A  ATTACK ALGORITHM

The detailed steps of our attack algorithm are presented in Algorithm[I] To preserve the universality,
we keep the search problem independent from our algorithm because the selection may vary accord-
ing to the environment. For the Overcooked environment, an effective approach is to first compute
the perturbation significance of each unit perturbation, followed by obtaining legal combinations of
the top unit perturbations, and finally selecting among those combinations.

Algorithm 1 Our attack algorithm

Input: The original MDP, victim policy 7, number of needed adversarial states k, distance
constraint ¢, frequency threshold py,.,, and search algorithm Search
Output: k adversarial initial states

T < collect trajectories from MDP with policy 7
SE | habie < get the reachable environmental state space from MDP
5§ « the initial environmental state of MDP

Sﬁasible + states in SE

: E
reachable that distance no more than € from s

A A

SE ¢+ statesin S teasible that consist of perturbations with appearance frequency less than p;.cq
inT
6: Dataset < {(s¢,ar)|st € Sr,ar = Topi(St)}
R o (sy, o
7 f85) — Eioranenatase TH=2 L (sF — 55)]
8: {8F,...,8F} « Search(f,SE k)
Return: {5y,..., 8}

B IMPLEMENTATION DETAILS

B.1 AGENT TRAINING

The policy architecture follows the same designation of|Carroll et al.|(2019)), which is parameterized
as a 3-layer CNN (5 x 5, 3 x 3, and 3 x 3 respectively) followed by a 3-layer MLP with a hidden
size of 32. For both the CNN and the MLP, LeakyReLU is selected as the activation function. After
the MLP, two separate linear layers are used for generating the action and estimating the value.

The specific hyperparameters for the PPO are outlined in Table [I] Most of them align with the
setting on Coordination Room in PPO-BC (Carroll et al., [2019). Unlike [Carroll et al.| (2019), all
layouts share the same setting of hyperparameters in our experiment. Our code is partially based on
the implementation of |Kostrikov| (2018)).

Table 1: PPO hyperparameters

Learning rate 0.001
Value Function coefficient  0.05
Reward shaping horizon ~ 2.5e6

Minibatch size 2000
# Minibatches 6
Discount factor gamma 0.99
GAE lambda 0.98
Entropy coefficient 0.01
max gradient norm 0.1
Clip range 0.05

All the agents (SP, FCP, and FCP partners) share the same architecture and hyperparameters intro-
duced above.



B.2 ATTACK

To perform the attack, we first collect 20 trajectories of the victim agent, each with 800 time steps.
The pfreq is set to 0.03, i.e., perturbations whose frequency of occurrence exceeds this threshold
will be removed from the candidate. We then obtain the top k combined perturbations through
Algorithm I|as the adversarial outputs.

We run experiment on a Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz and a NVIDIA GeForce RTX
3090 GPU. Attacking on a single agent takes 20 to 40 minutes, depending on the complexity of
layouts.

B.3 DEFENSE

Similar to the attack, 20 trajectories are collected for the supervised learning stage, each with 800
time steps. The detailed settings are:

* The temperature 7" for £,, is set to 1.5.
* The tolerance on value estimation « for £, is set to 0.05.
* The loss weight 3 for L is set to 1.

* We use 10 perturb initial states for the supervised learning, 5 are sampled from the attack
results and 5 are random perturbations.

» We take out 30% of the data as the validation set.
* The supervised learning last 100 epochs.

* The learning rate is set to 0.001.

* The batch size is set to 8000.

For the fine-tuning stage, the distribution of the initial state is set as:

* 30% chance of selecting the standard initial state.
¢ 70% chance of sampling from the perturbed initial states.

Compared to the initial training of agents, the coefficient of the value function is adjusted to 0.01, and
the reward shaping horizon is reduced to 2e6. The remaining hyperparameters remain unchanged.

Using the same hardware as introduced above, the supervised learning of each agent takes approxi-
mately 15 minutes, while the fine-tuning stage takes about 2 to 4 hours with regard to the complexity
of layouts.

C ATTACK VISUALIZATION

We visualize representative examples of the perturbed initial states generated by all methods in Fig-
ure [T] and Figure 2} where the perturbations are marked with red rectangles. Intuitively, it is hard
to distinguish the adversarial examples from random perturbation, which implies the stealthiness of
our attack. On the other hand, although the perturbations in all the adversarial initial states seem
chaotic, the adversarial states generated by our attack can reduce the reward more significantly,
which demonstrates the effectiveness of selecting perturbations by computing the perturbation sig-
nificance.

Besides, the results suggest that the attack effect stems from the out-of-distribution perturbations.
In comparison to the random baseline, randomy filters out states that the agent may have already
encountered during the training process and achieves better performance. For example, putting
ingredients in the pot which the agent usually uses will not incapacitate the agent but help it get a
higher reward.

