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Abstract

Recurrent neural networks (RNNs) have emerged
as powerful models capable of storing and ma-
nipulating external information over long peri-
ods in various domains. Yet, the mechanisms
that underly this behavior remain a mystery due
to the black-box nature of these models. This
paper addresses this question by proposing an
episodic memory theory of RNN dynamics, en-
abling a more comprehensive understanding of
the RNN weights as memories and inter-memory
interactions. This approach sheds light on the in-
ner workings of RNNs and connects to existing
research on memory representation and organiza-
tion. The theory extends the current linearization
approaches by providing alternative interpreta-
tions of the eigenspectrum and its connection to
the long-term storage and manipulation of infor-
mation. We discuss how the segregation, represen-
tation, and composition of the variable binding
problem—a fundamental question in cognitive
science and artificial intelligence—can be mech-
anistically interpreted within the theory. Using
an elementary task - repeat copy, we demonstrate
the validity of the theory in experimental settings.
Our work represents a step towards opening the
black box of RNNs, offering new insights into
their functionality and bridging the gap between
recurrent neural networks and memory models.

1. Introduction

Recurrent neural networks (RNNs) are unique neural mod-
els capable of comprehending time-dependent connections
thanks to their feedback loops. However, their stochastic
training process (Rumelhart et al., 1986; Sussillo & Ab-
bott, 2009; Martens & Sutskever, 2011) often makes them
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inscrutable, with essential task-oriented calculations con-
cealed within multidimensional dynamics. Current methods
of deciphering RNNs view them as non-linear dynamic
systems, applying linear approximations at static or slow-
evolving points to illuminate their functions (Sussillo &
Barak, 2013).

The first step to understanding an RNN’s functionality is
pinpointing the fixed and slowly variable points using op-
timization techniques. Then, the phase space flow is as-
sembled from each linearly approximated area. A detailed
examination of each area’s long-term behavior is carried
out through spectral analysis of the related linear dynamical
systems (Strogatz, 1994). This evaluation discloses vital
information about the dynamics, such as their patterns of
convergence, divergence, stability, or cyclic behavior. De-
spite the general applicability of this approach, it is still
challenging to comprehend when the task spans multiple
dimensions with non-converging dynamics.

2. Background

The required background for our theory includes two distinct
but complementary strands of research—variable binding
and neural memory models, which until now were indepen-
dently studied.

2.1. Variable Binding

In humans, the generalization phenomenon is attributed to
the ability to ’bind” information together and symbolically
compose it to create novel outputs (Johnson-Laird, 2010).
This ability for variable binding enables applying what is
learned in one situation to a future, novel situation (White-
head). The role of this type of generalization motivated
symbolic Al approaches to model intelligence through for-
mal logic and symbol manipulation. The early stages of
symbolic Al can be traced back to the 1950s and 1960s,
with the work of pioneers like Allen Newell and Herbert
A. Simon, who developed the Logic Theorist (Newell & Si-
mon, 1956) and General Problem Solver (Newell & Simon,
1995). In the 1970s and 1980s, symbolic Al saw signifi-
cant advancements with the development of expert systems,
such as MYCIN (Shortliffe & Buchanan, 1990; Buchanan
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& Shortliffe, 1984) and DENDRAL (Lindsay et al., 1980;
1993) which were rule-based systems designed to mimic
the decision-making ability of a human expert. The systems
used if-then rules to navigate large databases of knowledge
and make decisions. However, symbolic Al started to face
criticism and challenges in the late 1980s. One of the main
criticisms was its inability to handle uncertain or incom-
plete information effectively, unlike humans (Kautz, 2022).
As a result, interest shifted towards alternative approaches,
such as connectionist models (neural networks) (Rosenblatt,
1958; Rumelhart et al., 1986) and probabilistic methods
(Russell & Norvig, 1995), which offered better handling of
uncertainty and could learn from data. In the late 2010s,
integrating symbolic reasoning into RNNs started gaining
traction. One significant early approach was the Neural Tur-
ing Machine (Graves et al., 2014), which integrated memory
manipulation capabilities into neural networks, allowing
them to read and write to memory in a manner similar to
how a Turing machine operates (Turing, 2021). Similar to
this approach, models like the Differentiable Neural Com-
puter (Graves et al., 2016), Transformer Networks (Vaswani
etal., 2017), and Neural Symbolic Machines (Liang et al.,
2016) were developed. These models aimed to allow neu-
ral networks to handle symbolic data better and perform
tasks requiring symbolic manipulation, such as question
answering and program synthesis.

