
Neural Hybrid Automata
Supplementary Material

Table of Contents
A Additional Discussion and Theory 14

A.1 Neural Hybrid Automata: Modules and Hyperparameters 14

A.2 Gradient Pathologies . 15

A.3 Extensions and Limitations . 16

A.4 Detailed Feature Comparisons with Related Work 16

A.5 Broader Impact . 17

B Experimental Details 17

B.1 Identification of Reno TCP . 18

B.2 Robustness to Segmentation Noise . 19

B.3 Switching Linear System and Mode Mixing . 19

B.4 End–To–End Learning of Hierarchical Controllers for Dynamical Systems 20

C Realization of NHAs 21

C.1 Software Implementation of Hybrid Integration 21

A Additional Discussion and Theory

A.1 Neural Hybrid Automata: Modules and Hyperparameters

We provide a notation and summary table for Neural Hybrid Automata (NHA). The table serves as a
quick reference for the core concepts introduced in the main text.

1. Dynamics: tasked with approximating continuous dynamics of each mode by conditioning a
Neural ODE on mode z.

2. Mode Encoder: only used during self–supervised mode recovery. Labels every subjtrajectory
Xi with a mode z to ensure mode–conditioned decoder Fz can reconstruct it despite Neural
ODE representation limitations (uniqueness of solutions given an initial condition).

3. Event Module: determines during simulation (i) when events happen, and what types of
events i.e. mode transitions (z → z′) through pz→z′ , (ii) what happens during such events
i.e. jumps on the state via ψz→z′ . Normalizing flow pz→z′ is trained to approximate densities
p(τz→z′ |H).

The only NHA hyperparameter beyond module architectural choices is m, or number of latent modes
provided to the model at initialization. Performance effects of changing m have been explored in
Section 5.2 and Appendix B.2. Appendix B.2 further provides analyzes potential techniques to prune
additional modes.

14

Neural Hybrid Automata Modules

Dynamics: ẋ = Fz(t, xt, ω) t ∈ [tk, tk+1)

Mode Encoder: z ∼ E(X, θ) t = tk

Event Module: ψz→z′ , pz→z′

z latent mode (one–hot)
X collection of subtrajectories
{tk} event times

θ encoder parameters
ω Neural ODE parameters
Fz mode–controlled Neural ODE

ψz→z′ jump networks
pz→z′ normalizing flows

A.2 Gradient Pathologies

We provide some theoretical insights on the phenomenon of gradient pathologies with the simple
example of a one–dimensional linear hybrid system with two modes and one timed jump,

ẋt =

{
axt t < τ
bxt t >= τ

t 6= τ

x+t = cxt t = τ

(A.1)

We let the system to evolve in a compact time domain T = [0, 1] such that τ ∈ T. Given an initial
condition x0 ∈ R, the solution x1 can be obtained as follows

xτ = eaτx0 1. integrate 1st flow until t = τ

x+τ = cxτ = ceaτx0 2. at t = τ apply jump

x1 = eb(1−τ)x+τ = ceb(1−τ)eaτx0 = ceaτ+b(1−τ)x0 3. integrate 2nd flow from t = τ to t = 1
(A.2)

Alternatively, we can compactly write the solution at any time t ∈ T as

xt =

{
eatx0 t < τ

ceaτ+b(t−τ)x0 t ≥ τ (A.3)

Using the previous equation we can compute the gradient of solutions w.r.t. the parameters a, b, c, τ .
In particular, we have

dxt
da

=

{
teatx0 t < τ

τkeaτ+b(t−τ)x0 t > τ

dxt
db

=

{
0 t < τ

(t− τ)keaτ+b(t−τ)x0 t > τ

dxt
dc

=

{
0 t < τ

eaτ+b(t−τ)x0 t > τ

dxt
dτ

=

{
0 t < τ

(a− b)keaτ+b(t−τ)x0 t > τ

(A.4)

Now let us consider a loss function computed on the mesh solution points of the trajectory

L =

K∑
k=1

γ(xts), 0 < t1 < · · · < tS < 1, ts 6= τ

of which we wish to obtain the minimizers a∗, b∗, c∗, τ∗ via e.g. application of gradient descent
methods. The gradient of the cost function w.r.t. any of the parameters θ ∈ {a, b, c, τ} is given by

dL

dθ
=

S∑
k=1

dγ(xts)

dx

dxts
dθ

.

Simultaneous estimation of both the optimal dynamic parameters a∗, b∗, c∗ and a randomly initialized
event time τ∗, will result in gradients of certain parameters to vanish or be completely incorrect.

