A Interpretation from Objective Functions

In this section, we provide proofs of the Onehot(-) normalization function and the Scale(-) normal-
ization function from the perspective of objective functions.

A.1 Proof for Onehot Normalization

For K = 0, we choose the following objective function during training:
max Zw log P, + M (Z w;S; — 1)
i=1 i=1

C
sty wi=1,w; >0, (1)

Introduce Lagrange multipliers d;, 4 € [1, ¢] and -y into Eq. |1} we have:
i=1 i=1 i=1 i=1

Combined with the Karush-Kuhn-Tucker (KKT) conditions, the optimal point should satisfy:
log P, + MS; — v+ d; =0, 3

> wi=1,6; > 0,w; > 0,5;w; =0. )

i=1
Since S; € {0,1}, we have M S; = log(eM S; + (1 — S;)). The equivalent equation of Eq. is:
§; = —log(e™S; + (1 — S)))Ps. (5)
Combined with ¢; > 0 in Eq. 4] we have:
v > max (log(eS; + (1 - 5,))P;) . (6)
K3

8; > 0is true if v > max; (log(eS; + (1 — S;))P;). According to §;w; = 0, we always have
w; = 0, which conflicts with 25:1 w; = 1. Therefore, we get:

v = max (log(eS; + (1 — 5,))P;) . (7)

We assume that only one iy € [1, ¢] reaches the maximum -, then we have w; = 0,7 € [1, /4.
Combined with Y7, w; = 1, we get w;, = 1. Therefore, w(z) should satisfy:

w(z) = Onehot (log(e™ S(z) + (1 — S(x)))P(z)). (8)
We mark A = e~ and convert Eq. to its equivalent version:
w(x) = Onehot ((S(z) + A(1 — S(z))P(z)) . 9)
A.2  Proof for Scale Normalization

For K > 0, log w; ensures that w; must be positive. Therefore, the constraint w; > 0 can be excluded.
Then, the objective function can be converted to:

max iwilogPZ-—i—M <iwi5i—l> —Kiwilogwi

i=1 i=1 i=1

s.t.iwi =1 (10)



19 Introduce the Lagrange multiplier ~ in Eq. [I0] we have:

L= ZwilogPi + M (ZwiSi - 1) - KZwilogwi + (1 - Zwl) . (11)
i=1 i=1 i=1 i
20 Since the optimal point should satisfy V,,£ = 0, we have:

log P, + MS; — K (1 +1logw;) —~v =0. (12)

21 Since S; € {0, 1}, we have M S; = log(eMS; + (1 — S;)). The equivalent equation of Eq. is:

log(eMS; + (1= 5;)) P, — (K +7) — K logw; = 0, (13)
22
M
wi = e : (14)

23 We mark A = e~ ™. Then, we have:

(S A1 =S5y P E

R (15)
24 Since Y7 w; = 1, we have:
(S + A1 = S;)P)VE
= e y—M)/K
25
HOMIE N (8 + A (1= Si)P)Y R (17)

i=1
26 Combine Eq. [5]and Eq. [T7]and we have:
(S +A(1 = S))P)™

;= d d . 18
N S ((Si+ A1 - Si)) P 49

27 Combined with the definition of Scale(-), this equation can be converted to:

w(x) = Scale ((S(z) + M1 — S(z)))P(z)) . (19)

2s B EM Perspective of ALIM

29 EM aims to maximize the likelihood of the dataset D:

maleogP x,S(x maleogZP x,S(x),y(x) =1i;0)

z€D = —
= max Z 10gzwi(x)P (m, S(i{)},éf)z) =1;0)
x€D =1 7
> max Z Z w(x) log P (x, 5(2’-{1};;) =i 9), 0,
zeD i=1 [

30 where 0 is the trainable parameter. The last step of Eq. utilizes Jensen’s inequality. Since the
31 log(-) function is strictly concave, the equal sign takes when P(x, S(x),y(x) = 4;6)/w;(x) is some
s2 constant C, i.e.,

w;(z) = %P(%S(x),y(x) =1i;0). (1)



