
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Episodic Memory Theory of Recurrent Neural Networks: Insights into
Long-Term Information Storage and Manipulation

Anonymous Authors1

Abstract
Recurrent neural networks (RNNs) have emerged
as powerful models capable of storing and ma-
nipulating external information over long peri-
ods in various domains. Yet, the mechanisms
that underly this behavior remain a mystery due
to the black-box nature of these models. This
paper addresses this question by proposing an
episodic memory theory of RNN dynamics, en-
abling a more comprehensive understanding of
the RNN weights as memories and inter-memory
interactions. This approach sheds light on the in-
ner workings of RNNs and connects to existing
research on memory representation and organiza-
tion. The theory extends the current linearization
approaches by providing alternative interpreta-
tions of the eigenspectrum and its connection to
the long-term storage and manipulation of infor-
mation. We discuss how the segregation, represen-
tation, and composition of the variable binding
problem—a fundamental question in cognitive
science and artificial intelligence—can be mech-
anistically interpreted within the theory. Using
an elementary task - repeat copy, we demonstrate
the validity of the theory in experimental settings.
Our work represents a step towards opening the
black box of RNNs, offering new insights into
their functionality and bridging the gap between
recurrent neural networks and memory models.

1. Introduction
Recurrent neural networks (RNNs) are unique neural mod-
els capable of comprehending time-dependent connections
thanks to their feedback loops. However, their stochastic
training process (Rumelhart et al., 1986; Sussillo & Ab-
bott, 2009; Martens & Sutskever, 2011) often makes them

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

inscrutable, with essential task-oriented calculations con-
cealed within multidimensional dynamics. Current methods
of deciphering RNNs view them as non-linear dynamic
systems, applying linear approximations at static or slow-
evolving points to illuminate their functions (Sussillo &
Barak, 2013).

The first step to understanding an RNN’s functionality is
pinpointing the fixed and slowly variable points using op-
timization techniques. Then, the phase space flow is as-
sembled from each linearly approximated area. A detailed
examination of each area’s long-term behavior is carried
out through spectral analysis of the related linear dynamical
systems (Strogatz, 1994). This evaluation discloses vital
information about the dynamics, such as their patterns of
convergence, divergence, stability, or cyclic behavior. De-
spite the general applicability of this approach, it is still
challenging to comprehend when the task spans multiple
dimensions with non-converging dynamics.

2. Background
The required background for our theory includes two distinct
but complementary strands of research—variable binding
and neural memory models, which until now were indepen-
dently studied.

2.1. Variable Binding

In humans, the generalization phenomenon is attributed to
the ability to ”bind” information together and symbolically
compose it to create novel outputs (Johnson-Laird, 2010).
This ability for variable binding enables applying what is
learned in one situation to a future, novel situation (White-
head). The role of this type of generalization motivated
symbolic AI approaches to model intelligence through for-
mal logic and symbol manipulation. The early stages of
symbolic AI can be traced back to the 1950s and 1960s,
with the work of pioneers like Allen Newell and Herbert
A. Simon, who developed the Logic Theorist (Newell & Si-
mon, 1956) and General Problem Solver (Newell & Simon,
1995). In the 1970s and 1980s, symbolic AI saw signifi-
cant advancements with the development of expert systems,
such as MYCIN (Shortliffe & Buchanan, 1990; Buchanan

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2023

& Shortliffe, 1984) and DENDRAL (Lindsay et al., 1980;
1993) which were rule-based systems designed to mimic
the decision-making ability of a human expert. The systems
used if-then rules to navigate large databases of knowledge
and make decisions. However, symbolic AI started to face
criticism and challenges in the late 1980s. One of the main
criticisms was its inability to handle uncertain or incom-
plete information effectively, unlike humans (Kautz, 2022).
As a result, interest shifted towards alternative approaches,
such as connectionist models (neural networks) (Rosenblatt,
1958; Rumelhart et al., 1986) and probabilistic methods
(Russell & Norvig, 1995), which offered better handling of
uncertainty and could learn from data. In the late 2010s,
integrating symbolic reasoning into RNNs started gaining
traction. One significant early approach was the Neural Tur-
ing Machine (Graves et al., 2014), which integrated memory
manipulation capabilities into neural networks, allowing
them to read and write to memory in a manner similar to
how a Turing machine operates (Turing, 2021). Similar to
this approach, models like the Differentiable Neural Com-
puter (Graves et al., 2016), Transformer Networks (Vaswani
et al., 2017), and Neural Symbolic Machines (Liang et al.,
2016) were developed. These models aimed to allow neu-
ral networks to handle symbolic data better and perform
tasks requiring symbolic manipulation, such as question
answering and program synthesis.

Symbolic RNN approaches assume that RNNs learn only
surface statistics without symbolically binding information
(Greff et al., 2020). This assumption is sometimes con-
trary to what is found in practice (Vankov & Bowers, 2019),
where RNNs trained on certain temporal input-output re-
lationships have demonstrated symbolic generalization to
inputs and timescales not experienced during training (Pani-
grahi & Goyal, 2021).

2.2. Neural Memory Models

Memory, the backbone of intelligence, is pivotal in our
capacity to learn, reason, and make decisions (Dasgupta &
Gershman, 2021). It functions as a fundamental element of
cognition, facilitating information storage, retention, and
retrieval over time. In its simplest form, memory serves
as a repository of past experiences, allowing us to learn
by establishing associations between various information
pieces.