Specifically, we note that parameter τ determines, beyond the specific time when the jump event
occurs, also which parameters are responsible for computation of solution points xts . Consider

15

the following two scenarios, where mode 1 is the first vector field of (A.1) and 2 is the second
(post–event):

(1) Initialization of τ is an over–estimation of τ∗ at the beginning of training. If this is the case, for
ts such that τ > ts > τ∗ the mode is missclassified i.e. should be 2, but is still 1 due to the delayed
event time τ . The gradient w.r.t b of loss computed on solution points xtk , τ > ts > τ∗ is then
wrongfully set to zero.

(2) τ is an under–estimation of τ∗. The same reasoning applies, except that for τ∗ > ts > τ the
mode is misslassified to 2, although it should be 1. This, in turn, affects the gradients for b, which
results different than 0 despite the fact that b, from (A.1) should not be affecting the solution at points
ts < τ∗. Any value taken by this gradient is thus incorrect, and can greatly affect the optimization
procedure

We have shown how gradient pathologies exist even in the idealized linear case. In nonlinear systems
with multiple events (including stochasticity) these effects can have a great empirical effect on a
training procedure. The trajectory segmentation first approach of NHAs is designed to minimize their
impact.

A.3 Extensions and Limitations

Automata reconstruction via symbolic regression NHAs with categorical encoders recover
either a representation using the minimum number of modes necessary, corresponding to those of the
system, or can be pruned due to immunity to mode mixing (discussed in Appendix B.3).

This property allows application of symbolic regression (SR) to reconstruct an analytic expression
for each differential equation driving a system mode. This step grants domain experts a method to
validate and certify the results, and enables construction of a human–readable automata representation
for the SHS.

Clustered SR results can be improved by leveraging the universal differential equation approach
employed in example by [10] for unimodal differential equations, by utilizing the decoder Fz as an
interpolating source of additional trajectory data for each mode.

Latent hybrid automata from observations Learning methods for dynamical systems often in-
troduce structure in latent space to enable control and identification from raw observations [41], [42].
Practical application for hybrid systems, such as robotic manipulation [43], locomotion [44], and
traffic networks [2], might benefit from learning models structurally equipped with latent NHAs.

Optimal design of NHA modules for latent applications remains a difficult open question, as the
analysis of deep models with latent spaces designed to evolve in continuous–time is also in its infancy.

Unified benchmark for model development Despite the importance of hybrid systems in engi-
neering, wide differences in techniques across domains have historically made it difficult to develop
and preserve a unified set of benchmarks.

Evidence from other deep learning disciplines e.g. computer vision highlights the importance of
consistent and curated benchmark datasets to track and measure the impact architecture and method
optimizations. We argue further benchmark design, along with larger datasets, to be a necessary
step required to trigger an ImageNet–like [45] moment for general neural differential equations and
thus also NHAs. As an additional challenge, we note that performance of continuous neural models
is in general highly impacted by the numerical method used for forward and backward inference,
with optimal methods usually system or application dependent. This makes decoupling architecture
improvements from the numerical underpinnings harder than for traditional models.

A.4 Detailed Feature Comparisons with Related Work

Table 3 compares the proposed method with recent learning based approaches in terms of features.
We use 7 for features that are either absent or incompatible with a given method, or features that have
not been tested or verified, although the method itself may be adapted to include it.

We consider the following:

16

• Recovery of flows and events: can state–space vector fields be learned along with the events.
In [11], learned latent dynamics aid in the intensity parametrization of the point process.
State–space dynamics are not learned simultaneously with point process maximum likelihood
training. [13] trains a neural network vector field along with a parametrized event function.

• Stochastic events: has the method been shown to be compatible with stochastic events. The
formulation of [13] can parametrize stochastic events via inverse sampling, but no experiments
have been performed, likely due to difficulties in learning stochastic events from a full
trajectory.

• Mode identification: does the method recover modes of a multi–mode hybrid system, and
can the vector field approximate a different dynamics for each. NHAs are the first method to
tackle this setting.

• Adaptive end–time: can the method adjust event times by calculating gradients with respect
to integration end–times. Core contribution of [13] is an implicit differentiation formulation
to adapt end-times. While adaptive segmentation has been discussed as being compatible with
NHAs, no targeted experiments on this technique have been carried out. The extension is left
as future work.