Symbolic RNN approaches assume that RNNs learn only
surface statistics without symbolically binding information
(Greff et al., 2020). This assumption is sometimes con-
trary to what is found in practice (Vankov & Bowers, 2019),
where RNNSs trained on certain temporal input-output re-
lationships have demonstrated symbolic generalization to
inputs and timescales not experienced during training (Pani-
grahi & Goyal, 2021).

2.2. Neural Memory Models

Memory, the backbone of intelligence, is pivotal in our
capacity to learn, reason, and make decisions (Dasgupta &
Gershman, 2021). It functions as a fundamental element of
cognition, facilitating information storage, retention, and
retrieval over time. In its simplest form, memory serves
as a repository of past experiences, allowing us to learn
by establishing associations between various information
pieces.

A notable milestone in understanding the neural basis of
memory was achieved in 1982 when Hopfield (Hopfield,
1982) introduced an energy-based model for associative
memories—memories retrieved by querying an input as-
sociated” with one of the stored memories (Dennis et al.,
2015). Initially, Hopfield’s model was equipped with binary
states and discrete transition rules, limiting its applicability.
However, subsequent research broadened this approach to in-

clude continuous states and transition rules (Hopfield, 1984;
Koiran, 1994; Ramsauer et al., 2020; Krotov & Hopfield,
2020). This generalization started to reveal the link between
deep neural networks and memory models. The first investi-
gation of duality explored the relationship between Dense
Associative Memory and Multi-Layer Perceptron (MLP)
with various activation functions (Ramsauer et al., 2020).
Later studies extended this duality to explain the practical
computational benefits observed in neural architectures like
transformers (Ramsauer et al., 2020). Until now, this rela-
tionship has been explored only in neural models without
any recurrent behavior.

The traditional associative memory model was recently ex-
panded to an episodic memory model capable of retrieving
sequences of stored memories besides just single memory
retrieval (Karuvally et al., 2022). This expansion allows
memories that previously did not interact in the single mem-
ory retrieval context to interact and produce complex tem-
poral behavior (Kleinfeld, 1986; Kleinfeld & Sompolinsky,
1988). A fundamental assumption in memory modeling
(in both single and sequence retrieval) is that the network’s
memories are predetermined and stored in the synapses.
This assumption limits the models’ applicability to the vari-
able binding problem, which requires the storage of external
information provided during inference.

We will demonstrate that the episodic memory model can
be utilized to support the binding of external information
during inference, and the fixed memory assumption can
be lifted to explain how RNNs enable symbolic variable
binding.

3. RNN as Episodic Memory

We next show that Elman RNNs can be viewed as a discrete-
time analog of the episodic memory model called General
Sequential Episodic Memory Model (GSEMM) (Karuvally
etal., 2022). One of the crucial components of GSEMM that
drives its dynamic behavior is the inter-memory interactions
represented by a matrix ®’. We modify the GSEMM for-
mulation with a pseudoinverse learning rule instead of the
Hebbian learning rule for the synapses. This modification
allows us to deal with more general (linearly independent
vectors) memories than orthogonal vectors (Personnaz et al.,
1986). The dynamical equations for our modified GSEMM
are given below.

