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Selective Mixup Helps with Distribution Shifts,392

But Not (Only) because of Mixup393

Appendices394

A Experimental details395

We follow prior work on each dataset for the architectures and hyperparameters of our experiments.396

For each dataset, all methods compared use hyperparameters initially validated with the ERM397

baseline. All experiments use early stopping i.e. recording metrics for each run at the epoch of highest398

ID or worst-group validation performance (for Wild-Time and waterbirds/civilComments datasets399

respectively). Each dataset/method is run with 9 different seeds unless otherwise noted. The bar400

charts report the average over these seeds and error bars represent ± one standard deviation.401

We noticed that there is sometimes considerable variability in the results reported in prior work402

even for datasets/methods supposedly identical (e.g. resampling baselines on waterbirds). Therefore403

we only make comparisons across results obtained within a unique code base after re-running all404

baselines in a comparable setting. Exact hyperparameters for all experiments can be found in our405

code: https://github.com/<anonymized>/<anonymized>.406

We also found some issues in existing code that we could not clear up with their authors despite407

multiple requests. This includes inconsistent preprocessing and duplicated data in the preprocessing408

of civilComments in [8], “magic constants” in the implementation of selective mixup (LISA) in [33],409

inappropriate architectures for MIMIC in [32]. We fixed these issues in our codebase. Therefore we410

refrain from claims or direct comparisons with the absolute state of the art.411

Dataset-specific notes:412

• On waterbirds, we use ImageNet-pretrained ResNet-50 models. The results in the main paper use413

linear classifiers trained on frozen features. We report similar results with fine-tuned ResNet-50414

models in Figure 11.415

• On CivilComments, we use a standard pretrained BERT. To limit the computational expense for416

our large number of experiments, we use the BERT-tiny version (2 layers, 2 attention heads,417

embeddings of size 128). The results in the main paper use linear classifiers on frozen features.418

We report similar results with fine-tuned models in Figure 16 (using only one seed).419

• On Wild-Time Yearbook, we train the small CNN architecture described in [32] from scratch. In420

the analysis of Figure 5, we measure the distance between the training and test distributions of421

inputs (vectorized grayscale images). To do so, we measure the distance between every pair across422

the two sets. For each test example, we keep the minimum distance (i.e. closest training example),423

then average these distances over the test set.424

• On Wild-Time arXiv, we use random subset of 10% of the dataset. We verified on a small number425

of experiments that this produces very similar results to the full dataset at a fraction of the426

computational expense.427

• On Wild-Time MIMIC-Readmission, the baseline transformer architecture proposed in [33] seems428

inappropriate. Its ID and OOD performance is surpassed by random guessing or even by constant429

predictions of the majority training class. The issue probably went unnoticed because the standard430

accuracy metric is misleading with imbalanced data (70% ID accuracy of that ERM baseline is431

worse than chance).432

To remedy this, we first switch to the AUROC metric. It gives equal weight to the classes and 50%433

is then unambiguously equivalent to random chance.434

Second, we use a much simpler architecture. We train a “bag of embeddings” where each token435

(diagnosis/treatment code) is assigned a learned embedding, which are summed across sequences436

then fed to a linear classifier.437

All experiments were run on a single laptop with an Nvidia GeForce RTX 3050 Ti GPU.438
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B Additional results439

We show below results from the main paper while including in-domain (ID), out-of-distribution440

(OOD) average-domain/average-group, and OOD worst-domain/worst-group performance. The441

OOD metrics are always strongly correlated across methods and training epochs, but ID and OOD442

performance sometimes require a trade-off, as noted recently in [27].443
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Figure 11: Results on waterbirds (top) with linear classifiers on frozen ResNet-50 features and
(bottom) with fine-tuned ResNet-50 models (selected methods only).
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Figure 12: Results on yearbook.
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Figure 13: Results on arXiv. Interestingly, the methods with selective sampling without mixup are
much better than selective mixup on in domain (ID) but worse out of domain (OOD). This shows a
clear trade-off between these two objectives.
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Figure 14: Same analysis as in Figure 7 of the main paper, performed on every test domain. In all
cases, we observe a strong correlation between the improvements in accuracy and the reduction in
divergence of the class distribution due to resampling effects.
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Figure 15: Results
on civilComments with
linear classifiers on
frozen embeddings.
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Figure 16: Results
on civilComments with
fine-tuned BERT mod-
els (with a single seed).
These results are qual-
itatively identical to
those with frozen em-
beddings above.
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Figure 17: Results on
MIMIC-Readmission.

16



C Proof of Theorem 3.1444

Theorem C.1 (Restating Theorem 3.1). Given a dataset D={(xi,yi)}i and paired data D̃ sampled445

according to the “different class” criterion, i.e. D̃ = {(x̃i, ỹi) ∼ D s.t. ỹi ̸= yi}, then the446

distribution of classes in D ∪ D̃ is more uniform than in D.447

Formally, the entropy H
(
pY(D)

)
≤ H

(
pY(D ∪ D̃)

)
.448

Proof. Let us define the shorthands p def
= pY(D) and p̃

def
= pY(D̃).449

In D̃, the ith class gets assigned, in the expectation, on a proportion of points equal to the proportion450

of all other classes j ̸= i in the original data D.451

Looking at the individual elements of p̃, we therefore have, ∀ i=1 . . . C:452

p̃i = ΣC
i ̸=j pj / (C−1) (6)

p̃i = (1−pi) / (C−1) (7)

We will show that every element of p̃ is closer to 1
C than the corresponding element of p:453

|pi − 1
C | ≥ |p̃i − 1

C | (8)

|C pi−1
C | ≥ | (1−pi)C−(C−1)

C (C−1) | (9)

|C pi − 1| ≥ | 1−C pi

(C−1) | (10)

|C pi − 1| ≥ |C pi − 1
(C−1) | (11)

Therefore p̃ is closer to a uniform distribution than p, and454

H(p) ≤ H(p̃) (12)

Since pY(D ∪ D̃) =
(
pY(D) ⊕ pY(D̃)

)
/ 2, we also have455

H
(
p
)
≤ H

(
(p ⊕ p̃)/2

)
(13)

H
(
pY(D)

)
≤ H

(
pY(D ∪ D̃)

)
(14)

with an equality iff pY(D) is uniform.456
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