• Intensity–free parametrization: does the method use intensity–free parametrizations to
avoid numerically solving integrals to sample from next–event densities. [11], [13] parametrize
the intensity as only a single mode is considered. NHA use normalizing flows to approximate
these densities directly, since intensity parametrization scale poorly as the number of system
modes increases.

A.5 Broader Impact

This work represents a first attempt in developing a data–driven, learning based technique for stochas-
tic hybrid system (SHS) identification and control. As discussed in the main text, existing methods
currently rely on strict assumptions that severely limit their utilization in practice. Applications
domain the SHS formalism provides an accurate language to describe a target system are most likely
to be affected by the availability of NHAs as a method to improve partial mathematical models using
data or construct from scratch a model of the system and its automata representation. The impact
of NHAs here is thus likely to be similar in scope to the impact of neural differential equations in
science and engineering.

We do not anticipate significant negative environmental impact from the adoption of NHAs as these
models are still orders of magnitude smaller than other large deep learning architectures for domains
such as natural language.

B Experimental Details

Hardware and software resources Experiments have been performed on a workstation equipped
with a 48 threads AMD RYZEN THREADRIPPER 3960X, a NVIDIA GEFORCE RTX 3090
GPUs and two NVIDIA RTX A6000. All models and datasets fit in a single GPU. The software
implementation of NHA leverages the PyTorch framework. ODE solvers and numerical methods for
hybrid systems have been developed from scratch and are included in the submission.

Common experimental settings In all experiments, unless specified, the NHA mode encoder Eθ
is capped with a softmax activation computing the probabilities of a categorical distribution from
which then the one–hot mode z is sampled.

Method Recovery of Stochastic Mode Adaptive Intensity–free
flow + events events identification end–time parametrization

NJSDE [11] 7 X 7 X 7
Neural Event ODE [13] X 7 7 X 7

NHA (this work) X X X 7 X
Table 3: Feature comparison between neural models for hybrid systems. 7 is used to indicate features that are
either not compatible, or have not been verified in the original work.

17

Simulation Hyperparameter Value

Number trajectories 40
ODE solver Dormand–Prince
Tolerances (abs, rel, event) 10−6, 10−6, 10−4

τoff 3
η 1
nack 2
pdrop 0.05
κ 4

Training Hyperparameter Value

Training iterations (mode recovery) 8000
Encoder Eθ learning rate 3 · 10−4

Decoder Fz learning rate 10−2

Optimizer AdamW
Eθ layer dimensions [·, 64, 65, 64,m]
Eθ activation ReLU
Eθ dropout [0.3, 0.3, 0.3]
Fz layer dimensions [2 +m, 2]

Training iterations (event training) 4000
Learning rate 2 · 10−3

Optimizer AdamW
ψz→z′ layer dimensions [2, 32, 2]

Table 4: Hyperparameters of [Left] TCP data simulation [Right] NHA in the TCP experiment, mode recovery
and event module training.

Gradients through the sampling operation are computed via straight–through–estimation (STE) [27],
which can be implemented with a stop_gradient (e.g. detach in PyTorch) operation present
in modern deep learning frameworks. Let z be the one–hot representation of system mode, and
p a vector of probabilities for the corresponding categorical distribution, computed as output
of a neural network parametrized NHA encoder Eθ. STE can be realized in a single line as z −
p.stop_gradient() + p. STE ensures the output of the encoder Eθ is strictly one–hot encoded,
while simultaneously ensuring that the gradients backpropagate directly through the probabilities.

The data–controlled Neural ODE decoder Fz incorporates mode information to select

ẋ =

m∑
i=1

zi fi(t, x, ωi)

where z is one–hot encoded, and thus only a single neural network vector field fi with parameters ωi
determines the solution.

B.1 Identification of Reno TCP

Experimental setup Tables 4 provide hyperparameters for data simulation and training of NHA.
Unless otherwise specified simulation, training and testing is repeated for 10 different random seeds.

The complete experiment on learning the Reno TCP system involves multiple stages: (i) mode
recovery and (ii) training of the NHA event module. As baselines for (i), we consider several Neural
ODE variants similar to NHA decoder Fz , with latent z obtained in different ways. Latent Neural
ODEs obtain z as sampled for Normal distribution Nθ := N (µθ, σθ) parametrized by a neural
network matching the architecture of Eθ. Reparametrization is used to backpropagate through the
sampling procedure. Data–controlled Neural ODEs (DC–NODEs) are comparable to Latent Neural
ODEs model with the major difference in the computation of latents as z = gθ(X) with gθ once
again matching Eθ. All decoders Fz are equivalent, except in the case of Augmented Neural ODEs
(the Neural ODEs is zero–augmented [9] i.e. z := 0) where the absence of the encoder is balanced by
a more expressive decoder with three–layers. The normalizing flows ψz→z′ in NHA event modules
are designed as spline flows [32] with two layers. We use the standard implementation of spline flows
in Pyro [46].