A notable milestone in understanding the neural basis of
memory was achieved in 1982 when Hopfield (Hopfield,
1982) introduced an energy-based model for associative
memories—memories retrieved by querying an input ”as-
sociated” with one of the stored memories (Dennis et al.,
2015). Initially, Hopfield’s model was equipped with binary
states and discrete transition rules, limiting its applicability.
However, subsequent research broadened this approach to in-

clude continuous states and transition rules (Hopfield, 1984;
Koiran, 1994; Ramsauer et al., 2020; Krotov & Hopfield,
2020). This generalization started to reveal the link between
deep neural networks and memory models. The first investi-
gation of duality explored the relationship between Dense
Associative Memory and Multi-Layer Perceptron (MLP)
with various activation functions (Ramsauer et al., 2020).
Later studies extended this duality to explain the practical
computational benefits observed in neural architectures like
transformers (Ramsauer et al., 2020). Until now, this rela-
tionship has been explored only in neural models without
any recurrent behavior.

The traditional associative memory model was recently ex-
panded to an episodic memory model capable of retrieving
sequences of stored memories besides just single memory
retrieval (Karuvally et al., 2022). This expansion allows
memories that previously did not interact in the single mem-
ory retrieval context to interact and produce complex tem-
poral behavior (Kleinfeld, 1986; Kleinfeld & Sompolinsky,
1988). A fundamental assumption in memory modeling
(in both single and sequence retrieval) is that the network’s
memories are predetermined and stored in the synapses.
This assumption limits the models’ applicability to the vari-
able binding problem, which requires the storage of external
information provided during inference.

We will demonstrate that the episodic memory model can
be utilized to support the binding of external information
during inference, and the fixed memory assumption can
be lifted to explain how RNNs enable symbolic variable
binding.

3. RNN as Episodic Memory
We next show that Elman RNNs can be viewed as a discrete-
time analog of the episodic memory model called General
Sequential Episodic Memory Model (GSEMM) (Karuvally
et al., 2022). One of the crucial components of GSEMM that
drives its dynamic behavior is the inter-memory interactions
represented by a matrix Φ′. We modify the GSEMM for-
mulation with a pseudoinverse learning rule instead of the
Hebbian learning rule for the synapses. This modification
allows us to deal with more general (linearly independent
vectors) memories than orthogonal vectors (Personnaz et al.,
1986). The dynamical equations for our modified GSEMM
are given below.


Tf

dVf
dt

=
√
αs Ξσh(Vh)− Vf ,

Th
dVh
dt

=
√
αs Ξ

† σf (Vf) + αcΦ
′⊤Ξ†Vd − Vh,

Td
dVd
dt

= σf (Vf)− Vd,

(1)

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2023

The neural state variables of the dynamical system are
Vf ∈ RNf×1, Vh ∈ RNh×1, Vd ∈ RNf×1. The interac-
tions are represented by Ξ ∈ RNf×Nh and Φ ∈ RNh×Nh .
Ξ† is the Moore-Penrose pseudoinverse of Ξ. To de-
rive the connection between the continuous time model
and discrete updates of RNNs, we discretize the contin-
uous time model using forward Euler approximation un-
der the conditions that Tf = 1, Th = 0, and Td = 0
(See Appendix A for details). The final discrete system is
Vf (t+ 1) = Ξ (I +Φ′⊤) Ξ† σf (Vf (t)). The columns of Ξ
are the stored memories of the model, and (I +Φ′⊤) = Φ⊤

is the matrix representing sequential memory interactions
between these stored memories. The discrete system we
derived is topologically conjugate to the update equations
of an Elman RNN under the homeomorphic transforma-
tion σf if the norm of the matrix is bounded by 1. That
is, if ||ΞΦ⊤ Ξ†||≤ 1, we can consider a new state variable
h = σf (Vf) such that

(2)h(t) = σf (ΞΦ⊤ Ξ†h(t− 1)) .

This conjugate system has equations that are equivalent to
an Elman RNN hidden state update equation without bias
h(t + 1) = σf (Whhh(t)). A corollary to the equivalence
between the episodic memory model and Elman RNNs is
that if we decompose the weight matrix of the RNN in
terms of the memories such that Whh = ΞΦ⊤ Ξ†, the RNN
computations can be interpreted as the retrieval of episodic
memories temporally transitioning according to the rules
encoded in Φ. Unfortunately, such a decomposition is not
unique as each configuration of the memories Ξ can lead
to a different Φ and hence a different interpretation of the
dynamics. This can become more complicated if the stored
memories can take complex values. However, an invariant
property across all these interpretations is the eigenspectrum
of Φ. Thus instead of having a single interpretation of the
RNN dynamics as episodic memory, we obtain an isospec-
tral continuum of interpretations that depends on the choice
of basis (the set of stored memories), the spectral analysis
of RNN being the particular case with eigenvectors as the
basis. This new perspective of the RNN dynamics enables
us to identify mechanisms of variable binding in RNNs by
defining an appropriate basis.