Another finding is that a larger perturbation budget e may improve the attack performance. As the
examples shown in Figure|lcland Figure|2c| the weakest perturbations that are randomly generated
often do not spend the full budget, implying that more unit perturbations possibly lead to a stronger
attack. Such a result suggests that most of the unit perturbations are harmful to the agent, which also
reveals the fragility of commonly trained agents.
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Figure 1: Perturbed initial states that target at SP agents
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Figure 2: Perturbed initial states that target at FCP agents



D ABLATION STUDY

Both stages of our BAT are necessary. To study their impact, we conduct an ablation study to com-
pare the BAT with two variants: (1) BAT without fine-tuning, denoted as w.o. FT; (2) BAT without
supervised training, which is the naive adversarial training, denoted as adv. training. We run the
experiments under the same setting as BAT and present the quantitative results in Table [2] We also
show the training curves at the fine-tuning stage of our BAT and the naive adversarial training in
Figure [3] and Figure ] The rewards at each timestep are the mean value of 5 agents, and the shade
denotes a 95% confidence interval. We emphasize that the rewards are calculated across the distri-
bution of initial states, thus representing the overall performance of agents without distinguishing
whether the rewards are obtained in the standard environment or the perturbed environments.

The results show that a lack of each stage will cause significant decreases in rewards. As shown in
Table [2] although the agents without fine-tuning can defend against the perturbations, they fail to
maintain their capability in the standard environment. The phenomenon is in line with expectations,
since the supervised pre-training targets to reduce the effect of perturbations, rather than obtaining
higher overall rewards.

As we briefly discussed in Section 3, naive adversarial training works in simple environments but
may fail when the task is hard. Although it shows comparable performance to our BAT in the Co-
ordination Ring, there exists a significant reduction of performance in other layouts. The reduction
in performance shows a positive correlation with the complexity of layouts, which supports our mo-
tivation that adversarial training is not directly applicable to reinforcement learning. We also notice
that FCP agents perform significantly better in complex layouts, substantiating that the adversarial
training performance highly depends on the initial capability of agents, and ulteriorly supports the
effectiveness and necessity of our supervised pre-training stage. Our two-stage framework can be
useful not only in defending against environmental perturbations but also applicable to any adver-
sarial training in reinforcement learning forms.

Table 2: Ablation results for variants of BAT (average scores with standard errors)

Method Agent Attack Coord. Ring Cross Doub. Rings  Doub. Coun. Matrix Clear Div.

No attack  185.1 £24.7 267.5+£135 191.8£78 207.8+9.5 2093 %153 269.9+22.1
SP Random 96.0 + 7.1 105.7 + 8.4 62.7+54 66.7 +5.6 779 +£6.9 97.0 + 8.1
Our attack  107.5 £ 5.1 649 +6.8 61.6+5.5 56.2 +4.5 60.0 +£4.5 76.7+7.8

W.o. FT

No attack  265.6 £ 13.9 2622+ 133 1795+41.0 1558 +26.1 2232+108 394.1+174
FCP Random 2393+£6.0 1921£62 1232+£10.1 1045+79 163.7£55 2609 +13.5
Our attack 2274 +5.5 144.0+5.7 99.5 + 8.4 93.7+7.1 1354+7.0 2102+15.0
Noattack 381.8 £19.7 4342+70 157.7+£763 2642+595 744+664 202.6+89.3
SP Random  260.2 + 149 2242+162 820+149 93.7+£133 47.1+13.8 108.6+ 18.7
Adv. training Our attack  219.7 142 172.1+143  66.7 + 12.1 35.6+5.9 12.1+3.7 70+13
: No attack  506.2 +23.6 421.1 £15.7 2748 £63.1 2259+73.8 299.7+244 546.6+65.0
FCP Random  361.4+16.7 2344+153 138.1+156 58.6+10.8 105.1+125 309.6+279
Our attack 2104 £21.6 169.7+14.2 1064 £ 14.6 70+ 1.7 583 +10.8 1983 +21.7
No attack  372.8 £9.8 459.7 £ 143 373.3+245 3528+45 3359+234 61224356
SP Random  269.6 +15.1 2794+ 147 1902+ 13.0 180.6+13.8 209.3+14.8 3649+ 183
BAT Our attack 197.24+109 1963 +16.1 138.0+£147 985+£11.8 107.6 £123 247.8+153
No attack 4569 +273 4604 +9.5 3537+ 128 3409+19.0 3518+ 155 759.0+ 368
FCP Random 389.8+£9.2 3338+11.8 21924125 171.3+11.5 178.6 £13.6 467.7+24.2
Our attack  308.6 +12.3 2063 +10.1 178.9+12.3 1207 +13.0 583 +9.3 289.4 4243
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Figure 3: Training curves of SP agents with BAT and naive adversarial training.
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Figure 4: Training curves of FCP agents with BAT and naive adversarial training.
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