visualization results of the degradation representation P reveal that P focuses its
attention predominantly on the darker regions of the input image and effectively captures certain
semantic information.

2-2.jpg 2-3.jpg

4-2.jpg 4-3.jpg

18-2.jpg 18-3.jpg

Input L R Input L R

Figure 7: Retinex decomposition visual supplement results.
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EnlightenGAN SCIRUASInput Zero-DCE

PairLIE OursNerco Clip-LIT Reference

Figure 8: Additional qualitative results from comparative experiments on the LOL dataset.
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EnlightenGAN SCIRUASInput Zero-DCE

OursNerco Clip-LIT ReferencePairLIE

Figure 9: Additional qualitative results from comparative experiments on the SICE dataset.
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EnlightenGAN RUASInput Zero-DCE

OursClip-LITSCI PairLIE

Figure 10: Additional qualitative results from comparative experiments on the sidd dataset.
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Figure 11: Additional qualitative results in edge situation with color offset and severe artifacts.
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