4. Mathematical Preliminaries
The core concept of the episodic memory theory is basis
change, the appropriate setting of the stored memories. Cur-
rent notations lack the ability to adequately capture the nu-
ances of basis change. Hence, we introduce abstract algebra
notations typically used in theoretical physics literature to
formally explain the variable binding mechanisms. We treat
a vector as an abstract mathematical object invariant to basis
changes. Vectors have vector components that are associ-

ated with the respective basis under consideration. We use
Dirac notations to represent vector v as - |v⟩ =

∑
i v
i |ei⟩.

Here, the linearly independent collection of vectors |ei⟩ is
the basis with respect to which the vector |v⟩ has component
vi ∈ R. Linear algebra states that a collection of basis vec-
tors |ei⟩ has an associated collection of basis covectors

〈
ei
∣∣

defined such that
〈
ei
∣∣ej〉 = δij , where δij is the Kronecker

delta. This allows us to reformulate the vector components
in terms of the vector itself as |v⟩ =

∑
i

〈
ei
∣∣v〉 |ei⟩. We use

the Einstein summation convention to omit the summation
symbols wherever the summation is clear. Therefore, vector
|v⟩ written in basis |ei⟩ is

(3)|v⟩ = vi |ei⟩
=

〈
ei
∣∣v〉 |ei⟩ .

The set of all possible vectors |v⟩ is a vector space spanned
by the basis vectors |ei⟩. A subspace of this space is a
vector space that is spanned by a subset of basis vectors
{
∣∣e′j〉 :

∣∣e′j〉 ⊆ {|ei⟩}}.
The RNN dynamics presented in Equation 2 represented in
the new notation is reformulated as:

(4)|h(t)⟩ = σf
((
ξiµ Φ

µ
ν (ξ

†)νj |ei⟩
〈
ej
∣∣) |h(t− 1)⟩

)
= σf

(
Whh h⃗(t− 1)

)
.

The greek indices iterate over memory space dimensions
{1, 2, . . . , Nh}, alpha numeric indices iterate over feature
dimension indices {1, 2, . . . , Nf}. Typically, we use the
standard basis in our simulations. For the rest of the paper,
the standard basis will be represented by the collection of
vectors |ei⟩ and the covectors

〈
ei
∣∣. The hidden state at time

t in the standard basis is denoted as |h(t)⟩ =
〈
ej
∣∣h(t)〉 |ei⟩.〈

ej
∣∣h(t)〉 are the vector components of |h(t)⟩ we obtain

from simulations.

5. Theoretical Model of Variable Binding in
RNN

5.1. Problem Setup

We consider RNNs trained on tasks with distinct input and
output phases. At each timestep of the input phase, exter-
nal information is provided to the network, and during the
output phase, the network needs to utilize this external infor-
mation to synthesize novel outputs at each time step that are
read from the network. Formally, the input phase consists
of s total timesteps where at each timestep t, a vector of κ
dimensions u(t) =

(
u1(t), u2(t), . . . , uκ(t)

)⊤
is input to

the model. We call the vector components ui(t) the exter-
nal information that needs to be stored in the RNN. After

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2023

def repeat_copy(N=100, S=10, d=8):
 VARIABLES = ['00000000']*10

 # input phase
 for i in range(S):

 VARIABLES = VARIABLES[-1:] + VARIABLES[0:-1]

 VARIABLES[0] = input("enter ith input")

 # output phase
 for i in range(N-S):

 VARIABLES = VARIABLES[-1:] + VARIABLES[0:-1]

 output VARIABLES[0]

def repeat_copy(N=100, S=10, d=8):
 u = np.zeros(d)
 h = np.zeros(S*d)

 # input phase
 for i in range(S):

 u = input("enter ith input")

 h += tanh(W_hh @ h + W_uh @ u)

 # output phase
 for i in range(N-S):

 h += tanh(W_hh @ h)

 output W_r @ h

Write Variable

Compose Variable

Read Variables

Figure 1: Algorithm-RNN Equivalence: Pseudocode for an algorithm that solves the repeat copy task and its equivalent in
RNNs. The three components of external information processing in RNNs (write, compose, and read) are encoded in the
learned weight matrices of an RNN trained to solve the repeat copy task.

the input phase is complete, the zero vector is continually
passed as input to the model, so we say the RNN evolves
autonomously (without any external input) during the out-
put phase. The Elman RNN is trained to approximate the
dynamical system of the given by the following equation.

(5)u(t) = f(u(t− 1), u(t− 2), . . . u(t− s)) .

The following equations govern the Elman RNN.{
h(t+ 1) = tanh(Whhh(t) +Wuhu(t)) ,

y(t) =Wr h(t+ 1) .
(6)

where Whh,Wuh,Wr are linear operators, h(t) is the hid-
den state, u(t) is the input, and y(t) is the output. We use a
simplifying assumption that Whh has sufficient capacity to
represent all the variables required to estimate the dynamical
system. We further assume that h(0) is the zero vector.

5.2. Variable Binding Mechanisms

To formalize the basis change suggested by the episodic
memory view of RNNs we use Dirac and Einstein notations
from abstract algebra. Formally, we write any vector v as
|v⟩ =

〈
ϵi
∣∣v〉 |ϵj⟩ = vi |ϵj⟩. |ϵj⟩ is the basis in which the

vector has vector components vi =
〈
ϵi
∣∣v〉.