During mode recovery, all models are trained on 5–folds of 5. Training is performed by parallel
integration across subtrajectories Xi using the Runge–Kutta4 explicit solver. All gradients are
computed via reverse–mode automatic differentiation. We test models with lowest cross–validation
reconstruction MSE loss, since cross–validation v–score would not be available without ground–truth
labels. We find that lowest reconstruction loss often correlated with best v–measure. Baselines for
mode clustering (ii) include standard clustering algorithms k–means++ [29], hierarchical [30] and
DBSCAN [31]. We use scikit–learn [47] implementation of all baseline algorithms. We perform
light hyperparameter tuning on ground–truth labels for k–means++ and hierarchical to optimize their

18

performance in the range m ∈ [3, 5, 10]. DBSCAN is similarly tuned to optimize its performance
with parameter ε indicating the maximum size of neighourhoods around a data point. Subtrajectories
classified as noise by DBSCAN are counted as incorrectly clustered.

We observe DBSCAN performance to be correlated to NHA self–supervised mode recovery. Both
methods excel when density of data points under some metric is indicative of cluster separation.
However, NHA self–supervision relies on the additional inductive bias of data points in a subtrajectory
representing observations of a solution of an ODE, whereas DBSCAN does not. The denser the
trajectories, the more restricting the Neural ODE representation limitations, and the easier each
cluster is to find. Due to the similarity in their working principle, DBSCAN performance can be used
as a quick sanity check to determine whether the dataset is suitable for NHA mode recovery.

B.2 Robustness to Segmentation Noise

∆ v–score

Model p = 0.1 p = 0.3 p = 0.5

NHA–3 −0.10 −0.27 −0.38
NHA–5 −0.09 −0.24 −0.34
NHA–10 −0.07 −0.25 −0.33

Table 5: self–supervised mode recovery v–measure perfor-
mance loss due to noisy segmentation of the TCP dataset
discussed in the main text. We evaluate under an increasing
degree of data corruption. Hyperparameter p indicates the
probability for a subtrajectory Xi to be subject to a noisy
segmentation i.e. to have the index determining its initial
condition be perturbed and shifted either left (before) or right
(after).

We investigate robustness of NHA mode re-
covery to a noisy segmentation in subtrajec-
tories Xi. To simulate incorrect segmenta-
tions, we collect segmentation indices and
perturb them by adding or removing an uni-
formly sampled from [1, 10]. Each index
has a p probability of being corrupted by
noise, and we repeat mode recovery with
p ∈ [0.1, 0.3, 0.5] (3 times per p). Shifting
left or right by values sampled from [1, 10]
results in significant data corruption; cer-
tain subtrajectories, being shorter than 10
points, can be completely absorbed into a
different subtrajectory. Table 5 reports the
differences in v–measure compared to the
results of Section 5.1.

B.3 Switching Linear System and Mode Mixing

Experimental setup We considered the two–dimensional switching linear system reported in [20],
described by the dynamics

(ẋt, ẏt) = f(xt, yt) :=


(−yt, xt + 2) if xt ≥ 2

(−1,−1) if xt < 2 ∧ yt ≥ 0

(1,−1) if xt < 2 ∧ yt < 0

(B.1)

We performed an ablation study on the effect of the categorical sampling for the mode selection in
NHAs in presence of redundant "free" modes. In particular, we considered the following learning
model

(ẋt, ẏt) =

4∑
i=1

witfi(xt, yt) (B.2)

with one redundant mode. Fi (i = 1, 2, 3, 4) was two-layers neural networks with 32 neurons each,
softplus activation on the first hidden layer and hyperbolic tangent activation on the second one. We
then defined two variants of the model: a first variant with wt = (w1

t , w
2
t , w

3
t , w

4
t) directly obtained

via softmax normalization of the output of a neural network g,

wt = softmax g(xt, yt);

and a second one where wt is obtained by a categorical sample conditioned by g(xt, yt), i.e.