33

34

35
36

37

38

39

40

41

42
43

44

45

Considering that Y _;_, w;(z) = 1, we can further get:

C=> P(z,S(x),y(x) =1i0). (22)
=1
Then, we have:
) — P(xz,S(x),y(x) = i;0) _ P(x,S(x),y(x) = i;0) _ —ilz
O = S b S @ =8 P S@ie L W) =il S)h)

(23)

In the EM algorithm, the E-step aims to calculate w;(z) and the M-step aims to maximize the lower
bound of Eq. 20}

argmax > sz ) log Pz, S(@),y() = i:0)

zeD i=1 wi()
7argmaxZsz )log Pz, S(x),y(x) =1i;0). (24)
z€D i=1

E-Step. In this step, we aim to predict the ground-truth label for each sample:

PS(@)ly(x) = i, 2;0) P(y(x) = i|; 0)

wi(x) = P(y(z) = i|z, S(z);0) = P(S(x )|x'9)
)

-y P(Slngm v e
According to Assumption 1, we have:
o= {30 8007}
It can be converted to:
P(S(2)ly(x), 2) = a(2)Sye)(2) + B(z) (1 = Sy () . @)
Then, we get the equivalent equation of Eq. [Z5}
() — @S )+ @)1 = Sia)) Ply(a) = ila:0) o8

2ot (@(@)Si(@) + B(x)(1 = Si(2))) P(y(z) = ilx;0)
We mark A(z) = f(z)/a(z) and P;(z) = P(y(z) = i|x;0). Then, we get:
() = Bi(@) + A@)(L — Si(x))) Fi(@)
) S S A - @) R )

It connects traditional PLL and noisy PLL. In traditional PLL, we assume that the ground-truth label
must be in the candidate set, i.e., 8(z) = 0. Since A\(z) = B(z)/a(z) = 0, Eq. 29| degenerates to:

wi(2r) = m=e— (30)
>ic1 Si(x) Py ()
which is identical to the classic PLL method, RC.
M-Step. The objective function of this step is:
argmaxZZw, )log P(z, S(x),y(x) = i;0)
z€D i=1
—argmax Z Zw, )log P(x; 0)P(y(x) = i|z; 0)P(S(x)|y(x) = i, x;0). 31
zeD i=1
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Considering that P(x;60) = P(x) and P(S(x)|y(z) = 4,2;0) = P(S(z)|y(x) = i, x), the equiva-

lent version of Eq. [31]is:

argmax Z Z w;(z) log P(y(x) = i|x;0). (32)

z€D i=1

Therefore, the essence of the M-step is to minimize the classification loss.

C Adaptively Adjusted \

Since 7 controls the noise level of the dataset, we have:

After the warm-up training, we assume that the predicted label generated by ALIM g(z) =

arg maxj<;<. w(x) is accurate, i.e.,

Si(z)=0

§(x)

= y(z). Then we have:

P(Sy@)(x) =0) =n. (34)
To estimate the value of A, we first study the equivalent meaning of Sy, (x) = 0:

max (S;(z) + A (1 — Si(z))) Pi(z) > Sn(l%jil (Si(x) + A (1 = Si(x))) Pi(x). (35)

i

We simplify the left and right sides of Eq[35]as follows:

max (S;(z) + A(1 = S;(x)))Pi(x)

Si (I):O

55

max (S;(x) + A(1 = S;(z)))P;(x)

Si(x)=1
~ Sia)=0 ML= Si@)Fi) DA A Si(z)Pi(z)
:m?X)\(l - S’L(gj))P’L(‘T)7 (36) :maXSZ-(x)Pi(a;). (37)
Then, we have:
max A(1 — S;(z))Pi(z) > max S;(z)P;(x), (38)
max; Sz(:v)PZ (l’)
= T, (1 5,(2) (@) 2
Therefore, P(Sj(,)(x) = 0) = 1 can be converted to:
max; S;(z)P;(z) B
P et e o
It means that X is the 7-quantile of
max; SZ(.’L‘)P1<.’L‘) (41)
maxi(l — Sl(I))Pz(I) zED ’
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