〈
ϵi
∣∣ are the

basis covectors defined such that
〈
ϵi
∣∣ϵj〉 = δij , and δij is

the Dirac delta function.

The Elman ENN is a non-linear dynamical system that is
difficult to interpret analytically. However, linearization
approaches have shown great promise in their analysis in
the neighborhood of fixed points. Thus, we define vari-
able binding mechanisms on a simplified linear dynamical
system.

(7)|h(t)⟩ =
(
ξiµ Φ

µ
ν (ξ

†)νj |ei⟩
〈
ej
∣∣) |h(t− 1)⟩

Here |ei⟩ is the standard basis vector. To simplify this
system further, we use a new basis |ψµ⟩ = ξiµ |ei⟩.

(8)|h(t+ 1)⟩ = (Φµν |ψµ⟩ ⟨ψν |) |h(t)⟩

This new basis allows us to treat the linearized RNN as
applying a single linear operator as opposed to three in
the original formulation. In the new basis, the hidden state
vector is |h(t)⟩ = hψµ |ψµ⟩. We pose that these components
hψµ can be set to any external information for solving the
task by appropriately interacting with the hidden state, thus
behaving like variables in computation. The collection of
vectors {Ψi} = {|ψµ⟩ : µ ∈ {(i − 1)κ, . . . , iκ}} that
defines a subspace where the variable is stored is called the
ith variable memory. The contents of this variable memory
can be extracted from the hidden state vector by applying
the linear operator Ψ∗

i =
∑iκ
µ=(i−1)κ+1 |eµ⟩ ⟨ψµ|, on the

hidden vector |h(t)⟩. We propose the linear operator Φ has
the following general formulation.

Φ =

(N−1)κ∑
µ=1

|ψµ⟩
〈
ψµ+κ

∣∣+ Nκ∑
µ=(N−1)κ

Φµν |ψµ⟩ ⟨ψν |︸ ︷︷ ︸
f(u(t−1),u(t−2),...,u(t−N))

.

(9)

The action of the operator on the hidden state is illus-
trated in Figure 2A. For variable memories with index
i ∈ {2, 3, 4, . . . N}, the information contents are copied
to the variable memory with index i− 1. The operator then
implements the function f defined in Equation 5 and stores
the result in the N th subspace. It is easy to see that any
linear function f of the history can be represented in this
framework.

Reading Variables: Once RNN has performed its com-
putation, the computed information needs to be extracted.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2023

A B

action of the Φ operator on the variable memories
writing external information into variable memories

during input phaseC

dynamics of the variable memories and reading information from them during output phase

composed
result

composed
result

Figure 2: Theoretical mechanisms for variable binding in an illustrative task of four variables, each with five
dimensions: A. The hidden state at time t has subspaces capable of storing external information in their activities. The
colors depict the vector components of the hidden state in the variable memory basis. The linear operator Φ acts on the
hidden state such that these activities are copied between variable memories except for Ψ4, which implements the linear
operation f . B. The input phase writes external information by adding activity to an empty variable memory. Wuh = ΨN so
that the external information is added to the N th variable memory. C. The N th variable contents are read during the output
phase using the appropriate linear operator Wr = Ψ∗

N .

RNNs have a linear operator Wr, which facilitates the read-
ing of information from |h(t)⟩ at consecutive time steps.
We propose that Wr has the following equation.

(10)
Wr = Ψ∗

N

=

Nκ∑
µ=(N−1)κ+1

∣∣eµ−(N−1)κ

〉
⟨ψµ|

It can be easily seen that the reading operation reads the con-
tents of the N th subspace and outputs them in the standard
basis (Figure 2C).

Writing Variables: External information can be written to
the hidden state of the RNN by interacting with the variable
memories appropriately. Typically, RNNs have a linear oper-
ator Wuh facilitating the interaction of external information
with the RNN. We propose that the linear operator Wuh has
the following equation.

(11)Wuh = ΨN

=
∣∣ψ(N−1)κ+j

〉 〈
ej
∣∣ .

Example: Repeat Copy - Repeat Copy is a task typi-
cally used to evaluate the memory storage characteristics

of RNNs. The task has deterministic evolution represented
by a simple algorithm that stores all input vectors in mem-
ory for later retrieval. Repeat copy provides an elementary
framework to explore the variable binding mechanisms we
proposed in action. We propose the linear operator Φ for
the repeat copy task has the following equation.

Φ =

(s−1)κ∑
µ=1

|ψµ⟩
〈
ψµ+κ

∣∣+ sκ∑
µ=(s−1)κ+1

|ψµ⟩
〈
ψµ−(s−1)κ

∣∣∣
(12)

This construction of Φ can be imagined as a linear op-
erator that copies the activity of the subspaces cycli-
cally. That is, the content of the ith subspace is copied
to the (i − 1)th subspace with the first subspace being
copied to the sth subspace (Appendix B). The dynami-
cal evolution of the RNN at time step 1 is, |h(1)⟩ =∣∣ψ(s−1)κ+j

〉 〈
ej
∣∣ui(1) |ei⟩ = ui(1)

∣∣ψ(s−1)κ+i

〉
. At the

final step of the input phase, after all the variables are in-
put, |h(s)⟩ is |h(s)⟩ =