dVy

Ti—q = YosEonVe) =V,
d

Th% = VasElop (Vi) + @ T2V, -V, (D
avy

Tirqy = or(Vy) = Vi,
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The neural state variables of the dynamical system are
Vi € RV W, e RV 'V, € RNr*1 The interac-
tions are represented by = € RV7*Ne and & € RN»XNn,
Zf is the Moore-Penrose pseudoinverse of Z. To de-
rive the connection between the continuous time model
and discrete updates of RNNs, we discretize the contin-
uous time model using forward Euler approximation un-
der the conditions that 7; = 1,7, = 0, and 74 = 0
(See Appendix A for details). The final discrete system is
Vi(t+1) =Z(I+ @ T)=N04(V;(t)). The columns of =
are the stored memories of the model, and (I + ®'T) = ® T
is the matrix representing sequential memory interactions
between these stored memories. The discrete system we
derived is topologically conjugate to the update equations
of an Elman RNN under the homeomorphic transforma-
tion oy if the norm of the matrix is bounded by 1. That
is,if |[E® " Zf||< 1, we can consider a new state variable
h = o¢(Vy) such that

h(t) =op(Z®T ETh(t — 1)) . 2)

This conjugate system has equations that are equivalent to
an Elman RNN hidden state update equation without bias
h(t+1) = o (Whrh(t)). A corollary to the equivalence
between the episodic memory model and Elman RNNss is
that if we decompose the weight matrix of the RNN in
terms of the memories such that Wj,;, = = & T =1 the RNN
computations can be interpreted as the retrieval of episodic
memories temporally transitioning according to the rules
encoded in ®. Unfortunately, such a decomposition is not
unique as each configuration of the memories = can lead
to a different ® and hence a different interpretation of the
dynamics. This can become more complicated if the stored
memories can take complex values. However, an invariant
property across all these interpretations is the eigenspectrum
of ®. Thus instead of having a single interpretation of the
RNN dynamics as episodic memory, we obtain an isospec-
tral continuum of interpretations that depends on the choice
of basis (the set of stored memories), the spectral analysis
of RNN being the particular case with eigenvectors as the
basis. This new perspective of the RNN dynamics enables
us to identify mechanisms of variable binding in RNNs by
defining an appropriate basis.

4. Mathematical Preliminaries

The core concept of the episodic memory theory is basis
change, the appropriate setting of the stored memories. Cur-
rent notations lack the ability to adequately capture the nu-
ances of basis change. Hence, we introduce abstract algebra
notations typically used in theoretical physics literature to
formally explain the variable binding mechanisms. We treat
a vector as an abstract mathematical object invariant to basis
changes. Vectors have vector components that are associ-

ated with the respective basis under consideration. We use
Dirac notations to represent vector v as - [v) = >, v® [e;).
Here, the linearly independent collection of vectors |e;) is
the basis with respect to which the vector |v) has component
v' € R. Linear algebra states that a collection of basis vec-
tors |e;) has an associated collection of basis covectors (€' |
defined such that <ei ’ej> = 0;5, where ¢;; is the Kronecker
delta. This allows us to reformulate the vector components
in terms of the vector itself as [v) = 3, (€?|v) |e;). We use
the Einstein summation convention to omit the summation
symbols wherever the summation is clear. Therefore, vector
|v) written in basis |e;) is

lv) = v ]ei> 3)
= (e'|v)es) .

The set of all possible vectors |v) is a vector space spanned
by the basis vectors |e;). A subspace of this space is a
vector space that is spanned by a subset of basis vectors

{lef) = ej) S {lea)}}-
The RNN dynamics presented in Equation 2 represented in
the new notation is reformulated as:

n(t) = a5 (& @4 (€D le) (¢’
=oy (Whh E(t — 1)) .