∀t wt ∼ categorical(softmax g(xt, yt))

g was fixed as a neural network made up by two layers with 64 units and SiLU (swish) acti-
vation. The two models were trained on a L1 reconstruction loss of nominal trajectories of the
system (B.1). We introduced a regularization term penalizing the squared error on un–normalized
finite differences of nominal/reconstructed trajectories as a proxy for the vector field information.

19

0 2

−2
0

2

x

y

z1(x, y)

0 1

0 2

−2
0

2

x

y

z2(x, y)

0 1

0 2

−2
0

2

x

y

z3(x, y)

0 1

0 2

−2
0

2

x

y

z4(x, y)

0 1

Discrete Mode Selector: Categorical Samples z ∼ Categorical(Eω(x, y))

Figure 10: Reconstructed conditional vector fields Fz and corresponding mode classification boundaries. The
categorical encoder uses two identical modes for a single ground–truth vector fields.

0 2

−2

0

2

x
y

Difference Between Vector Fields
of Overlapping Modes

‖F2 − F3‖1

0.5

1

1.5

·10−2

Figure 9: Similarity between learned
mode vector fields F2 and F3 of Figure
10. The two vector fields are equivalent in
the region of interest, as indicated by the
L1–norm, and the corresponding modes
can thus be merged.

Mode pruning Uniqueness theorems for ODE solutions
guarantee that, given an initial condition and a mode latent
code z, the decoder Fz will always produce the same trajec-
tory. Immunity to mixing for categorical latents enables mode
pruning and recovery of a minimal representation. If Lr sat-
urates, the encoder has not been initialized with a sufficient
number of modes m. Redundant modes may be pruned, in
example, by merging them if a similarity measure between
the corresponding vector fields Fzi , Fzj e.g. difference in a
given norm calculated on data trajectories, is small enough.
Figure 10 provides an example result of the second scenario
discussed in Section 5.2, where categorical NHA encoders
use more than a single latent mode for a target underlying
mode. However, due to their immunity to mode mixing, the
vector fields are equivalent, and can be merged. We show this
in Figure 9, where the L1–norm between F2 and F3 is shown
to be small in the region where the corresponding modes 2 and 3 are active.

B.4 End–To–End Learning of Hierarchical Controllers for Dynamical Systems

Experimental setup Our objective is to control a swarm of differential drive robots moving on a
planar space. The system dynamics are

ẋ1 = uv cos θ

ẋ2 = uv sin θ

ϑ̇ = ur

(B.3)

where ϑ is the orientation of a single robot. The control [uv, ur] ∈ R2 is obtained via the low–level,
time–invariant feedback controller uz := u(x1, x2, ϑ, z), with z produced and switched every 5
seconds by the planner. Both the controller and the policy π, are parametrized by a neural network.
We use Adam for both networks, with learning rates 10−3, 10−3.

The training of low–level controller uz and high–level planner π is carried out concurrently. We
perform batch training on robot swarms of N = 80000. At the beginning of each episode, we sample
the initial conditions uniformly in a square region, with each robot rotated according to a random
orientation also uniformly sampled in [0, 2π]. During each episode, we simulate the switching and
control behaviour of each robot with respect to two pre-defined map layouts, both shown in the
alternating resource pattern of the upper-left plot of Figure 8a. Each map layout has M = 5 resource
locations, where two auxiliary scalar variables r1 and r2 specify, for each resource, its planar location.

We train policy networks π(x1, x2, r11, r21, ..., r1m, r2m) where the inputs correspond to the con-
catenated robot states, together with the flattened resource locations. The M−dimensional softmax

20

output determines a categorical probability distribution over the resources is then used to sample a
resource target.

A reward can be assigned to each robot based on the ability to select the correct target. For each robot,
we generate a reward of 1 if the selected target is correct, and 0 otherwise. Let G(si, pi) be the reward
of robot i in the swarm, we can compute the reward for a swarm in a map by R =

∑N
i
G(si,pi)
1000

where s is the categorical sample from the distribution over the targets, and p are the reference targets
computed by argminj ||[r1j , r2j] − [x1, x2]|| (note R ∈ [0, 80] for any one episode), with x1, x2
being the robot location at the time of switching. The target selector is trained by minimizing a
Lπ = − 1

T

∑T
t ln(π(s

(t)
p) ∗ R), where T is the number of alternating maps, and s(t)p denotes the

concatenated robot location and resource map with respect to the tth map layout used for training.