∑s
µ=1 u

i(µ)
∣∣ψ(µ−1)κ+i

〉
. For t

timesteps after s, the general equation for |h(s+ t)⟩ is:

(13)|h(s+ t)⟩ =
s∑

µ=1

ui(µ)
∣∣ψ[((µ−t−1 mod s)+1)κ+i]

〉
5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2023

A B

C
input phase output phase

DCC

Theoretical Spectrum
Learned Spectrum

Figure 3: Experimental Results of Repeat Copy Task with 16 vectors, each of 5 dimensions: A. Whh visualized in
the variable memory basis reveals the variable memories and their interactions. B. After training, the eigenspectrum of
Whh with a magnitude ≥ 1 overlaps with the theoretical Φ. The boxes show the number of eigenvalues in each direction.
C. During inference, ”3141” is inserted into the network in the form of binary vectors. This input results in the hidden
state evolving in the standard basis, as shown. How this hidden state evolution is related to the computations cannot be
interpreted easily in this basis. D. When projected on the variable memories, the hidden state evolution reveals the contents
of the variables over time. In the variable memory basis, it is clear that the input is stored in the hidden state activities and is
recursively accessed to produce outputs.

From this equation for the hidden state vector, it can
be easily seen that the µth variable is stored in the
[(µ− t− 1 mod s) + 1]

th variable memory at time step
t. The equivalence between the pseudocode for an algo-
rithm solving repeat copy along with its equivalent neural
mechanisms is illustrated in Figure 1.

6. Algorithm for Computing Variable
Memories

To compare the learned hidden weights Whh to the inter-
action matrix Φ of the theoretical model in experimental
settings, we view the hidden state space in a new basis
consisting of the Ψ = [Ψ1; ...; Ψs] defining the variable

memories and an orthogonal basis Ψ⊥ for the remaining
dimensions of the space. Once this basis is defined, the
action of the learned weights on the variable memories
can be extracted from the learned Whh using the operator
Φ⊤

learned = Ψ∗WhhΨ. Any interaction between the variable
memories and the non-memory space will be encoded in the
matrices Ψ∗WhhΨ

⊥ and (Ψ⊥)∗WhhΨ.

We define the variable memories Ψ similar to the linear
model. The write weights Ψs = Wuh define one of the
variable memory, and all other subspaces can be found
simply by propagating these dimensions forward in time:
Ψk = Φs−kΨs = W s−k

hh Wuh. Similarly, the dual of the
read weights W ∗

r will also define Ψs, and propagating this
subspace backwards in time will yield the other variable

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2023

Algorithm 1 Algorithm for computing variable memories
of trained RNNs
0: 0 ≤ α ≤ 1
0: s {number of time-steps in the input phase}
0: Whh,Wuh,Wr {learned parameters of the RNN}
0: Ψs ← αWuh + (1− α)W ∗

r

0: for k ∈ {s− 1, s− 2, . . . 1} do
0: Ψk ← αW s−k

hh Wuh + (1− α)
((
W⊤
hh

)k
W ∗
r

)
0: end for
0: Ψ← [Ψ1; . . . ; Ψs]

0: Ψ⊥ ← PC({ ˜h(t)}−Ψ∗ {h̃(t)}) {Principle Components
of h̃ from simulations} =0

memory subspaces: Ψk = (Φ−1)kΨs = (Φ⊤)k Ψs =
(W⊤

hh)
kW ∗

r . The RNN is unlikely to perfectly learn the
relationships Wuh = W ∗

r and WhhΨk = Ψk−1 due to the
stochastic training and non-linearity. That being said, we
found that the method of power iterating Whh was effec-
tive in defining a variable memory space for the nonlinear
model. We specifically selected to define the variable mem-
ory dimensions Ψk by taking a weighted average of the
results obtained by propagating Wuh forward in time and
Wr backwards in time:

Ψs = αWuh + (1− α)W ∗
r , (14)

Ψk = αW s−k
hh Wuh+(1−α)(W⊤

hh)
kW ∗

r) for k < s (15)

We also removed the projection of each Ψk onto the eigen-
vectors of Whh whose eigenvalues were less than 1 in mag-
nitude since they do not contribute to the long-term behavior.
To obtain the orthogonal basis Ψ⊥ for the rest of the hidden
space, we applied principal component analysis (PCA) to
hidden state dynamics during inference after removing the
projection onto the variable memory space. The algorithm
to compute variable memories from trained Elman RNN is
summarized in Algorithm 1.

7. Experimental Results
To test the validity of the theoretical models, we trained El-
man RNNs (c.f. Equation 6) via gradient descent to perform
the repeat copy and compose copy tasks, and compared the
structure of the learned weights to that of the theoretical
models.