)Ih(t=1))) ()

The greek indices iterate over memory space dimensions
{1,2,..., Ny}, alpha numeric indices iterate over feature
dimension indices {1,2,..., Ny}. Typically, we use the
standard basis in our simulations. For the rest of the paper,
the standard basis will be represented by the collection of
vectors |e;) and the covectors (e’ |. The hidden state at time
¢ in the standard basis is denoted as [h(t)) = (e’ |h(t)) |e;).
(e7|h(t)) are the vector components of |h(t)) we obtain
from simulations.

5. Theoretical Model of Variable Binding in
RNN

5.1. Problem Setup

We consider RNNSs trained on tasks with distinct input and
output phases. At each timestep of the input phase, exter-
nal information is provided to the network, and during the
output phase, the network needs to utilize this external infor-
mation to synthesize novel outputs at each time step that are
read from the network. Formally, the input phase consists
of s total timesteps where at each timestep ¢, a vector of x
dimensions u(t) = (u!(¢t), u?(t),..., u"‘(t))T is input to
the model. We call the vector components u*(t) the exter-
nal information that needs to be stored in the RNN. After
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def repeat_copy(N=100, S=10, d=8):
VARIABLES = ['00000000']*10

# input phase
for i in range(S):

VARIABLES = VARIABLES[-1:] + VARIABLES[0:-1]

VARIABLES[0] = input("enter ith input")

# output phase
for i in range(N-S):

VARIABLES = VARIABLES[-1:] + VARIABLES[0:-1]

-~

[ output varIABLES[0] |<_

def repeat_copy(N=100, S=10, d=8):
u = np.zeros(d)
h = np.zeros(S*d)

Write Variable

# input phase
for i in range(S):

u = input("enter ith input")

h += tanh(W_hh @ h + W_uh @ u)

# output phase
for i in range(N-S):

Read Variables h += tanh(W_hh @ h)

T T

Figure 1: Algorithm-RNN Equivalence: Pseudocode for an algorithm that solves the repeat copy task and its equivalent in
RNNs. The three components of external information processing in RNNs (write, compose, and read) are encoded in the
learned weight matrices of an RNN trained to solve the repeat copy task.

the input phase is complete, the zero vector is continually
passed as input to the model, so we say the RNN evolves
autonomously (without any external input) during the out-
put phase. The Elman RNN is trained to approximate the
dynamical system of the given by the following equation.

u(t) = flu(t —1),u(t —2),...u(t —s)). 3)

The following equations govern the Elman RNN.
h(t 4+ 1) = tanh(Wprh(t) + Waypu(t)) , )
y(t) =W, h(t+1).

where Wy, W, W, are linear operators, h(t) is the hid-
den state, u(t) is the input, and y(t) is the output. We use a
simplifying assumption that W}, has sufficient capacity to
represent all the variables required to estimate the dynamical
system. We further assume that h(0) is the zero vector.

5.2. Variable Binding Mechanisms

To formalize the basis change suggested by the episodic
memory view of RNNs we use Dirac and Einstein notations
from abstract algebra. Formally, we write any vector v as
lv) = (€'|v) |e;) = v'e;). |e;) is the basis in which the
vector has vector components vl = <ei‘v>. <el| are the
basis covectors defined such that <ei |ej> = 05, and 0;; is
the Dirac delta function.

The Elman ENN is a non-linear dynamical system that is
difficult to interpret analytically. However, linearization
approaches have shown great promise in their analysis in
the neighborhood of fixed points. Thus, we define vari-
able binding mechanisms on a simplified linear dynamical
system.

n(1)) = (&, L (€D)] lea) (¢’]) [h(t =1)) (D)

Here |e;) is the standard basis vector. To simplify this
system further, we use a new basis [1,,) = £}, |e;).