The target selected by the planned informs low–level controller uz via the corresponding resource
location. In particular, we provide as input to uz the coordinates z := [r1, r2] of the target chosen by
π. This augmented state is used by uz to resolve the robot’s dynamics and drive the swarm closest
to their selected targets. We train uz by solving a continuous–time optimal control problem with a
terminal RMSE loss between the state reached by the robot and the objective set by the policy planner.
Here, we integrate the system using the adaptive–step DormandPrince [48] solver with tolerances
10−3, 10−3.

Discussion of results Figure 8 shows the average reward and control loss of the robot swarm during
training, with both trends converging after 4000 episodes. Figures 8a and 8b show the generated
control of a randomly generated swarm of 100 robots on two new maps. In the first map, the
targets consist on alternating patterns of the learned map layouts, generating a straight line pattern
which correctly captures the greedy robot policy imposed. The second map consists instead of a
new, unseen, map layout within the alternation. The trained model is capable of generalizing the
planning and control strategy to account for the new map layout, by redirecting the robots onto their
closest resource in a wave-like pattern. On the first tested map, the model achieves 99.8%± 0.8%
average target accuracy for the 100 robot tested batch. On the second tested map, the model achieves
98.5%± 1.95% average target accuracy for the 100 robot tested batch.

C Realization of NHAs

C.1 Software Implementation of Hybrid Integration

We provide documented Python pseudo–code for the hybrid system adaptive integration algorithm
used for dataset generation. This function can handle hybrid systems with multiple modes and
transitions. Each possible event requires its own callback function with check_event and jump_map
methods. We provide an example of one such callback under odeint_hybrid.

1 def odeint_hybrid(vf, x, t_span, solver, callbacks, atol, rtol, event_tol):
2 """ODE solver for hybrid systems with multiple events."""
3 # initialize event state tracker, one boolean for each possible event
4 # (or edge in the automata representation of the SHS).
5 event_states = [False for _ in range(len(callbacks))]
6 dt = initial_step_size(f, k1, x, t, solver.order, atol, rtol)
7

8 while t < t_span[-1]:
9 # tentative step

10 x_step, x_err = solver.step(vf, x, t, dt)
11

12 # check whether any event
13 # has been triggered in the interval [t, t + dt]
14 new_event_states = [cb.check_event(t + dt, x_step)
15 for cb in callbacks]
16

17 # has any event state moved from `False' to `True' in [t, t + dt]?
18 triggered_events = sum([(zp != z) & (z == False)
19 for zp, z in zip(new_event_states, event_states)])
20 # if an event / mode transition has been triggered,

21

21 # find exact event time and state
22 if triggered_events > 0:
23 x, t = root_find_event(max_iters, event_tol)
24

25 # if there is a conflict and multiple events are triggered,
26 # takes always the one with smaller ID
27 zp = min([i for i, ev in enumerate(new_event_states)
28 if ev == True])
29

30 t = t + dt
31 # save state and time BEFORE and AFTER jump
32 sol.append(x)
33 eval_times.append(t)
34

35 # apply jump func.
36 x = callbacks[zp].jump_map(t, x)
37

38 sol.append(x)
39 eval_times.append(t)
40

41 # when there are no events,
42 # proceed as usual with adaptive integration
43 else:
44 error_ratio = compute_error(x_step, x_err, atol, rtol)
45 accept_step = error_ratio <= 1
46

47 if accept_step:
48 t = t + dt
49 sol.append(x)
50 eval_times.append(t)
51

52 else:
53 dt = adapt_step(dt, error_ratio, safety,
54 min_factor, max_factor, order)
55

56 return eval_times, sol

The callbacks are in the form:

1 class StochasticEventCallback(nn.Module):
2

3 super().__init__()
4 self.exponential = Exponential(1)
5

6 def initialize(self, x0):
7 # sample one `s' for each batch in x0, to identify events
8 # as described in Section 2. Exponential, instead of Uniform
9 # is used to avoid `log' computations.

10 # Should be sampled again after every event is triggered.
11 self.s = self.exponential.sample(x0.shape[:1])
12

13 def check_event(self, t, x):
14 raise NotImplementedError
15

16 def jump_map(self, t, x):
17 raise NotImplementedError

22

	
	Additional Discussion and Theory
	Neural Hybrid Automata: Modules and Hyperparameters
	Gradient Pathologies
	Extensions and Limitations
	Detailed Feature Comparisons with Related Work
	Broader Impact

	Experimental Details
	Identification of Reno TCP
	Robustness to Segmentation Noise
	Switching Linear System and Mode Mixing
	End–To–End Learning of Hierarchical Controllers for Dynamical Systems

	Realization of NHAs
	Software Implementation of Hybrid Integration