Repeat Copy: We present results for repeat copy with
sequence length s = 16 and κ = 5 (s · κ = 80 total bits),
but similar results are obtained for all networks we trained,
regardless of the sequence length, vector dimension κ, and
experiment seed as long as Whh has sufficient dimensions.
First, we show the structure of the learned weights when
viewed in the basis [Ψ;Ψ⊥] in Figure 3A. We observe that
the variable memory interactions defined by the upper left

block of the matrix form the theoretical structure. The other
blocks of the weight matrix show much smaller interactions,
indicating that the variable memories interact weakly with
the orthogonal subspace. By construction, Ψ⊥ is orthogonal
to the eigenvectors of Whh with eigenvalue magnitude ≥ 1,
so the interactions of the non-memory subspace with itself
decays to zero as we iterate this matrix. This computation
structure is also reflected in the eigenspectrum of the learned
Whh showing agreement with the theoretical values (Figure
3B). Figure 3D depict the projection of the hidden state
sequence onto the variable memories during inference for
an example input resembling the text “3141” (Figure 3C).
At timestep 1, a majority of the variable memories store
values close to 0 (white, as indicated by the colorbar), and
subspace s stores the first input vector. This vector is moved
to the next variable memory subspace on the subsequent
timestep, and the next input vector is copied to the Ψs
subspace. This process continues iteratively until t = s,
with all loaded variables being shifted over by one subspace
and the following input being loaded into the Ψs subspace.
At t = s, all variable memories have been assigned values.
Afterward, the network autonomously shifts these values to
one subspace per timestep to periodically recall the input
sequence by reading from Ws =W ∗

r .

8. Discussion
We have introduced the Episodic Memory Theory of Recur-
rent Neural Networks (RNNs), portraying these networks as
dynamic systems executing episodic memory retrieval. We
presented the notion of ”variable memory,” a linear subspace
that can connect and recursively compute data symbolically.
Our methodology circumvents the obstacles posed by con-
ventional techniques in comprehending RNNs, specifically
their obscurity as ’black boxes’ and the intricacy of spectral
analysis in tasks involving multiple dimensions.

The episodic memory theory and the theoretical model of
variable binding challenge the basic presumptions made in
the two research directions delineated in Section 2. Address-
ing the ”variable binding problem,” we demonstrated how
RNNs could symbolically bind and synthesize data using
variable memories. As for the fixed memory assumption in
memory models, we demonstrated how it could be bypassed
by interacting suitably with the memory model.

References
Buchanan, B. G. and Shortliffe, E. H. Rule based expert

systems: The mycin experiments of the stanford heuris-
tic programming project (the addison-wesley series in
artificial intelligence). 1984.

Dasgupta, I. and Gershman, S. J. Memory as a computa-
tional resource. Trends in Cognitive Sciences, 25:240–

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2023

251, 2021.

Dennis, N. A., Turney, I. C., Webb, C. E., and Overman,
A. A. The effects of item familiarity on the neural corre-
lates of successful associative memory encoding. Cogni-
tive, Affective, & Behavioral Neuroscience, 15:889–900,
2015.

Graves, A., Wayne, G., and Danihelka, I. Neural turing
machines. ArXiv, abs/1410.5401, 2014.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Dani-
helka, I., Grabska-Barwinska, A., Colmenarejo, S. G.,
Grefenstette, E., Ramalho, T., Agapiou, J. P., Badia, A. P.,
Hermann, K. M., Zwols, Y., Ostrovski, G., Cain, A., King,
H., Summerfield, C., Blunsom, P., Kavukcuoglu, K., and
Hassabis, D. Hybrid computing using a neural network
with dynamic external memory. Nature, 538:471–476,
2016.

Greff, K., van Steenkiste, S., and Schmidhuber, J. On the
binding problem in artificial neural networks. ArXiv,
abs/2012.05208, 2020.

Hopfield, J. J. Neural networks and physical systems with
emergent collective computational abilities. Proceedings
of the National Academy of Sciences of the United States
of America, 79 8:2554–8, 1982.

Hopfield, J. J. Neurons with graded response have collective
computational properties like those of two-state neurons.
Proceedings of the National Academy of Sciences of the
United States of America, 81 10:3088–92, 1984.

Johnson-Laird, P. N. Mental models and human reasoning.
Proceedings of the National Academy of Sciences, 107:
18243 – 18250, 2010.

Karuvally, A., Sejnowski, T. J., and Siegelmann, H. T.
Energy-based general sequential episodic memory net-
works at the adiabatic limit. ArXiv, abs/2212.05563,
2022.

Kautz, H. A. The third ai summer: Aaai robert s. engelmore
memorial lecture. AI Mag., 43:93–104, 2022.

Kleinfeld, D. Sequential state generation by model neural
networks. Proceedings of the National Academy of Sci-
ences of the United States of America, 83 24:9469–73,
1986.

Kleinfeld, D. and Sompolinsky, H. Associative neural net-
work model for the generation of temporal patterns. the-
ory and application to central pattern generators. Biophys-
ical journal, 54 6:1039–51, 1988.

Koiran, P. Dynamics of discrete time, continuous state hop-
field networks. Neural Computation, 6:459–468, 1994.

Krotov, D. and Hopfield, J. J. Large associative memory
problem in neurobiology and machine learning. ArXiv,
abs/2008.06996, 2020.

Liang, C., Berant, J., Le, Q. V., Forbus, K. D., and Lao, N.
Neural symbolic machines: Learning semantic parsers on
freebase with weak supervision. ArXiv, abs/1612.01197,
2016.

Lindsay, R. K., Buchanan, B. G., Feigenbaum, E. A., and
Lederberg, J. Applications of artificial intelligence for
organic chemistry: The dendral project. 1980.