[h(t+1)) = (5 [Pu) (7)) A (1)) (8)

This new basis allows us to treat the linearized RNN as
applying a single linear operator as opposed to three in
the original formulation. In the new basis, the hidden state
vector is |h(t)) = h¥» |1,,). We pose that these components
h¥» can be set to any external information for solving the
task by appropriately interacting with the hidden state, thus
behaving like variables in computation. The collection of
vectors {U;} = {|v,) : p € {(i — 1)k,...,ix}} that
defines a subspace where the variable is stored is called the
i" variable memory. The contents of this variable memory
can be extracted from the hidden state vector by applying
the linear operator U = 37'7 ;) 1 [ey) (¥*], on the
hidden vector |h(t)). We propose the linear operator ® has
the following general formulation.

(N-1)k Nk
= > ) (T DT @) (W]
p=1 pu=(N-1)k

fu(t=1),u(t=2),...,u(t—N))

©))

The action of the operator on the hidden state is illus-
trated in Figure 2A. For variable memories with index
i € {2,3,4,... N}, the information contents are copied
to the variable memory with index ¢ — 1. The operator then
implements the function f defined in Equation 5 and stores
the result in the N subspace. It is easy to see that any
linear function f of the history can be represented in this
framework.

Reading Variables: Once RNN has performed its com-
putation, the computed information needs to be extracted.
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Figure 2: Theoretical mechanisms for variable binding

in an illustrative task of four variables, each with five

dimensions: A. The hidden state at time ¢ has subspaces capable of storing external information in their activities. The
colors depict the vector components of the hidden state in the variable memory basis. The linear operator ¢ acts on the
hidden state such that these activities are copied between variable memories except for ¥4, which implements the linear
operation f. B. The input phase writes external information by adding activity to an empty variable memory. W5, = ¥ so
that the external information is added to the N variable memory. C. The N'" variable contents are read during the output

phase using the appropriate linear operator W,. = W%;.

RNNs have a linear operator W,., which facilitates the read-
ing of information from |h(t)) at consecutive time steps.
We propose that IV,. has the following equation.

(10)

>

p=(N-1)k+1

|eu—(N—1)m> <1/}M|

It can be easily seen that the reading operation reads the con-
tents of the N*" subspace and outputs them in the standard
basis (Figure 2C).

Writing Variables: External information can be written to
the hidden state of the RNN by interacting with the variable
memories appropriately. Typically, RNNs have a linear oper-
ator W, facilitating the interaction of external information
with the RNN. We propose that the linear operator W, has
the following equation.

Wuh = \IJN
= [bv-1)ets) (€] -

(11

Example: Repeat Copy - Repeat Copy is a task typi-
cally used to evaluate the memory storage characteristics

of RNNs. The task has deterministic evolution represented
by a simple algorithm that stores all input vectors in mem-
ory for later retrieval. Repeat copy provides an elementary
framework to explore the variable binding mechanisms we
proposed in action. We propose the linear operator ¢ for
the repeat copy task has the following equation.

(s—1)k

=) | (¥ +

p=1

SK

>

p=(s—1)k+1

) e

12)

This construction of ® can be imagined as a linear op-
erator that copies the activity of the subspaces cycli-
cally. That is, the content of the i*" subspace is copied
to the (i — 1) subspace with the first subspace being
copied to the s subspace (Appendix B). The dynami-
cal evolution of the RNN at time step 1 is, |h(1))
"(/)(sfl)n+j> <6j‘ ul(l) |€l> = uz(l) ‘w(sfl)n+i>- At the
final step of the input phase, after all the variables are in-
put, [h(s)) is [A(s)) = S5, w (1) |du-1ynts). Fort
timesteps after s, the general equation for |h(s + t)) is:

S

|h(s+ 1)) = Zui(ﬂ) [ U((u=t=1 mod s)+1)uti]y (13)

p=1
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Figure 3: Experimental Results of Repeat Copy Task with 16 vectors, each of 5 dimensions: A. W}, visualized in
the variable memory basis reveals the variable memories and their interactions. B. After training, the eigenspectrum of
Whr with a magnitude > 1 overlaps with the theoretical ®. The boxes show the number of eigenvalues in each direction.
C. During inference, 3141 is inserted into the network in the form of binary vectors. This input results in the hidden
state evolving in the standard basis, as shown. How this hidden state evolution is related to the computations cannot be
interpreted easily in this basis. D. When projected on the variable memories, the hidden state evolution reveals the contents
of the variables over time. In the variable memory basis, it is clear that the input is stored in the hidden state activities and is

recursively accessed to produce outputs.

From this equation for the hidden state vector, it can
be easily seen that the p™ variable is stored in the
[(p—t—1 mod s)+ 1]th variable memory at time step
t. The equivalence between the pseudocode for an algo-
rithm solving repeat copy along with its equivalent neural
mechanisms is illustrated in Figure 1.

6. Algorithm for Computing Variable
Memories

To compare the learned hidden weights W}, to the inter-
action matrix ¢ of the theoretical model in experimental
settings, we view the hidden state space in a new basis
consisting of the ¥ = [¥y;...; ¥ ] defining the variable

memories and an orthogonal basis ¥ for the remaining
dimensions of the space. Once this basis is defined, the
action of the learned weights on the variable memories
can be extracted from the learned W}, using the operator
P ed = YWy, U, Any interaction between the variable
memories and the non-memory space will be encoded in the
matrices U*Wj,;, U+ and (U4)*W;,;, 0.

We define the variable memories ¥ similar to the linear
model. The write weights Uy, = W,,; define one of the
variable memory, and all other subspaces can be found
simply by propagating these dimensions forward in time:
Uy = & kW, = W "W, Similarly, the dual of the
read weights W' will also define ¥, and propagating this
subspace backwards in time will yield the other variable
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Algorithm 1 Algorithm for computing variable memories
of trained RNNs
:0<a<1
s {number of time-steps in the input phase}
: Whi, Wayn, W, {learned parameters of the RNN}
U~ aWun + (1 — )W
cforke{s—1,s—2,...1} do
Wy aW W + (1= @) (W) w7
end for
DU [Py U]
. WL« PC({h(t)} —U* {h(t)}) {Principle Components
of h from simulations} =0

S oo o oocoocoo

memory subspaces: ¥y = (&~HrF¥, = (@T)Fy, =
(W[ )F W, The RNN is unlikely to perfectly learn the
relationships Wy, = W} and Wy, ¥y, = Uy_; due to the
stochastic training and non-linearity. That being said, we
found that the method of power iterating W, was effec-
tive in defining a variable memory space for the nonlinear
model. We specifically selected to define the variable mem-
ory dimensions ¥, by taking a weighted average of the
results obtained by propagating W,,;, forward in time and
W, backwards in time:

U, =aWyup+ (1 —a)W) (14)

Uy = a W " Wan+ (1 —a) (W) FW) fork < s (15)

We also removed the projection of each ¥y, onto the eigen-
vectors of W3, whose eigenvalues were less than 1 in mag-
nitude since they do not contribute to the long-term behavior.
To obtain the orthogonal basis W for the rest of the hidden
space, we applied principal component analysis (PCA) to
hidden state dynamics during inference after removing the
projection onto the variable memory space. The algorithm
to compute variable memories from trained Elman RNN is
summarized in Algorithm 1.

7. Experimental Results

To test the validity of the theoretical models, we trained El-
man RNNs (c.f. Equation 6) via gradient descent to perform
the repeat copy and compose copy tasks, and compared the
structure of the learned weights to that of the theoretical
models.