Lindsay, R. K., Buchanan, B. G., Feigenbaum, E. A., and
Lederberg, J. Dendral: A case study of the first expert
system for scientific hypothesis formation. Artif. Intell.,
61:209–261, 1993.

Martens, J. and Sutskever, I. Learning recurrent neural
networks with hessian-free optimization. In International
Conference on Machine Learning, 2011.

Newell, A. and Simon, H. A. The logic theory machine-a
complex information processing system. IRE Trans. Inf.
Theory, 2:61–79, 1956.

Newell, A. and Simon, H. A. Gps, a program that simulates
human thought. 1995.

Panigrahi, A. and Goyal, N. Learning and generalization in
rnns. In Neural Information Processing Systems, 2021.

Personnaz, L., Guyon, I. I., and Dreyfus, G. Collective com-
putational properties of neural networks: New learning
mechanisms. Phys Rev A Gen Phys, 34(5):4217–4228,
November 1986.

Ramsauer, H., Schafl, B., Lehner, J., Seidl, P., Widrich,
M., Gruber, L., Holzleitner, M., Pavlovi’c, M., Sandve,
G. K., Greiff, V., Kreil, D. P., Kopp, M., Klambauer, G.,
Brandstetter, J., and Hochreiter, S. Hopfield networks is
all you need. ArXiv, abs/2008.02217, 2020.

Rosenblatt, F. The perceptron: a probabilistic model for
information storage and organization in the brain. Psy-
chological review, 65 6:386–408, 1958.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing representations by back-propagating errors. Nature,
323:533–536, 1986.

Russell, S. J. and Norvig, P. Artificial intelligence: A mod-
ern approach. 1995.

Shortliffe, E. H. and Buchanan, B. G. A model of inexact
reasoning in medicine. Bellman Prize in Mathematical
Biosciences, 23:259–275, 1990.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for ICML 2023

Strogatz, S. H. Nonlinear dynamics and chaos: With appli-
cations to physics, biology, chemistry and engineering.
Physics Today, 48:93–94, 1994.

Sussillo, D. and Abbott, L. F. Generating coherent patterns
of activity from chaotic neural networks. Neuron, 63:
544–557, 2009.

Sussillo, D. and Barak, O. Opening the black box: Low-
dimensional dynamics in high-dimensional recurrent neu-
ral networks. Neural Computation, 25:626–649, 2013.

Turing, A. On computable numbers, with an application
to the entscheidungsproblem. Proc. London Math. Soc.,
s2-42:230–265, 2021.

Vankov, I. I. and Bowers, J. S. Training neural networks
to encode symbols enables combinatorial generalization.
Philosophical Transactions of the Royal Society B, 375,
2019.

Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
Attention is all you need. In NIPS, 2017.

Whitehead, A. N. Symbolism: its meaning and effect.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Submission and Formatting Instructions for ICML 2023

A. RNN - Episodic Memory Equivalence
From a given time t, the update equations are given as


Tf (Vf (t+ 1)− Vf (t)) = Ξσh(Vh(t))− Vf (t) ,
Vh(t) = Ξ⊤ σf (Vf (t)) + Φ⊤Ξ⊤Vd(t) ,

Vd(t) = σf (Vf (t)) .

(16)

{
Tf (Vf (t+ 1)− Vf (t)) = Ξσh(Vh)− Vf (t) ,
Vh(t) = Ξ⊤ σf (Vf (t)) + Φ⊤Ξ⊤σf (Vf) ,

(17)

{
Tf (Vf (t+ 1)− Vf (t)) = ΞVh − Vf (t) ,
Vh(t) = (I +Φ⊤)Ξ⊤σf (Vf) ,

(18)

(19)Tf (Vf (t+ 1)− Vf (t)) = Ξ (I +Φ⊤)Ξ⊤σf (Vf)− Vf (t)

Final discrete upate equation

(20)Vf (t+ 1) = Ξ (I +Φ⊤)Ξ⊤σf (Vf)

Restrict the norm of matrix ||Ξ (I +Φ⊤)Ξ⊤||≤ 1.
This allows us to consider the transformation V ′

f = σf (Vf), so for invertible σf ,

(21)σ−1
f (V ′

f (t+ 1)) = Ξ (I +Φ⊤)Ξ⊤V ′
f

(22)σ−1
f (V ′

f (t+ 1)) = Ξ (I +Φ⊤)Ξ⊤V ′
f

(23)V ′
f (t+ 1) = σf (Ξ (I +Φ⊤)Ξ⊤V ′

f)

this is a general update equation for an RNN without bias. The physical interpretation of this equation is that the columns
of Ξ stores the individual memories of the system and the linear operator (I +Φ) is the temporal interaction between the
stored memories. In the memory modeling literature, it is typical to consider memories as a fixed collection instead of a
variable collection that shares a common interaction behavior. We will show how in the next sections how the dynamics as a
result of fixed collection can be used to store variable information.

A.1. Topological Conjugacy with RNNs

Proof that dynamical systems governed by Equations 20 and 23 are topological conjugates.