Repeat Copy: We present results for repeat copy with
sequence length s = 16 and k = 5 (s - kK = 80 total bits),
but similar results are obtained for all networks we trained,
regardless of the sequence length, vector dimension x, and
experiment seed as long as W,;, has sufficient dimensions.
First, we show the structure of the learned weights when
viewed in the basis [¥; U] in Figure 3A. We observe that
the variable memory interactions defined by the upper left

block of the matrix form the theoretical structure. The other
blocks of the weight matrix show much smaller interactions,
indicating that the variable memories interact weakly with
the orthogonal subspace. By construction, U is orthogonal
to the eigenvectors of W}, with eigenvalue magnitude > 1,
so the interactions of the non-memory subspace with itself
decays to zero as we iterate this matrix. This computation
structure is also reflected in the eigenspectrum of the learned
Wi, showing agreement with the theoretical values (Figure
3B). Figure 3D depict the projection of the hidden state
sequence onto the variable memories during inference for
an example input resembling the text “3141” (Figure 3C).
At timestep 1, a majority of the variable memories store
values close to 0 (white, as indicated by the colorbar), and
subspace s stores the first input vector. This vector is moved
to the next variable memory subspace on the subsequent
timestep, and the next input vector is copied to the ¥
subspace. This process continues iteratively until ¢ = s,
with all loaded variables being shifted over by one subspace
and the following input being loaded into the ¥, subspace.
Att = s, all variable memories have been assigned values.
Afterward, the network autonomously shifts these values to
one subspace per timestep to periodically recall the input
sequence by reading from Wy = W},

8. Discussion

We have introduced the Episodic Memory Theory of Recur-
rent Neural Networks (RNNs), portraying these networks as
dynamic systems executing episodic memory retrieval. We
presented the notion of variable memory,” a linear subspace
that can connect and recursively compute data symbolically.
Our methodology circumvents the obstacles posed by con-
ventional techniques in comprehending RNNS, specifically
their obscurity as "black boxes’ and the intricacy of spectral
analysis in tasks involving multiple dimensions.

The episodic memory theory and the theoretical model of
variable binding challenge the basic presumptions made in
the two research directions delineated in Section 2. Address-
ing the “variable binding problem,” we demonstrated how
RNNs could symbolically bind and synthesize data using
variable memories. As for the fixed memory assumption in
memory models, we demonstrated how it could be bypassed
by interacting suitably with the memory model.
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A. RNN - Episodic Memory Equivalence

From a given time ¢, the update equations are given as

Tr(Vi(t+1) = V(1)) = ZEon(Va(t)) = Vi(t),
Vi(t) = Eor (Vi) + @ ETVa(t), (16)
Va(t) = ar(Vi(t))-
Ti(Vi+1) = V(1) = EonVi) ~Vs(0), "
Va(t) = = ap(Vs(t) + @ ETap(Vy),
Tr(Vi(t+1) = Vi(1)) = EVi=Vs(1), as)
Va(t) = (I+@")ETos(Vy),
Ty(Vi(t+1) = V() =2 + @ ")E 05 (Vy) = Vi (t) (19)
Final discrete upate equation
Vit+1) =21+ @)= 0 (Vy) (20)
Restrict the norm of matrix ||Z (I + ® )ZT||< 1.
This allows us to consider the transformation V; = o ¢(V), so for invertible o7,
o (Vit+1) =E(I +@")ETV] 1)
o (Vit+1) =E(I +@")ETV] (22)
Vilt+1) =0 (E(I+2NETV)) (23)

this is a general update equation for an RNN without bias. The physical interpretation of this equation is that the columns
of = stores the individual memories of the system and the linear operator (I + ®) is the temporal interaction between the
stored memories. In the memory modeling literature, it is typical to consider memories as a fixed collection instead of a
variable collection that shares a common interaction behavior. We will show how in the next sections how the dynamics as a
result of fixed collection can be used to store variable information.

A.1. Topological Conjugacy with RNNs

Proof that dynamical systems governed by Equations 20 and 23 are topological conjugates.

Consider f(z) = (I + ®")ZTo¢(x) for Equation 20 and g(z) = o4(= (I + ®")=" ) for Equation 23. Consider a
homeomorphism h(y) = o¢(y) on g. Then,

(htogoh)(a) =0 (ofEI+2")ET0s(x)))
EI+0N)ZTo(x)
= f(z)

(24)

So, for the homeomorphism h on g, we get that h~! o g o h = f proving that f and g are topological conjugates. Therefore
all dynamical properties of f and g are shared.