Consider f(x) = Ξ (I + Φ⊤)Ξ⊤σf (x) for Equation 20 and g(x) = σf (Ξ (I + Φ⊤)Ξ⊤x) for Equation 23. Consider a
homeomorphism h(y) = σf (y) on g. Then,

(24)
(h−1 ◦ g ◦ h)(x) = σ−1

f (σf (Ξ (I +Φ⊤)Ξ⊤σf (x)))

= Ξ (I +Φ⊤)Ξ⊤σf (x)

= f(x)

So, for the homeomorphism h on g, we get that h−1 ◦ g ◦ h = f proving that f and g are topological conjugates. Therefore
all dynamical properties of f and g are shared.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Submission and Formatting Instructions for ICML 2023

B. Repeat Copy: Mathematical Theory
Repeat Copy is a task typically used to evaluate the memory storage characteristics of RNNs since the task has a deterministic
evolution represented by a simple algorithm that stores all input vectors in memory for later retrieval. Although elementary,
repeat copy provides a simple framework to imagine the variable binding mechanisms we theorized in action. For the repeat
copy task, the linear operators of the RNN has the following equations.

Φ =
∑(s−1)κ
µ=1 |ψµ⟩ ⟨ψµ+κ|+

∑sκ
µ=(s−1)κ+1 |ψµ⟩

〈
ψµ−(s−1)κ

∣∣
Wuh = Ψs

Wr = Ψ∗
s

(25)

This ϕ can be imagined as copying the contents of the subspaces in a cyclic fashion. That is, the content of the ith subspace
goes to (i− 1)th subspace with the first subspace being copied to the N th subspace. The dynamical evolution of the RNN is
represented at the time step 1 as,

(26)|h(1)⟩ =
∣∣ψ(s−1)κ+j

〉 〈
ej
∣∣ui(1) |ei⟩

(27)|h(1)⟩ = ui(1)
∣∣ψ(s−1)κ+j

〉 〈
ej
∣∣ei〉

(28)|h(1)⟩ = ui(1)
∣∣ψ(s−1)κ+j

〉
δij

Kronecker delta index cancellation
(29)|h(1)⟩ = ui(1)

∣∣ψ(s−1)κ+i

〉
At time step 2,

(30)|h(2)⟩ = ui(1)Φ
∣∣ψ(s−1)κ+i

〉
+ ui(2)

∣∣ψ(s−1)κ+i

〉
Expanding Φ

(31)|h(2)⟩ = ui(1)

(s−1)κ∑
µ=1

|ψµ⟩
〈
ψµ+κ

∣∣+ sκ∑
µ=(s−1)κ+1

|ψµ⟩
〈
ψµ−(s−1)κ

∣∣∣
 ∣∣ψ(s−1)κ+i

〉
+ ui(2)

∣∣ψ(s−1)κ+i

〉

(32)|h(2)⟩ = ui(1)
∣∣ψ(s−2)κ+i

〉
+ ui(2)

∣∣ψ(s−1)κ+i

〉
At the final step of the input phase when t = s, |h(s)⟩ is defined as:

(33)|h(s)⟩ =
s∑

µ=1

ui(µ)
∣∣ψ(µ−1)κ+i

〉
For t timesteps after s, the general equation for |h(s+ t)⟩ is:

(34)|h(s+ t)⟩ =
s∑

µ=1

ui(µ)
∣∣ψ[((µ−t−1 mod s)+1)κ+i]

〉
From this equation for the hidden state vector, it can be easily seen that the µth variable is stored in the
[(µ− t− 1 mod s) + 1]

th subspace at time step t. The readout weights Wr = Ψ∗
s reads out the contents of the sth

subspace.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Submission and Formatting Instructions for ICML 2023

C. Non-linear RNN
The linear RNNs we discussed are powerful in terms of the content of variables that can be stored and reliably retrieved. The
variable contents, ui, can be any real number and this information can be reliably retrieved in the end using the appropriate
readout weights. However, learning such a system is difficult using gradient descent procedures. To see this, setting the
components of Φ to anything other than unity might result in dynamics that is eventually converging or diverging resulting
in a loss of information in these variables. Additionally, linear systems are not used in the practical design of RNNs. The
main difference is now the presence of the nonlinearity. In this case, our theory can still be used. To illustrate this, consider
a general RNN evolving according to h(t + 1) = g(Whhh(t) + b) where b is a bias term. Suppose h(t) = h∗ is a fixed
point of the system. We can then linearize the system around the fixed point to obtain the linearized dynamics in a small
region around the fixed point.

(35)h(t+ 1)− h∗ = J (g)|h∗ Whh (h(t+ 1)− h∗) +O((h(t+ 1)− h∗)2)

where J is the jacobian of the activation function g. If the RNN had an additional input, this can also be incorporated into
the linearized system by treating the external input as a control variable

(36)h(t+ 1)− h∗ = J (g)|h∗ Whh (h(t)− h∗) + J (g)|h∗ Wuhu(t)

Substituting h(t)− h∗ = h′(t)

(37)h′(t+ 1) = J (g)|h∗ Whh h
′(t) + J (g)|h∗ Wuhu(t)

which is exactly the linear system which we studied where instead of Whh = ΞΦΞ†, we have J(g)|h∗Whh =
ΞΦΞ†. With this result, we will analyse Elman RNN models that have the general update equations h(t + 1) =
tanh(Whhh(t) +Wuhu(t) + b).

12