10
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B. Repeat Copy: Mathematical Theory

Repeat Copy is a task typically used to evaluate the memory storage characteristics of RNNs since the task has a deterministic
evolution represented by a simple algorithm that stores all input vectors in memory for later retrieval. Although elementary,
repeat copy provides a simple framework to imagine the variable binding mechanisms we theorized in action. For the repeat
copy task, the linear operators of the RNN has the following equations.

s—1)k K SK —(s—1)k
= S ) ] o oy ) (9O
Wun = Vs (25)
W, =¥?
This ¢ can be imagined as copying the contents of the subspaces in a cyclic fashion. That is, the content of the i*” subspace

goes to (i — 1) subspace with the first subspace being copied to the N subspace. The dynamical evolution of the RNN is
represented at the time step 1 as,

(1)) = [$s—1)mt) (€70 (1) lez) (26)
(1) = u' (1) [s—1yn+s) (€ |e:) @7
[h(1)) = u(1) ‘1/)(371)n+j> 0ij (28)
Kronecker delta index cancellation
1(1)) = ' (1) [Y(s-1)nti) (29)
At time step 2,
|h(2)> = uz(l) o |w(s—1)m+i> + UZ(Q) |w(s—1)n+i> (30)
Expanding ®
. (s—1)k sk ‘
B@) =w' @) | 3 W) (Y ) (0T [emimei) + 0@ [Seonwi) G
p=1 pn=(s—1)r+1
h(2)) = u' (1) [¢s—2mti) + u'(2) |Y(s—1)nsi) (32)

At the final step of the input phase when t = s, |h(s)) is defined as:
h()) = 32w 00) (Y tymss) (33)
p=1
For ¢ timesteps after s, the general equation for |h(s + t)) is:

‘h(s + t)> = Z ui(,u) |’¢)[((u7t71 mod s)+1)ﬁ+i]> 34)
pn=1

From this equation for the hidden state vector, it can be easily seen that the p" variable is stored in the
[(u—t—1 mod s)+ 1]™ subspace at time step ¢. The readout weights W, = W¥* reads out the contents of the s
subspace.

11
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C. Non-linear RNN

The linear RNNs we discussed are powerful in terms of the content of variables that can be stored and reliably retrieved. The
variable contents, u’, can be any real number and this information can be reliably retrieved in the end using the appropriate
readout weights. However, learning such a system is difficult using gradient descent procedures. To see this, setting the
components of ® to anything other than unity might result in dynamics that is eventually converging or diverging resulting
in a loss of information in these variables. Additionally, linear systems are not used in the practical design of RNNs. The
main difference is now the presence of the nonlinearity. In this case, our theory can still be used. To illustrate this, consider
a general RNN evolving according to h(t 4+ 1) = g(Whph(t) + b) where b is a bias term. Suppose h(t) = h* is a fixed
point of the system. We can then linearize the system around the fixed point to obtain the linearized dynamics in a small
region around the fixed point.

h(t+1) —h* = J(9)

e Wi (h(t +1) = h*) + O((h(t + 1) — h*)?) (35)

where 7 is the jacobian of the activation function g. If the RNN had an additional input, this can also be incorporated into
the linearized system by treating the external input as a control variable

h(t+1) —h* = J(g)

e Wan (h(t) — B*) + T (9)[nx Waunu(t) (36)
Substituting h(t) — h* = h/(t)

H(t+1) =T ()

he Wi B (t) + T (9)| e Wanu(t) 37

which is exactly the linear system which we studied where instead of Wy, = =P=T, we have J (9)|nWph =
ZO=T. With this result, we will analyse Elman RNN models that have the general update equations h(t + 1) =
tanh(Wyph(t) + Wanu(t) +b).
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